J. Austral. Math. Soc. (Series A) 33 (1982), 287-294

RINGS WITH DUAL CONTINUOUS RIGHT IDEALS

SAAD MOHAMED

(Received 10 August 1981)

Communicated by R. Lidl

Abstract

In this paper the structure of rings with dual continuous right ideals is discussed. The main result is the following: If R is a ring with (Jacobson) radical nil, and all of its finitely generated right ideals are dual continuous, then $R \simeq \begin{pmatrix} 0 & M \\ 0 & T \end{pmatrix}$ where S is a finite direct sum of local rings each of which has its radical square zero, or is a right valuation ring, T is semiprimary right semihereditary ring, and M is an (S, T)-bimodule such that all of its finitely generated T-submodules are projective. A partial converse of this result is obtained: any matrix ring of the above type with M = 0 has all of its finitely generated right ideals dual continuous.

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 10, 16 A 50, 16 A 51.

1. Introduction

Mohamed and Singh (1977) introduced the concept of dual continuous modules (for short d-continuous) modules as follows: A module M is called d-continuous if it satisfies the following conditions: (I) for every submodule A of M there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subset A$ and $M_2 \cap A$ is small in M and (II) every epimorphism from M onto a summand of M splits. Any quasi-projective module over a perfect ring is d-continuous but not conversely. Over arbitrary rings the relation between dual continuity and quasi-projectivity is less close. However d-continuous modules still possess many properties which are analogous to that of quasi-projective modules. The study of d-continuous modules was motivated to generalize a decomposition theorem for quasi-projective modules over perfect rings given by Koehler (1971). A decomposition theorem for d-continuous modules over arbitrary rings was obtained by Mohamed and Singh (1977) and was later improved by Mohamed and Müller (1979) as follows:

[©] Copyright Australian Mathematical Society 1982

Saad Mohamed

THEOREM. A d-continuous module M has a decomposition, unique up to isomorphism, $M = \sum_{i \in I} \bigoplus A_i \bigoplus N$ where each A_i is a local module and N = Rad N.

It follows by the above theorem that a d-continuous module with small radical is a direct sum of local modules. In particular a finitely generated d-continuous module is a finite direct sum of local modules.

Jain and Singh (1975) generalized the concept of hereditary rings; they called a ring R right qp-ring if every right ideal of R is quasi-projective. Making an effective use of Koehler's decomposition theorem, they studied perfect qp-rings. Then Goel and Jain (1976) studied semiperfect qp-rings with nil radical. Having obtained the above decomposition theorem for d-continuous modules, here we discuss rings with d-continuous right ideals.

DEFINITION. A ring R in which every right ideal (resp. finitely generated right ideal) is d-continuous is called a right dc-ring (resp. right dcf-ring).

In the present work we study the structure of dc-rings and dcf-rings with nil radical. The structure of arbitrary dc-rings is still open.

All rings considered have unities and all modules are unital right modules. Rad M and Soc M will denote the Jacobson radical and socle of a module M respectively. For any ring R, Rad R_R will be denoted by J(R) or simply J. A module M is local if Rad M is a maximal submodule. A ring R is local if R_R is a local module, that is R/J is a division ring. For the definitions and basic properties of semiperfect and semiprimary rings, we refer to Faith (1976). If X is a subset of a ring R, then r(X) (resp. l(X)) will denote the right (resp. left) annihilator of X in R. For any ring R, Soc $R_R \subset l(J)$ and if R is local, then Soc $R_R = l(J)$. For definition and basic properties of quasi-projective modules we refer to Miyashita (1966) or Wu and Jans (1967).

2. Some general results

The following results about d-continuous modules are given in Mohamed and Singh (1977) and are listed here for easy reference.

THEOREM 2.1. A ring R is (semi) perfect if and only if every (finitely generated) quasi-projective R-module is d-continuous.

COROLLARY 2.2. A ring R is semiperfect if and only if R_R is d-continuous.

LEMMA 2.3. Let A and B be submodules of a d-continuous module M such that M = A + B. Then there exist submodules A_0 and B_0 such that $A_0 \subset A$, $B_0 \subset B$ and $M = A_0 \oplus B_0$.

LEMMA 2.4. Let A and B be summands of a d-continuous module M. Then any exact sequence $A \xrightarrow{f} B \to 0$ splits. If in addition A is indecomposable and $B \neq 0$, then f is an isomorphism.

LEMMA 2.5. If $M \times M$ is d-continuous, then M is quasi-projective.

PROPOSITION 2.6. Let M be any module and A, B be two small submodules of M such that $M/A \oplus M/B$ is d-continuous, then $M/A \simeq M/B$.

Next we prove

LEMMA 2.7. Let M = A + B be a d-continuous module. If A and B are indecomposable and noncomparable, then $A \cap B = 0$.

PROOF. By Lemma 2.3, $M = A_0 \oplus B_0$ where $A_0 \subset A$ and $B_0 \subset B$. Since A is indecomposable $A_0 = 0$ or $A_0 = A$. However $A_0 = 0$ implies

$$A \subset M = B_0 \subset B$$

a contradiction. Hence $A_0 = A$. Similarly $B_0 = B$. Hence $A \cap B = 0$.

The following is well known.

LEMMA 2.8. If R is a right valuation ring with J nil, then any right ideal of R is two-sided.

3. Main results

We first note that any dc-ring (or dcf-ring) is semiperfect by Corollary 2.2. This fact will be used without any further reference.

THEOREM 3.1. The following are equivalent for a ring R with J nil:

(i) R is a right dcf-ring such that eRe is a division ring for every indecomposable idempotent e.

(ii) R is a semiprimary right semihereditary ring.

Saad Mohamed

PROOF. Assume (i). Let A be a right ideal of R such that A_R is local. (Such a right ideal will be called local right ideal). As R is semiperfect, there exists an indecomposable idempotent e of R with an R-epimorphism $f: eR \to A$. By Lemma 2.7 either $eR \subset A$ or $A \subset eR$ or $eR \cap A = 0$. If $eR \subset A$, then eR = A since A is indecomposable. Let $A \subset eR$. Then $f(e) = exe \in eRe$. Since exe is a unit in eRe, we get A = eR. It remains to discuss the case when $eR \cap A = 0$. Since $eR \oplus A$ is d-continuous, $A \simeq eR$ by Lemma 2.4. This all shows that A is projective. Now let B be a finitely generated right ideal of R. By the decomposition theorem of d-continuous modules, B is a finite direct sum of local right ideals. Hence B is projective, and R is right semihereditary.

Let $R = e_1 R \oplus \cdots \oplus e_n R$, for some orthogonal indecomposable idempotents e_i . We have shown that any local right ideal of R is isomorphic to some $e_i R$, i = 1, ..., n. Now, let C and D be distinct local right ideals of R such that $C \simeq D$. We claim that C and D are not comparable. On the contrary, assume that $C \subset D$. Then C is small in D. Let $D \simeq e_i R$. This yields a nonzero R-endomorphism ϕ of $e_i R$ with $\phi(e_i R) \subset e_i J$. Consequently $e_i J e_i \neq 0$, a contradiction. This proves our claim. Thus if k is the number of nonisomorphic indecomposable summands of R_R , then every ascending (or descending) chain of local right ideals of R contains at most k terms.

Assume that $J^{k+1} \neq 0$. Choose $x_1 \in J^{k+1}$ such that x_1R is a local right ideal. Now, $x_1 \in J^k J$ implies $x_1 = b_1 \alpha_1 + \cdots + b_t \alpha_t$, $b_i \in J^k$ and $\alpha_i \in J$. Since R is a dcf-ring

$$b_1 R + \cdots + b_r R = A_1 \oplus \cdots \oplus A_m$$

where each A_i is a local right ideal contained in J^k . Then

$$x_1 = a_1\beta_1 + \cdots + a_m\beta_m$$

where $a_i \in A_i$ and $\beta_i \in J$. Let $a_j\beta_j \neq 0$. Then the mapping $x_1r \to a_j\beta_jr$ is an epimorphism from x_1R onto $a_j\beta_jR$. Since R is semihereditary, the epimorphism splits and as x_1R is indecomposable we get $x_1R \simeq a_j\beta_jR$. Hence x_1R is embedded properly in A_j . Let $A_j = x_2R$. Repeating the process we can find a local right ideal $x_3R \subset J^{k-1}$ such that x_2R is embedded properly in x_3R . Continuing, we get a strictly ascending chain of local right ideals with k + 1 terms, a contradiction. Hence $J^{k+1} = 0$ and R is semiprimary. Thus (i) implies (ii).

Conversely, let R be semiprimary right semihereditary. Obviously eRe is a division ring for any indecomposable idempotent e of R. Since every finitely generated projective module over a semiperfect ring is d-continuous by Theorem 2.1, we get R is a right dcf-ring.

THEOREM 3.2. The following are equivalent for a ring R with J nil:

(i) R is a right dc-ring such that eRe is a division ring for every indecomposable idempotent e of R.

(ii) R is a semiprimary right hereditary ring.

PROOF. Assume (i). By the above theorem, R is semiprimary and every local right ideal is projective. Let A be a right ideal of R. Since R is semiprimary, Rad A is small in A. Hence $A = \sum_{i \in I} \bigoplus A_i$ where each A_i is a local right ideal. Thus A is projective. Hence R is right hereditary and (ii) follows.

The converse is on similar lines as in Theorem 3.1.

LEMMA 3.3. Let R be a right dcf-ring with J nil. If e is an indecomposable idempotent of R, then either $(eJe)^2 = 0$ or eRe is a right valuation ring.

PROOF. The result is obvious if *eRe* is a division ring. Let $eJe \neq 0$. Assume that *eRe* is not a right valuation ring. Then there exist $a, b \in eRe$ such that *aeRe* and *beRe* are not comparable. Consequently *aeR* and *beR* are not comparable. Then $aeR \cap beR = 0$ by Lemma 2.7. Let $A = r(a) \cap eR$ and $B = r(b) \cap eR$. Since A and B are small submodules of *eR* and $eR/A \oplus eR/B$ is d-continuous, $eR/A \simeq eR/B$ by Lemma 2.6. Hence eR/A is quasi-projective. It follows by Wu and Jans (1967) that eReA = A. Similarly eReB = B. Thus $eR/A \simeq eR/B$ implies that A = B. Let *exe* be a nonzero element in *eJe*. There exist a nonnegative integer k such that $a(exe)^k \neq 0$ and $a(exe)^{k+1} = 0$. Now

 $a(exe)^k eR \cap beR \subset aeR \cap beR = 0.$

Then, as proved above,

 $r(a(exe)^k) \cap eR = B = A.$

Therefore a(exe) = 0. Hence $eJe \subset r(a)$. So that aeRe is a minimal right ideal in the ring eRe.

Let S be the right socle of *eRe*. We have proved that S contains more than one minimal right ideal and *eRe/S* is a right valuation ring. We claim that S = eJe. On the contrary, let $c \in eJe - S$ and let C = r(c) in *eRe*. If possible, assume that $S \subset C$. As $ceRe \simeq eRe/C$, the family of all right subideals of ceRe is lineraly ordered by inclusion. However, this is a contradiction since $S \subset ceRe$ and S is not a minimal right ideal. Therefore $S \not\subset C$, and hence $C \subset S$. For any $b \in eRe - S$, $bR \supseteq S$. So that beRe/C is not simple. Hence Soc(eRe/C) = S/C. Now

$$S = Soc(ceRe) \simeq Soc(eRe/C) = S/C.$$

Thus cS = S. As c is nilpotent, we get S = 0, a contradiction. Hence S = eJe and therefore $(eJe)^2 = 0$. This completes the proof.

THEOREM 3.4. Let R be a local ring with J nil. Then R is a right dcf-ring if and only if

(i) J² = 0, or
(ii) R is a right valuation ring.

PROOF. Necessity follows by the above lemma. Conversely, it is obvious that any local ring with $J^2 = 0$ is a right dcf-ring—in fact it has every proper right ideal semisimple. Assume that R is of type (ii). Let A be a finitely generated right ideal of R. Since R is a right valuation ring, A = aR for some element $a \in R$. By Lemma 2.8, r(a) is a two-sided ideal of R. Hence aR is quasi-projective by Wu and Jans (1967). Since R is semiperfect, A is d-continuous by Theorem 2.1. This completes the proof.

COROLLARY 3.5. Any local right dcf-ring with J nil is a right dc-ring whenever $J \neq \text{Rad } J$.

PROOF. If $J^2 = 0$, the result is obvious. Let R be a right valuation ring with $J \neq \text{Rad } J$. Let $x \in J - \text{Rad } J$. As Rad J is a maximal submodule of J, we get J = xR. Hence R is a principal right ideal ring with descending chain condition. Hence R is a right dc-ring.

By Lemma 3.3 and Theorem 3.4 we have the following:

COROLLARY 3.6. Let R be a right dcf-ring with J nil. If e is an indecomposable idempotent of R, then eRe is also a right dcf-ring.

Next we prove

LEMMA 3.7. Let e be an indecomposable idempotent in a right dcf-ring with J nil. If eR is not an ideal, then eRe is a division ring.

PROOF. If *eR* is not an ideal, then there exists $x \in R$ such that $xeR \not\subset eR$. Since xeR is indecomposable, $eR \not\subset xeR$. Then $xeR \cap eR = 0$ by Lemma 2.7. Let $0 \neq eye \in eRe$. Then $xeR \cap eyeR = 0$.

$$xeR \cap eyeR \subset xeR \cap eR = 0.$$

It follows by Proposition 2.6 that

$$eyeR \simeq xeR \simeq eR$$
.

This implies that eye is not nilpotent. Hence $eye \notin eJe$. Therefore eJe = 0, completing the proof.

The proof of the following lemma is straightforward.

LEMMA 3.8. Let R be a finite direct sum of rings R_i , then R is a right dc-ring (or dcf-ring) if and only if each R_i is.

THEOREM 3.9. Let R be a right dcf-ring with J nil. Then $R \simeq \begin{pmatrix} S & M \\ 0 & T \end{pmatrix}$ where

(i) S is a finite direct sum of local rings each of which has square of its radical zero or is a right valuation ring.

(ii) T is a semiprimary right semihereditary ring.

(iii) M is an (S, T)-bimodule such that every finitely generated T-submodule of M is projective.

PROOF. We can write

 $R = e_1 R \oplus \cdots \oplus e_k R \oplus f_1 R \oplus \cdots \oplus f_t R$

where e_i and f_j are orthogonal indecomposable idempotents such that $e_i R e_i$ is not a division ring and $f_j R f_j$ is a division ring. By Lemma 3.7, each $e_i R$ is an ideal. Let $e = e_1 + \cdots + e_k$. Then $1 - e = f_1 + \cdots + f_t$, and $R = eRe \oplus eR(1 - e) \oplus (1 - e)R(1 - e)$.

Let S = eRe. Then $S = e_1Re_1 \oplus \cdots \oplus e_kRe_k$, and S is of type (i) by Corollary 3.6 and Theorem 3.4.

Let T = (1 - e)R(1 - e) = (1 - e)R. It is obvious that each right ideal of the ring T is a right ideal of R. Hence T is a right dcf-ring. Also gTg is a division ring for every indecomposable idempotent g of T. Hence T is a semiprimary right semihereditary by Theorem 3.1.

Let M = eR(1 - e). Consider any finitely generated T-submodule A of M. Then $A = \sum_{i=1}^{m} ex_i(1 - e)R$. Since A_R is d-continuous, $A = \sum \bigoplus A_i$ for some local R-modules A_i . Clearly each A_i is a homomorphic image of (1 - e)R, and since $A_i \bigoplus (1 - e)R$ is d-continuous, the epimorphism splits. Hence A_R is projective, and therefore A_T is projective.

Clearly $R \simeq \begin{pmatrix} S & M \\ 0 & T \end{pmatrix}$. This proves the theorem.

REMARKS. (1) The converse of the above theorem is not true. Let F[x] be the ring of polynomials over a field F, with $x^3 = 0$. Let

$$R = \begin{pmatrix} F[x] & (x^2) \\ 0 & F \end{pmatrix}.$$

Then R satisfies the conditions mentioned in the above theorem. Let

$$A = \begin{pmatrix} (x) & 0 \\ 0 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & (x^2) \\ 0 & 0 \end{pmatrix}.$$

Saad Mohamed

294

Then A and B are right ideals of R with $A \cap B = 0$. We have right R-epimorphism $f: A \to B$ defined by $f(x) = x^2$. This f does not split. Hence $A \oplus B$ is not d-continuous by Lemma 2.4. Thus R is not a right dcf-ring.

(2) In general $M \neq 0$. To see this let

$$R = \begin{pmatrix} F[x] & (x) \\ 0 & F \end{pmatrix}$$

where F[x] is the ring of polynomials over a field F, with $x^2 = 0$. This ring is a right dc-ring with S = F[x], T = F and $M = (x) \neq 0$.

(3) M = 0 whenever, in addition, R is right continuous or R is a left dcf-ring.

Acknowledgement

This research is partially supported by the Kuwait University research grant No. SM15. The author is extremely thankful to Professor Surject Singh for his valuable suggestions.

References

- C. Faith (1976), Algebra. II. Ring theory (Springer-Verlag, Berlin and New York).
- S. C. Goel and S. K. Jain (1976), 'Semiperfect rings with quasi-projective left ideals', Math. J. Okayama Univ. 19, 39-43.
- S. K. Jain and S. Singh (1975), 'Rings with quasi-projective left ideals', Pacific J. Math. 60, 169-181.
- A. Koehler (1971), 'Quasi-projective and quasi-injective modules', Pacific J. Math. 36, 713–720.
- Y. Miyashita (1966), 'Quasi-projective modules, perfect modules and a theorem for modular lattices', J. Fac. Sci. Hokkaido Univ. 19, 86-110.
- S. Mohamed and S. Singh (1977), 'Generalization of decomposition theorems known over perfect rings', J. Austral. Math. Soc. Ser. A 24, 496-510.
- S. Mohamed and B. J. Müller (1977), *Decomposition of dual continuous modules*, Lecture Notes in Math. 700, pp. 87-94. (Springer-Verlag, Berlin and New York).
- F. A. Reda (1978), On continuous and dual continuous modules (M.Sc. Thesis, Kuwait University).
- L. E. T. Wu and J. P. Jans (1967), 'On quasi-projective modules', Illinois J. Math. 11, 439-448.

Department of Mathematics Kuwait University Kuwait