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Abstract

In this paper the structure of rings with dual continuous right ideals is discussed. The main result is
the following: If R is a ring with (Jacobson) radical nil, and all of its finitely generated right ideals are
dual continuous, then R — (Q J) where S is a finite direct sum of local rings each of which has its
radical square zero, or is a right valuation ring, 7* is semiprimary right semihereditary ring, and M is
an (5 , r)-bimodule such that all of its finitely generated 7"-submodules are projective. A partial
converse of this result is obtained: any matrix ring of the above type with M = 0 has all of its finitely
generated right ideals dual continuous.

1980 Mathematics subject classification (Amer. Math. Soc): 16 A 10, 16 A 50, 16 A 51.

1. Introduction

Mohamed and Singh (1977) introduced the concept of dual continuous modules
(for short d-continuous) modules as follows: A module M is called d-continuous
if it satisfies the following conditions: (I) for every submodule A of M there exists
a decomposition M — M, © M2 such that M, C A and M2 D A is small in M and
(II) every epimorphism from M onto a summand of M splits. Any quasi-projec-
tive module over a perfect ring is d-continuous but not conversely. Over arbitrary
rings the relation between dual continuity and quasi-projectivity is less close.
However d-continuous modules still possess many properties which are analogous
to that of quasi-projective modules. The study of d-continuous modules was
motivated to generalize a decomposition theorem for quasi-projective modules
over perfect rings given by Koehler (1971). A decomposition theorem for d-con-
tinuous modules over arbitrary rings was obtained by Mohamed and Singh (1977)
and was later improved by Mohamed and Miiller (1979) as follows:
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THEOREM. A d-continuous module M has a decomposition, unique up to isomor-
phism, M — 2 , e / ®Al® N where each At is a local module and N — Rad N.

It follows by the above theorem that a d-continuous module with small radical
is a direct sum of local modules. In particular a finitely generated d-continuous
module is a finite direct sum of local modules.

Jain and Singh (1975) generalized the concept of hereditary rings; they called a
ring R right qp-ring if every right ideal of R is quasi-projective. Making an
effective use of Koehler's decomposition theorem, they studied perfect qp-rings.
Then Goel and Jain (1976) studied semiperfect qp-rings with nil radical. Having
obtained the above decomposition theorem for d-continuous modules, here we
discuss rings with d-continuous right ideals.

DEFINITION. A ring R in which every right ideal (resp. finitely generated right
ideal) is d-continuous is called a right dc-ring (resp. right dcf-ring).

In the present work we study the structure of dc-rings and dcf-rings with nil
radical. The structure of arbitrary dc-rings is still open.

All rings considered have unities and all modules are unital right modules.
Rad M and Soc M will denote the Jacobson radical and socle of a module M
respectively. For any ring R, Rad RR will be denoted by J(R) or simply J. A
module M is local if Rad M is a maximal submodule. A ring R is local if RR is a
local module, that is R/J is a division ring. For the definitions and basic
properties of semiperfect and semiprimary rings, we refer to Faith (1976). If X is a
subset of a ring R, then r(X) (resp. l(X)) will denote the right (resp. left)
annihilator of X in R. For any ring R, SocRR C / ( / ) and if R is local, then
SocRR = l(J). For definition and basic properties of quasi-projective modules
we refer to Miyashita (1966) or Wu and Jans (1967).

2. Some general results

The following results about d-continuous modules are given in Mohamed and
Singh (1977) and are listed here for easy reference.

THEOREM 2.1. A ring R is (semi) perfect if and only if every (finitely generated)
quasi-projective R-module is d-continuous.

COROLLARY 2.2. A ring R is semiperfect if and only if RR is d-continuous.
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LEMMA 2.3. Let A and B be submodules of a d-continuous module M such that
M = A + B. Then there exist submodules Ao and Bo such that Ao C A, Bo C B and
M = A0® Bo.

LEMMA 2.4. Let A and B be summands of a d-continuous module M. Then any

exact sequence A -» B -* 0 splits. If in addition A is indecomposable and B ¥= 0,

then f is an isomorphism.

LEMMA 2.5. If M X M is d-continuous, then M is quasi-projective.

PROPOSITION 2.6. Let M be any module and A, B be two small submodules of M
such that M/A ® M/B is d-continuous, then M/A ^ M/B.

Next we prove

LEMMA 2.7. Let M = A + B be a d-continuous module. If A and B are indecom-
posable and noncomparable, then A D B = 0.

PROOF. By Lemma 2.3, M = Ao © Bo where Ao C A and Bo C B. Since A is
indecomposable A0 = 0 or Ao = A. However A0 = 0 implies

A CM = B0CB,

a contradiction. Hence Ao = A. Similarly Bo = B. Hence A n B = 0.

The following is well known.

LEMMA 2.8. / / R is a right valuation ring with J nil, then any right ideal of R is
two-sided.

3. Main results

We first note that any dc-ring (or dcf-ring) is semiperfect by Corollary 2.2. This
fact will be used without any further reference.

THEOREM 3.1. The following are equivalent for a ring R with J nil:
(i) R is a right dcf-ring such that eRe is a division ring for every indecomposable

idempotent e.
(ii) R is a semiprimary right semihereditary ring.
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PROOF. Assume (i). Let A be a right ideal of R such that AR is local. (Such a
right ideal will be called local right ideal). As R is semiperfect, there exists an
indecomposable idempotent e of R with an /^-epimorphism/: eR -> A. By Lemma
2.7 either e/? C ^ or A C e/? or eR D A - 0. If eR C /I, then e« = A since /I is
indecomposable. Let A C ei?. Then/(e) = exe G e/?e. Since exe is a unit in eRe,
we get /I = eR. It remains to discuss the case when eR D A = 0. Since eR ® ,4 is
d-continuous, A ~ eR by Lemma 2.4. This all shows that A is projective. Now let
B be a finitely generated right ideal of R. By the decomposition theorem of
d-continuous modules, B is a finite direct sum of local right ideals. Hence B is
projective, and R is right semihereditary.

Let R — e^R® • • • ®enR, for some orthogonal indecomposable idempotents
er We have shown that any local right ideal of R is isomorphic to some e,R,
i = 1,...,«. Now, let C and D be distinct local right ideals of R such that C ^ D.
We claim that C and D are not comparable. On the contrary, assume that C C D.
Then C is small in D. Let D — etR. This yields a nonzero /?-endomorphism <j> of
e,/? with ^>{etR) C e,/ . Consequently e,/e, ^ 0, a contradiction. This proves our
claim. Thus if k is the number of nonisomorphic indecomposable summands of
RR, then every ascending (or descending) chain of local right ideals of R contains
at most k terms.

Assume that Jk+] ^ 0. Choose xx G Jk+] such that x^R is a local right ideal.
Now, x, G JkJ implies x, = bxax + • • • +b,ar bt G Jk and a, G J. Since R is a
dcf-ring

b x R + ••• + b , R = Ax ® ••• ® A m

where each At is a local right ideal contained in /*. Then

where ai G .4, and Bt G / . Let ajfy =£ 0. Then the mapping x,r -> o,/?/ is an
epimorphism from x,/? onto ajPjR. Since /? is semihereditary, the epimorphism
splits and as x^R is indecomposable we get x{R ~ a^R. Hence x{R is embedded
properly in ^4.. Let Aj = x2R. Repeating the process we can find a local right
ideal x3R C / * " ' such that x2R is embedded properly in x3R. Continuing, we
get a strictly ascending chain of local right ideals with k + 1 terms, a contradic-
tion. Hence Jk+' = 0 and R is semiprimary. Thus (i) implies (ii).

Conversely, let R be semiprimary right semihereditary. Obviously eRe is a
division ring for any indecomposable idempotent e of R. Since every finitely
generated projective module over a semiperfect ring is d-continuous by Theorem
2.1, we get R is a right dcf-ring.
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THEOREM 3.2. The following are equivalent for a ring R with J nil:
(i) R is a right dc-ring such that eRe is a division ring for every indecomposable

idempotent e of R.
(ii) R is a semiprimary right hereditary ring.

PROOF. Assume (i). By the above theorem, R is semiprimary and every local
right ideal is projective. Let A be a right ideal of R. Since R is semiprimary,
Rad A is small in A. Hence A — 2 , 6 / ®At where each Ai is a local right ideal.
Thus A is projective. Hence R is right hereditary and (ii) follows.

The converse is on similar lines as in Theorem 3.1.

LEMMA 3.3. Let R be a right dcf-ring with J nil. If e is an indecomposable
idempotent of R, then either (eJe)2 = 0 or eRe is a right valuation ring.

PROOF. The result is obvious if eRe is a division ring. Let eJe ¥= 0. Assume that
eRe is not a right valuation ring. Then there exist a, b G eRe such that aeRe and
beRe are not comparable. Consequently aeR and beR are not comparable. Then
aeR n beR = 0 by Lemma 2.7. Let A = r(a) D eR and B = r(b) D eR. Since A
and B are small submodules of eR and eR/A © eR/B is d-continuous, eR/A —
eR/B by Lemma 2.6. Hence eR/A is quasi-projective. It follows by Wu and Jans
(1967) that eReA = A. Similarly eReB - B. Thus eR/A ^ eR/B implies that
A — B. Let exe be a nonzero element in eJe. There exist a nonnegative integer k
such that a(exe)k ¥= 0 and a(exe)k+l = 0. Now

a{exe)keR D beR C aeR (1 beR - 0.

Then, as proved above,

r(a(exe)k) D eR = B = A.

Therefore a(exe) = 0. Hence eJe C r(a). So that aeRe is a minimal right ideal in
the ring eRe.

Let 5 be the right socle of eRe. We have proved that S contains more than one
minimal right ideal and eRe/S is a right valuation ring. We claim that S = eJe.
On the contrary, let c £ eJe — S and let C — r(c) in eRe. If possible, assume that
S C C. As ceRe = eRe/C, the family of all right subideals of ceRe is lineraly
ordered by inclusion. However, this is a contradiction since 5 C ceRe and S is not
a minimal right ideal. Therefore S <£ C, and hence C C S . For any b G eRe — S,

bR D S. So that beRe/C is not simple. Hence Soc{eRe/C) = S/C. Now

S = Soc(ceRe) - Soc(eRe/C) = S/C.

Thus cS = S. As c is nilpotent, we get 5 = 0, a contradiction. Hence S = &/e and
therefore (eJe)2 = 0. This completes the proof.
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THEOREM 3.4. Let R be a local ring with J nil. Then R is a right dcf-ring if and
only if

( i ) / 2 = 0, or
(ii) R is a right valuation ring.

PROOF. Necessity follows by the above lemma. Conversely, it is obvious that
any local ring with J2 = 0 is a right dcf-ring—in fact it has every proper right
ideal semisimple. Assume that R is of type (ii). Let A be a finitely generated right
ideal of R. Since R is a right valuation ring, A = aR for some element a £ R. By
Lemma 2.8, r{a) is a two-sided ideal of R. Hence aR is quasi-projective by Wu
and Jans (1967). Since R is semiperfect, A is d-continuous by Theorem 2.1. This
completes the proof.

COROLLARY 3.5. Any local right dcf-ring with J nil is a right dc-ring whenever
J ^ Rad J.

PROOF. If J1 = 0, the result is obvious. Let R be a right valuation ring with
J ¥= Rad J. Let x G / — Rad / . As Rad J is a maximal submodule of / , we get
J — xR. Hence R is a principal right ideal ring with descending chain condition.
Hence R is a right dc-ring.

By Lemma 3.3 and Theorem 3.4 we have the following:

COROLLARY 3.6. Let R be a right dcf-ring with J nil. If e is an indecomposable
idempotent of R, then eRe is also a right dcf-ring.

Next we prove

LEMMA 3.7. Let e be an indecomposable idempotent in a right dcf-ring with J nil.
If eR is not an ideal, then eRe is a division ring.

PROOF. If eR is not an ideal, then there exists x G R such that xeR tf. eR. Since
xeR is indecomposable, eR tf. xeR. Then xeR D eR — 0 by Lemma 2.7. Let
0 =£ eye G eRe. Then xeR n eyeR = 0.

xeR n eyeR C xeR n eR - 0.

It follows by Proposition 2.6 that

eyeR — xeR — eR.

This implies that eye is not nilpotent. Hence eye £ eJe. Therefore eJe — 0,
completing the proof.
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The proof of the following lemma is straightforward.

LEMMA 3.8. Let R be a finite direct sum of rings Rt, then R is a right dc-ring (or

dcf-ring) if and only if each Rt is.

THEOREM 3.9. Let R be a right dcf-ring with J nil. Then R^(IJ) where

(i) S is a finite direct sum of local rings each of which has square of its radical zero

or is a right valuation ring.

(ii) T is a semiprimary right semihereditary ring.

(iii) M is an (S , T)-bimodule such that every finitely generated T-submodule of M

is projective.

PROOF. We can write

R = exR® ••• ®ekR © / , / ? © • • • ©/,/?

where e, and fj are orthogonal indecomposable idempotents such that eiRei is
not a division ring and fjRfj is a division ring. By Lemma 3.7, each etR is an ideal.
Let e = e, + • • • +ek. Then 1 - e = /i + • • • + / „ and R = eRe © eR(\ - e) ©
(1 -e)R(\-e).

Let 5 = eRe. Then S - eiRe] © • • • ®ekRek, and S is of type (i) by Corollary
3.6 and Theorem 3.4.

Let T - (1 - e)R(l - <?) = (1 - e)R. It is obvious that each right ideal of the
ring T is a right ideal of R. Hence T is a right dcf-ring. Also gTg is a division ring
for every indecomposable idempotent g of T. Hence T is a semiprimary right
semihereditary by Theorem 3.1.

Let M — eR(\ — e). Consider any finitely generated T-submodule A of M.
Then A = SJ1 \ ex,(l — e)R. Since AR is d-continuous, A = 2 © A{ for some local
.R-modules A:. Clearly each Ai^ is a homomorphic image of (1 — e)R, and since
Al; © (1 — e)R is d-continuous, the epimorphism splits. Hence AR is projective,
and therefore AT is projective.

Clearly R^(**f). This proves the theorem.

REMARKS. (1) The converse of the above theorem is not true. Let F[x] be the
ring of polynomials over a field F, with x3 — 0. Let

0 F

Then R satisfies the conditions mentioned in the above theorem.
Let

and B = i 0) a B[
oo; \o o
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Then A and B are right ideals of R with A D B = 0. We have right /?-epimor-
phism/: A -» 2? defined by/(x) = x2. This/does not split. Hence 4̂ © 2? is not
d-continuous by Lemma 2.4. Thus /? is not a right dcf-ring.

(2) In general M ¥= 0. To see this let

0 f
where F[x] is the ring of polynomials over a field F, with x2 = 0. This ring is a
right dc-ring with S - F[x], T= F and M - (x) ^ 0.

(3) A/ = 0 whenever, in addition, R is right continuous or R is a left dcf-ring.
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