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Lie Groups of Measurable Mappings

Helge Glockner

Abstract. 'We describe new construction principles for infinite-dimensional Lie groups. In particular,
given any measure space (X, X, 1) and (possibly infinite-dimensional) Lie group G, we construct a Lie
group L°° (X, G), which is a Fréchet-Lie group if G is so. We also show that the weak direct product
H;‘e 1 Gi of an arbitrary family (G;);r of Lie groups can be made a Lie group, modelled on the locally
convex direct sum ;¢ ; L(G;).

Introduction

Many popular examples of infinite-dimensional Lie groups arise from finite-dimen-
sional Lie groups G by general construction principles. For instance, for any r €
No U {oo} and compact smooth manifold K, the group C"(K, G) of G-valued C'-
maps on K is a Lie group [6], [23], [24], [31] and so is CL(M, G) when M is a non-
compact, finite-dimensional smooth manifold M [1], [12], [23], [26]. It is remark-
able that, although the G-valued mappings are of class C" only, the group operations
on the mapping groups are analytic, as a consequence of analyticity of the group op-
erations of G (cf. [24, p. 1013]). Indeed, C(K, G) is a smooth (resp., analytic) Lie
group when K is an arbitrary compact topological space and G an arbitrary (possibly
infinite-dimensional) smooth (resp., analytic) Lie group [12], [30]. Having passed
from C”-maps on manifolds to continuous mappings on topological spaces, it is a
natural next step to consider groups of measurable mappings on measure spaces.
Well-known examples are the Banach-Lie groups L*°(X, A)* of invertible elements
in the Banach algebra L>° (X, A) of equivalence classes of essentially bounded measur-
able mappings on a measure space (X, X, i), with values in a finite-dimensional Ba-
nach algebra A. For example, L*° (Sl, Mn((C)) " is encountered in [31], where it arises
as the commutant of the multiplication operator by id: §! — S'in GL(L*(S',C")).
We also mention the Lie groups associated with Sobolev completions of loop algebras
(see [1], [31]). In this article, we construct Lie groups L>° (X, G) for arbitrary (not
necessarily finite-dimensional) Lie groups G. The Lie groups L*° (X, G) are natural
generalizations of the unit groups just described, as L= (X, A)* = L™ (X, A*).
Another way to obtain new groups from given ones is the formation of direct
limits. Construction principles for direct limits (mainly) of finite-dimensional Lie
groups are described in [25]-[27] (see also [28, appendix]) and [13]. Examples of
direct limit Lie groups of infinite-dimensional Lie groups can be found, e.g., in [12],
[20], [21], [26], [27], but no general construction principles or criteria ensuring the
existence of direct limit Lie groups of directed systems of infinite-dimensional Lie
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groups (in the strong sense used in this article) seem to be available. As we show, at
least for weak direct products

“
G=]] Gi= lim []G
—
i€l FCI, i€F
|F|<oo

no pathologies occur and a Lie group structure can always be constructed, even for
uncountable families (G;);e; of Lie groups. We also show that G has the desired
universal property of direct limit in suitable categories of Lie groups, at least when
each G;j has a globally defined exponential function, which is diffeomorphic on some
zero-neighbourhood (for generalizations, see [16]).

The material is organized as follows.

We begin with a brief description of the precise setting of differential calculus used
in the article (Section 1). Section 2 provides specific results from topology and mea-
sure theory which are essential for our constructions. In Section 3, we first define
L*°(X, G) when G is a Hausdorff topological group. It is the group of equivalence
classes (modulo functions = 1 a.e.) of Borel measurable mappings v: X — G the
closure of whose image is compact and metrizable. L*°(X, G) is a Hausdorff topo-
logical group in a natural way. If E is a Hausdorff locally convex space, then so is
L (X, E). If E is a Fréchet space, then also L>° (X, E) is a Fréchet space; in this case,
a mapping v: X — E belongs to L>°(X, E) if and only if it is a uniform limit of a
sequence (7,)nen of finitely-valued, measurable mappings 7v,: X — E. In Section 4,
we show that the mapping L= (X, f): L>(X,E) — L*(X,F), vy — f o+ is smooth
(resp., K-analytic), for every smooth (resp., IK-analytic) mapping f: E — F between
locally convex IK-vector spaces (where K € {R, C}), and prove various related results.
These considerations allow us to turn L*°(X, G) into a smooth (resp., K-analytic) Lie
group, for every smooth (resp., K-analytic) Lie group G (Section 5). In Section 6, we
have a closer look at the special case of />°-spaces. We show that £°°(X, E) need not
be complete (nor quasi-complete) when E is a complete locally convex space (Exam-
ple 6.5); its completion is the space 0°°(X, E) of all functions X — E with relatively
compact image (equipped with the topology of uniform convergence). Given a Lie
group G, it is also possible to turn the group 0> (X , G) of all G-valued mappings with
relatively compact image into a Lie group. However, measure-theoretic pathologies
prevent us from defining Lie groups “L°°(X, G)” based on measurable mappings with
relatively compact image, for general measure spaces (X, 3, 11): the metrizability con-
dition in the definition of L>°(X, G) is essential for our arguments. In Section 7, we
construct a smooth (resp., K-analytic) Lie group structure on the weak direct prod-
uct [Ti;,G; of an arbitrary family (G;)ie; of smooth (resp., K-analytic) Lie groups,
modelled on the locally convex direct sum ®i€ ; L(G;). This allows us to turn the
subgroup L°(X, G) C L*°(X, G) of compactly supported mappings into a smooth
(resp., K-analytic) Lie group modelled on LZ° (X, L(G)) , for every Borel measure
on a o-compact locally compact space X (Section 8).

To tackle weak direct products of Lie groups, we provide technical results con-
cerning mappings between locally convex direct sums, which are of independent in-
terest. In [15], they serve as the basis of a theory of “patched” locally convex spaces,
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which ensures differentiability properties for suitable mappings between spaces of
compactly supported sections in vector bundles. Variants are used in [16] to con-
struct Lie group structures on diffeomorphism groups of finite-dimensional smooth
manifolds over totally disconnected local fields.

For further connections between Lie theory and measure theory, cf. also [4].

1 The Setting of Differential Calculus

We use the framework of differential calculus of smooth and analytic mappings be-
tween open subsets of locally convex spaces outlined by J. Milnor [24], slightly gen-
eralized however as we do not presume sequential completeness of the locally convex
spaces. See [10] for a detailed exposition of this generalized framework. Background
material can also be found in [2], [5], [17], [21], [22], and [29]. We briefly recall
various basic definitions and facts.

1.1 Suppose that E and F are Hausdorff real locally convex spaces, U is an open subset
of E,and f: U — F a map. We say that f is of class C° if it is continuous, and set
d’f := f.If f is continuous, we say that f is of class C! if the (two-sided) directional
derivative df(x, h) = lim;_ t_l(f(x + th) — f(x)) exists for all (x,h) € U X E
(wheret € R\ {0} with |¢| sufficiently small), and the mapping df: U x E — Fis
continuous. Recursively, we define f to be of class C* for 2 < k € N if it is of class
CH'and d~'f: U x Bl L F (having been defined recursively) is a mapping
of class C! on the open subset U x E2 ' ~! of the locally convex space E2 . We then
setd*f := d(d*1f): U x E*~! — F. The mapping f is called smooth or of class C*
if it is of class C for all k € N.

1.2 Equivalently, set % f := f and, having defined C/-maps and d"/) f: U x E/ — F for
0 < j < ké&N,call famapping of class C¥ if it is of class C¥~1, the limit

d® fx, by, he)
= lim e~ (A% flac+ thy b, ) = d S0 fGe b )

exists for all x € U and hy,..., i € E, and the mapping d¥f: U x E* — F
so obtained is continuous. This is the usual definition of C¥-maps in the sense of
Michal-Bastiani [6, p. 24], [10, Definition 1.8]. It is equivalent to the definition given
in Subsection 1.1 (which is particularly well-suited for inductive arguments) by [10,
Lemma 1.14].! For later use, we abbreviate 5,(Ck)f(h) = d® f(x,h,... h)forx € U,
h€E.

1.3 Since compositions of C"-maps are of class C” for 0 < r < oo [10, Proposition 1.15],
C"-manifolds modelled on Hausdorff locally convex spaces can be defined in the

I'The “iterated differentials” @* f defined above are denoted D* f in [10]; d® f is denoted d* f there.
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usual way, using an atlas of charts with C”-transition functions. A smooth Lie group
is a group, equipped with a smooth manifold structure modelled on a Hausdorff lo-
cally convex space, with respect to which the group multiplication and inversion are
smooth mappings.

Let X be a C"-manifold (where 1 < r < 00), and f: X — E a mapping of class
C" into a Hausdorff real locally convex space. Then the tangent map Tf: TX —
TE = E X E has the form (x,v) — (f(x),df(x; v)) for x € X and v € T, X, where
df :=pr,oTf: TX — E. Weset d’f := f, T°X := X, and define d*f: T"X — E
recursively via d* f := d(d*~' f) forallk € N,k < r.

Let X be a Hausdorff topological space, E and F be Hausdorff locally convex spaces,
U an open subset of E, and f: X x U — F be a mapping. Given r € Ny U {0},
we say that f is partially C” in the second argument if f(x,+): U — F is a mapping
of class C" for all x € X, and the functions d¥f: X x U x F*~! — F, defined via
dif(x,s) := d*( f(x,+)) forx € X, are continuous for all k € N, k < r.

Let E and F be Hausdorff complex locally convex spaces, and U C E be an open sub-
set. A function f: U — F is called complex analytic or C-analytic if it is continuous
and for every x € U, there exists a 0-neighbourhood V in E such thatx +V C U
and f(x +h) = Zzio Ba(h) for all h € V as a pointwise limit, where §,,: E — F
is a continuous homogeneous polynomial over C of degree n, for each n € Ny [5,
Definition 5.6].

A mapping f as in Subsection 1.6 is complex analytic if and only if it is smooth and
df(x,s): E — Fis complex linear for all x € U [10, Lemma 2.5].

Let E and F be Hausdorff real locally convex spaces, U be an open subset of E, and
f: U — F be amap. Following Milnor’s lines, we call f real analytic or R-analytic if
it extends to a complex analytic map V' — F¢ on some open neighbourhood V of U
in E((4

Throughout this article, K € {R, C}.

Compositions of composable K-analytic mappings are K-analytic [10, Proposi-
tion 2.7, Proposition 2.8]. Thus complex (analytic) manifolds and real analytic man-
ifolds, as well as complex (analytic) Lie groups and real analytic Lie groups modelled
on Hausdorff locally convex spaces can be defined in the usual way.

Background Material and Preparatory Results

In this section, we assemble background material concerning compact metrizable
spaces, continuous semi-metrics, and measurable mappings.
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Lemma 2.1 IfK is a metrizable compact topological space and f: K — X a continu-
ous mapping into a Hausdorff topological space X, then im(f) = f(K) is a metrizable
compact subset of X.

Proof It is well-known that Q := f(K) is compact; the co-restriction g := f|?is a
closed surjection and thus a quotient map. Inverse images of points being compact,
[9, Theorem 4.2.13] shows that f(K) is metrizable. [ |

Lemma 2.2 Suppose that Ky and K, are metrizable compact subsets of a Hausdorff
topological group G. Then Ky UK, and K, - K; are metrizable compact subsets of G, and
so is zKy when G = E is a topological IK-vector space and z € K.

Proof Since K; and K, are compact and metrizable, so is their topological direct
sum K [[ K. Fori € {1,2},lete;: K; — Kj [ K, be the canonical embedding, and
it K; — K; UK, be the inclusion map. Let f: K; [[ K, — K; U K, be the unique
continuous mapping such that f oe; = A; fori € {1,2}. Then K; UK, = im(f),
and thus K U K; is metrizable by Lemma 2.1.

Note that K; x Kj; is compact and metrizable, and K; - K; = m(K; X K;), where
multiplication m: Gx G — G, (x, y) — xy is a continuous mapping. By Lemma 2.1,
the compact set K - K; is metrizable.

Let G = E be a topological K-vector space now and z € K. The map m,: E — E,
v — zv being continuous, zK; = m,(K;) is compact and metrizable by Lemma 2.1.

|

Given a semi-metric (i.e., finite quasi-metric) d: X X X — [0,00][ on a set X,
e > 0,and x € X, we let By(x,e) := {y € X : d(x,y) < €} denote the open ball
of radius € about x with respect to d. A family (d;);c; of semi-metrics on X is called
directed if, for all i, j € I, there exists k € I such that dy > d; and d > d; pointwise
onX x X.

Lemma 2.3  Let K be a metrizable compact topological space, and (d;),cr be a directed
family of semi-metrics on K determining its topology. Then the following holds:

(a) Ifd: K x K — [0, 00| is any continuous semi-metric on K, and € > 0, then there
existsig € I and § > 0 such that

(1) (Vx € K) By, (x,0) € Ba(x,€).
(b) There is a countable subset ] C I such that (d;) jc determines the topology on K.

Proof (a) WedefineA := {(x,y) € KxK:d(x,y) > e}, Bi,:={(x,y) € KxK:
di(x,y) < p}fori € I, p > 0. As K is Hausdorff and the family (d;);c; determines
the topology of K, we have (;c; ..o Bi, = A, where A = {(x,x) : x € K} is the
diagonal in K x K. Thus A and each B; , are compact subsets of X x X, and

| ANB,)=4AnA=o.

i€l,p>0
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By the finite intersection property of compact sets, there are finite subsets F C [
and R C ]0,00[ such that ﬂieEpER(A N B;j,) = @. We choose iy € I such that
di, > d; (pointwise) for all i € F, and set § := minR. Then A N B, ; = & and thus
Biys C {(x,y) € K x K :d(x, y) < €}, entailing (1).

(b) Letd: K x K — [0, 0o[ be a metric defining the topology on K. By (a), for
every n € N we find some i, € I and §, > 0 such that, for every x € X, we have
By, (x,0,) € Ba(x,27"). Set J := {i, : n € N}. Then ] is countable, and it readily
follows from the definition of the elements 7, that the family (d;);c; of continuous
semi-metrics on K determines the topology on K. ]

Remark 2.4  Recall in this connection that a semi-metric d: G x G — [0, 00[ on
a group G is left invariant if d(gx,gy) = d(x,y) for all x, y,g € G. Then gq(x) =
d(x,e) (where e € G is the identity element) defines a semi-norm on G, i.e., q: G —
[0, oo satisfies g(e) = 0, g(x) = q(x~'), and q(xy) < q(x) + q(y), forall x,y € G.
Conversely, any semi-norm q: G — [0, 00[ on G gives rise to a left invariant semi-
metric

2) dy: Gx G — [0,00[, dy(x,y) = q(y'x).

Let I' be a directed set of semi-norms on a group G and assume that, for all x € G,
g € Tand e > 0, there exists p € I"and 6 > 0 such that g(xyx~!) < & for all
y € Gsatisfying p(y) < 6 (the latter condition is vacuous if G is abelian). Then there
exists a coarsest topological group topology on G making all g € T" continuous (the
topology defined by the family of semi-metrics (d,)qer); the sets g~ ([0, e[) (where
q € I', e > 0) form a basis for its filter of identity neighbourhoods. The topology
of any topological group can be obtained in this way, for a suitable family I' (¢f. [18,
Theorem 8.2]).

If H is a Hausdorff topological space, we let B(H) denote its Borel o-algebra,
generated by the collection of open subsets of H. Measurability of functions on H or
into H always refers to the measurable space (H , B(H )) .

Lemma 2.5  Suppose (Vu)uen is a sequence of measurable functions ~v,: X — H from
a measurable space (X, X)) to a Hausdorff topological space H, converging pointwise to
a function v: X — H. Suppose that M := im +y is separable, and suppose there exists
a continuous semi-metric d on H such that 6 := d|pxm is a metric on M defining its
topology. Then ~y is measurable.

Proof Since B(M) = {wNM : w € B(H)} (¢f [3, Section 7, Exercise 2]), we
only need to show that the co-restriction v|M: X — M is measurable. Let D be a
countable dense subset of M. Every open subset of M being a countable union of
balls Bs(x, %) for suitable x € D and k € N, the Borel o-algebra B(M) is generated
by the sets Bs(x, 1). It therefore is initial with respect to the family (6(x,.))_ p Oof
mappings 6(x,«): M — [0, 00[. Thus 7 is measurable if and only if §(x, «) o v|M is
measurable for each x € D. Due to the continuity of d(x, »), we have d(x,.) oy =
lim,, . d(x, «) © 7y, pointwise; by [33, Theorem 1.14], d(x, +) 0 v = 6(x,s) o v|M is
measurable, as required. |
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Proposition 2.6 Let (,),en be a sequence of measurable functions ~,: X — H from
a measurable space (X, X) to a completely regular topological space H, converging point-
wise to a function v: X — H. IfK := im~ is compact and metrizable, then =y is
measurable.

Proof Since H is completely regular, its topology is determined by a set I" of con-
tinuous semi-metrics (see [35, Section I1.2.7, Satz 1 and Satz 2]). Lemma 2.3 entails
that there is a sequence (d;);en in I such that (d;|x xx)ien defines the topology of K.
Thend: Hx H — [0,1],d(x,y) == Y00 27" 11’;:;;{3/) is a continuous semi-metric
on H whose restriction to K x K is a metric on K defining the topology of K. By
Lemma 2.5, -y is measurable. |

Lemma 2.7 If X and Y are Hausdorff topological spaces and X is second countable,
then the Borel o-algebra B(X X Y) of the direct product X X Y of topological spaces
coincides with the product o-algebra B(X) ® B(Y).

Proof The inclusion B(X) ® B(Y) C B(X x Y) holds for any Hausdorff spaces X
and Y, the coordinate projections being continuous and thus measurable with respect
to the Borel o-algebras. Now if X is second countable, we let C be a countable basis
of open sets for the topology of X. Let U C X X Y be an open subset. For any p =
(x,y) € U,wefind V,, € C and an open subset W, C Y suchthatp € V,xW, C U.
Given V. € C, weset Py := {p € U : V. = V,}, and set Wy := [J,cp, W).
Then V and Wy are open subsets of X, resp., Y and thus Borel measurable, and so
VxWy € B(X)QB(Y). Thusalso U = UVeC V X Wy is a member of B(X)QB(Y),
being a countable union of members of B(X) ® B(Y). We deduce that B(X x Y) C
B(X) @ B(Y). u

Asa consequence:

Lemma 2.8 Let (X,X) be a measurable space, Y1,Y,...,Y, and Z be Hausdorff
topological spaces (Where n € N), f: Yy X --- X Y, — Z be a continuous mapping,
and v;: (X,X) — (Y,-7 B(Yi)) be a measurable mapping such that K; := im(v;) is a
metrizable compact subset of Y;, fori = 1,...,n. Then

fo(’Yla-~-7”Yn)3X—>27 x'_)f(ﬂ)/l(x)w'wr)/n(x))
is measurable as a mapping from (X, X) to (Z, 3(Z)) .

Proof It is easy to see that (71, .. .,7,) is measurable as a mapping into K; x - -- X
K., equipped with the product o-algebra B(K;) ® --- ® B(K,). Since metrizable
compact spaces are second countable, Lemma 2.7 gives B(K;) ® --- ® B(K,) =
B(K; x -+ x K,). Since f|k,x...xk,: Ki X -+ x K,, — Z is continuous and thus
Borel measurable, we deduce that the composition f o (vy,...,7,) = flk x---xk, ©
(Y1, -+ ) [ %K is measurable. [ ]
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3 The Topological Groups £>°(X, G) and L>(X, G); The Spaces
22(X, E) and L*(X, E)

Throughout this section, G denotes a Hausdorff topological group, E a Hausdorff,
locally convex topological IK-vector space, and (X, X, i) an arbitrary (not necessarily
o-finite) measure space. We shall define a Hausdorff topological group L (X, G)
and Hausdorff locally convex space L*° (X, E), and study some of their properties.

General Convention When considering topological groups as uniform spaces, we
shall always refer to the left uniform structure (as in [18, Definition 4.11]).

Definition 3.1 We let £°°(X, G) be the set of all mappings v: X — G such that

(a) +y is measurable as a mapping (X, 3) — (G, B(G)) , and
(b) the closure of im(+y) is a metrizable, compact subset of G.

Remark 3.2 It follows readily from Lemma 2.2 and Lemma 2.8 that L*°(X, G) is a
subgroup of GX. For example, if 71,7, € £°(X,G), then v, - v, = mo (1,72)
in terms of the continuous multiplication map m: G x G — G, whence 7, - 7, is
measurable (Lemma 2.8). Its image being contained in the metrizable compact set
im(7;) - im(7;) (Lemma 2.2), it has metrizable compact closure.

Remark 3.3 A particularly important special case of the preceding definition is ob-
tained by choosing G = F; then £>°(X, E) is a vector subspace of EX.

For many familiar locally convex spaces E, compact subsets are automatically
metrizable, making it unnecessary to require metrizability of im () in the definition
of £°°(X, E) for such spaces:

Proposition 3.4 Suppose that E satisfies at least one of the following conditions:

(a) Eis metrizable (e.g., E is a Fréchet space or a Banach space);
(b) E = li_n)lE,, is the locally convex direct limit of an ascending sequence E; C E, C
- of metrizable locally convex spaces, such that E, is a closed vector subspace of
E,1 and equipped with the induced topology (e.g., E might be any LF-space);
(c) E=(F',7) is the dual of some separable locally convex space F, equipped with any
locally convex vector topology T which is finer than the weak-x-topology.

Then every compact subset of E is metrizable.

Proof (a) is trivial.

(b) IfK is a compact subset of E, then K is contained in E,, for some n € N by [34,
Assertion 6.5]. As E induces the given topology on E,, (loc. cit., Assertion 6.4) and E,
is metrizable, its subspace K is metrizable.

(c) Let K be a compact subset of E = (F’, T), and D be a countable dense subset
of F. Then the family (d,)xep of continuous semi-metrics d,: K x K — [0, 00],
de(A1, A2) == |A1(x) — Ax(x)| determines a Hausdorff topology O on K which is
coarser than the given compact topology, and thus coincides with the latter. The
family (d,)xep being countable, O is metrizable. [ |
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In particular, (c) applies if E = F; is the strong dual of a separable locally con-
vex space (where the index “b” indicates the topology of uniform convergence on
bounded sets).

Example 3.5 Let () be an open subset of R”. Then the space of test functions D(£2)
is a separable LF-space. By Proposition 3.4, every compact subset of ‘D(£2) is metriz-
able, and so is every compact subset of the distribution space D’(Q2) := D(Q2),.

Recall that the essential supremum of a non-negative measurable function f: X —
[0, co[ on the measure space (X, X, ) is defined as

esssup,(f) == min{sup f(X\ A) : A € ¥s.t. u(A) =0} € [0,00].

3.6 LetI' beasetof continuous semi-norms on G defining its topology (see Remark 2.4);
if G = Eisalocally convex K-vector space, we assume that each g € I is a semi-norm
on E considered as a vector space, i.e., furthermore g(zx) = |z| - q(x) for all z € K,
x € E
Given g € T, we define q: £°°(X, G) — [0, oo[ via

q(y) :=esssup,(qoy) fory € L2(X,G).

Weset N:= {7 € ¢(X,G) : u(7 (G \ {e})) =0}.

3.7  Itisclear that g is a semi-norm on the group £>°(X, G), forall g € I, and clearly N is
a normal subgroup of £°(X, G). Giveng € I', v € £°(X, G) and £ > 0, in view of
the compactness of K := im ~ there exists p € I"and § > 0 such that q(xyx™!) < e
forall x € K and y € G such that p(y) < J. As a consequence, g(yny ') < ¢ for all
n € £>°(X, G) such that p(n) < J. We give £>°(X, G) the (usually non-Hausdorff)
group topology determined by the family of semi-norms (g)ger (see Remark 2.4). It
is easily verified that the topology on £°°(X, G) is independent of the choice of I in
Subsection 3.6.

3.8 If G = E, then each g is a semi-norm on £°°(X, E) as a vector space, whence the
semi-norms g give rise to a locally convex vector topology on £°°(X, E). In this case,
N is the set of those v € £°°(X, E) vanishing pi-almost everywhere, which is a vector
subspace of £°(X, E)

Then we have:

Lemma 3.9 Lety € £°(X,G). Theny € N ifand only if g(y) = 0 forallq € T..
Thus N = {e} in £°(X, G).

Proof If~ € N, then apparently g(y) = 0 forallq € T.
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Conversely, assume that v € £°°(X, G) and g(7) = 0 for all ¢ € I". The topology
on the compact metrizable set K := im(v) U {e} C G is defined by the family of
semi-metrics (dy)4er, where

dg: K x K = [0,00[,  dylx, ) == q(y~"x).

By Lemma 2.3, the topology on K is determined by (d;)4¢ j, for some countable subset
JCT. Asq(y) = 0forg € J, we have u(A;) = 0, where A, := {x eX: q(’y(x)) =+

0} . AsA :=J,.,A,is acountable union of y-null sets, we have ;(A) = 0. However,

q€]
as (dg)qey determines the topology on im(y) U {e}, wehave A = {x € X : y(x) # e}.
Thusy € N.
The remainder is obvious. [ ]

The hypothesis that the compact sets im(y) be metrizable is essential for the va-
lidity of Lemma 3.9, as the following example shows.

Example 3.10 Given an uncountable set X, let ¥ := P(X) be its power set and
define a measure p: ¥ — [0, 00] via u(A) := 0 for countable subsets A C X and
((A) == oo for uncountable ones. Let E := R¥, equipped with the product topology,
and consider the function

¥: X —E, x> 0c0=lyy.

Then im(y) C {0, 1}* and thus im(v) is compact. As ¥ = P(X), ~ is measurable.
The semi-norms g,: RX — [0, 00[, g«(f) := |f(x)| (for x € X) determine the locally
convex topology on E = R*, and as g, 0y = J,, vanishes outside a finite set and thus
p-almost everywhere, we have g;() = 0, for all x € X. However, v 1(E\ {0}) = X
is a set of infinite (and thus non-zero) measure.

Definition 3.11 We define L° (X, G) := £°°(X, G)/N and give L*°(X, G) the quo-
tient topology, which makes it a Hausdorff topological group. If G = E, apparently
L*°(X, E) is a Hausdorff locally convex space.

Remark 3.12  In the present section, we strictly distinguish functionsy € £ (X, G)
and the associated equivalence classes [y] := YN € L*(X, G). Following the general
custom, for convenience of formulations we shall occasionally abandon this strict
distinction in later sections, when no confusion can arise.

For q € T, the continuous semi-norm g on £>°(X, G) gives rise to a continuous
semi-norm on L™ (X, G), also denoted g, via q([]) := q(7) for vy € £2°(X, G).

Definition 3.13 Given an open subset U C G, we define

LX(X,U) := {y € °(X,G) :imy C U} C L*°(X,G) and
LYX,U) :={[vy]: v € L°(X,U)} CL>®(X,G).
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Lemma 3.14

(a) L>™(X,U) isopen in L (X, G), for every open subset U C G.
(b) When U ranges through the open identity neighbourhoods of G, the sets L (X, U)
form a basis for the filter of identity neighbourhoods of L (X, G).

Proof (a) If f € L>®(X,U), there exists v € £>°(X, G) such that [y] = f and
K := v(X) C U. The set K being compact and U being open, there exists an open
identity neighbourhood V in G such that KV C U. Thereisgq € I'and ¢ > 0 such
that g=1([0,¢[) C V. Ifh € L°°(X, G) such that §(h) < &, there exists € L°(X, G)
such that [n] = h and supq(n(X)) < ¢. Noting that sup q(n(X)) = sup q(m) ,
we deduce that the compact set M := n(X) is contained in V. Thusim(yn) C KM C
KV C U, and thus fh € L>°(X, U). We have shown that f§!([0,¢[) = Bdﬁ(f,a) -
L*°(X, U), which is a neighbourhood of f.
(b) The assertion easily follows from (a) and the observation that

L (X, q'([0,eD) =g ([0, D),
foreveryq € I'and € > 0. ]

If U is an open subset of E, we shall consider the open subset L*°(X,U) C
L*°(X, E) as an open K-analytic submanifold of L* (X, E).

Lemma 3.15 If ¢: G — H is a continuous homomorphism between Hausdorff topo-
logical groups, then also L (X, ¢): L>*(X,G) — L>*°(X, H), [y] — [¢ o 7] is a con-
tinuous homomorphism.

Proof In view of Lemma 2.1, we have ¢ o v € 8°(X, H) for all v € £°(X, G).
Clearly [¢ o ] only depends on [7v], and L>°(X, ¢) is a homomorphism. Given an
open identity neighbourhood U in H, the homomorphism L™ (X, ¢) takes the open
identity neighbourhood L*° (X, ng’l(U)) into L*°(X,U). In view of Lemma 3.14,
this means that L (X, ¢) is continuous at the identity and thus continuous. [ |

Asa consequence:

Lemma 3.16 L*°(X,Gx H) = L*(X, G) x L>(X, H) canonically, for all Hausdorff
topological groups G and H. If E is a real locally convex space, then L>°(X,E)¢c =
L>(X, Ec). ]

For the remainder of this section, we investigate completeness properties of
L*°(X, G), and alternative characterizations of the functions v € £°°(X, G).

Definition 3.17 F(X, G) denotes the group of all measurable mappings v: X — G
with finite image.
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Proposition 3.18  For every v € L°(X,G), there exists a sequence (y,)nen in
F(X, G) converging uniformly to v (and thus also with respect to the topology on
L2(X,G)). In particular, the group F(X, G) of all finitely-valued measurable map-
pings is dense in °°(X, G). If, conversely, v: X — G is a uniform limit of a sequence
(Yn)nen in F(X, G) (or, more generally, in £°°(X, G)), then im 7 is pre-compact; hence
ifim  is compact and metrizable, then v € £ (X, G).

Proof Given v € £%°(X,G), set K := im(vy). Then K is a metrizable compact
subset of G. The family (d;)4cr of semi-metrics dg: K x K — [0, 00], dg(v, w) :=
q(v~'w) determines the topology on K. By Lemma 2.3 and since I is directed, we
find an ascending sequence q; < g, < --- of semi-norms g, € I' such that (d,).en
determines the topology on K, where d,, := d, . Givenv € K and ¢ > 0, let By, (v, €)
be the open d,-ball of radius € around v in K. Due to compactness, for every n € N

we have K = Ulm:(;l) By, (v!, 1) for finitely many elements v7, . . ., Vo € K. Then

i—1
Ani =B, (', D\ | Ba, V), 1)
j=1

is a measurable subset of K, for everyn € N,i = 1,...,m(n). Since K = A, U---U
Apm(n) is a disjoint union, and im v C K, setting v,(x) := v/ for x € 77 1(A,;) we
obtain a function v, € F(X, G). By definition, im v, C K. We claim that v, —
uniformly as n — o0o. To see this, let ¢ € I" and € > 0. By Lemma 2.3, there exists
k € Nand § > 0 such that

Mv,weK) dilvyw) <d=d,(v,w) <e.

We find 1y > k such that nio < 4. For every n € N such that n > ny and x € X, there
exists a unique i € {1,...,m(n)} such that y(x) € A,;, and then v,(x) = v/. As
A, € By, (v, %), we deduce that dk(’y,,(x)7 'y(x)) < d,,(’yn(x)7 'y(x)) < % < 0 and
thus dq(%(x), *y(x)) < e. Consequently, sup{ dq(’yn(x), W(x)) X E X} < e. Thus
Yx — 7 uniformly indeed. Furthermore, q(’y(x)_lwn(x)) = dq(%(x)77(x)) <e€
entails that g(y~!y,) < e for all n > ny, whence 7, — v in £°(X, G).

To prove the partial converse, suppose that v: X — G is the uniform limit of a
sequence (7,)qen in £%°(X, G). Given an identity neighbourhood U in G, choose an
identity neighbourhood V in Gsuch that VV C U. As+, — -y uniformly, there exists
n € Nsuch that, forall x € X, y(x) € v,(x)V. Now im v, being compact, we have
im -y, C FV for some finite subset F of G. Then imy C (im~,)V C FVV C FU;
we have shown that im + is pre-compact.

In the preceding situation, assume in addition that im ~ is compact and metriz-
able. The Hausdorff group G being completely regular [18, Theorem 8.4], Proposi-
tion 2.6 shows that vy is measurable. Thus v € L (X, G). [ |

Corollary 3.19  If every pre-compact subset of G has metrizable, compact closure, then
a function vv: X — G belongs to L°°(X, G) if and only if it is the uniform limit of a
sequence (Vu)uen of finitely-valued, measurable functions vy, € F(X, G). [ |
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Remark 3.20 Note that the hypotheses of Corollary 3.19 are satisfied for any Fréchet
space, and for any LF-space (cf. [34, Section 11.6.5]). For example, they are satisfied
for G = D(N), for any open subset {2 of R™. They are also satisfied for G = D’(Q),
since by completeness every pre-compact subset of D’(£2) has compact closure, and
the latter is metrizable (see Example 3.5).

Proposition 3.21  If G is metrizable, then so is L°°(X, G). If G is metrizable and
complete, then so is L°°(X, G). If E is a Fréchet space (resp., a Banach space), then so is
L>*(X,E).

Proof If G is metrizable (resp., if E is normable), we can choose a continuous
group-norm (resp., vector space norm) q on G (resp., E) determining the group
topology (resp., locally convex vector topology), and then 4 is a group-norm (resp.,
vector space norm) on L (X, G) (resp., L°°(X, E)) determining its group topology
(resp., locally convex vector topology), whence the latter group is metrizable (resp., a
normed space).

Thus, it only remains to assume that G is complete and metrizable, and show that
every Cauchy sequence (g,)nen in L (X, G) converges. For every n € N, choose y, €

£°(X, G) such that [y,] = g,. Let g be a continuous norm on G determining the
group topology. Then, for all n,m € N, there exists A, ,, € X such that (A, ,,) =0
and

48 gn) = A ) = sup(g o (v, 7)) (X \ Anm)-

The set N? being countable, we have A := Unﬁmek\' Aym € %, and p(A) = 0. Then
(1] = [n] = gu for n, € L2(X, G) defined via 1, |x\a = Yn|x\4 and 7, |4 := e. We
have

3) (Vn,meN) (g, "'g) = sup(qo (n,,'n.)) (X),

entailing that (nn(x))n ¢ is a Cauchy sequence in G for each x € X, and thus con-
vergent to some 7(x) € G. We claim that 7, — 7 uniformly. In fact, let ¢ > 0. There
is ny € N such that q(g,,'g,) < € for all n,m > ng. In view of equation (3), we then
have q(nm(x)’lnn(x)) < eforallx € X and n,m > ny. Letting m — oo, we deduce
that

(Vn>ng) (vx € X)  q(n(x)"'n(x) <e.

Thus 1, — 7 uniformly indeed. By Proposition 3.18, im 7 is pre-compact. Thus,
being a closed, pre-compact subset of the complete uniform space G, the set im 7 is
compact; since G is metrizable, so is im 7. By Proposition 3.18, n € £L°(X, G). As
1, — 1 uniformly, we have g, = [n,] — [n] a fortiori. |

Thus, if E is a Fréchet space, then L>°(X, E) is the completion of (X, E) (modulo
functions vanishing p-almost everywhere), as a consequence of Proposition 3.18 and

Proposition 3.21. As a special case of Corollary 3.19, we have:

Remark 3.22 IfE is a Fréchet space, then a function v: X — E belongs to £°°(X, E)
if and only if there exists a sequence (7, )nen of finitely-valued measurable functions

https://doi.org/10.4153/CJM-2003-039-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-039-9

982 Helge Glockner

converging uniformly to «. Thus, we have a close conceptual similarity between the
L°(X, E)-functions defined here and the so-called strongly measurable functions
with values in a Banach space E, which can be characterized as uniform limits of
countably-valued measurable functions (almost everywhere), see [19, Corollary 1 to
Theorem 3.5.3].2

Remark 3.23 Further motivation for our specific definition of £°°(X, E) came from
[37]. In this paper, differentiability properties of mappings of the type EJ'(X, E;) —
EV(X,Ey), v — f oy are analyzed for smooth maps f: E; — E, between quasi-
complete locally convex spaces (or open subsets thereof), where £7'(X, E;) denotes
the space of m times k-continuously differentiable E;-valued mappings with relatively
compact image on an open subset X of a locally convex space F. Our most important
technical tools (to be developed in the next section) are analogues for L>°-spaces of
Thomas’ results.

4 Differentiable Mappings Between L>-Spaces

In order to turn the topological group L°°(X, G) into a Lie group when G is a Lie
group, we need to understand differentiability properties of certain types of map-
pings on L™ (X, L(G)) (and open subsets thereof).

As before, (X, X, 1) denotes an arbitrary measure space.

Proposition 4.1  Suppose that E and F are locally convex Hausdorff spaces, U C E
an open subset, P a Hausdorff topological space, and o : X — P a measurable mapping
such that K := im(o) is compact and metrizable. Let furthermore f: Px U — F be
a mapping which is partially C* in the second argument for some k € Ny U {0}, and
define

f: :fO(UxidU):XxU—>F.

Then
[ L2(X,U) — L(X,F),  fu([v]) == [f o (idx, )]

is a mapping of class C*.

Proof We may assume that k € Ny. The definition of f.[y] makes sense, since

fiy == fo(idx,v) = fo(o,7) € L>(X,F) as a consequence of Lemma 2.1 and
Lemma 2.8, for any v € £%°(X,U); furthermore, apparently [f o (idx, )] only
depends on [7].

Step 1: f, is continuous. To see this, suppose that v € £>°(X, E) such that M :=
im v C U, and suppose that V' is an open zero-neighbourhood in F. Let Vi C V bea

2 Apparently, if we replace y by its Lebesgue completion 1z, we obtain an isomorphic space L>° (X, E),
and then vy: X — E is an £°°(X, E)-function on (X, ¥, 7z) if and only if it is a uniform limit of finitely-
valued measurable functions on (X, X) p-almost everywhere. So, for our purposes nothing is lost by
considering measurable functions on (X, X) only instead of fi-measurable ones. Rather, we profit from
shorter proofs.
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closed zero-neighbourhood in F. Exploiting the compactness of K and M, we easily
find an open zero-neighbourhood W C E such that M + W C U, and such that

(VpeK, yeM) f({p}x(y+W)) C f(p,y)+V1.
Now if n € £°(X, W), thenim(y+7) C M+imn C M+ W C U, and

(fey+m) ) = f(0(x),7x) +9(x) € f(a(x),7(x) + Vi = (fn)x) +V,

for all x € X, entailing that im(f* (v+n) — f*v) C V; C V and therefore
fely +m) — fiy € £2°(X, V). We have shown that f, takes [y] + L°°(X, W) into
filv] + L°°(X, V). In view of Lemma 3.14 (b), the continuity of f, follows.

Now suppose that k > 1.

Step 2: f. is of class C'. Lety € £°(X,U) and n € £°(X, E) be given. The sets
M :=im~ C U and N := im 7 being compact, there is € > 0 such that

im~y+ [—¢,¢] -imn C U.
Then
@ H(Sr+hm) = £7) @ = +(F(060, 760 + ) = f(o().9) )

1

dy f (0(x),7(x) + thn(x), n(x)) dt

1

H(o(x),v(x),n(x),th) dt

/

/

forallh € [—¢,e] and x € X, where H: K X M X N X [—¢,¢e] — Fis defined via
H(u,v,w,s) := dzf(m v+ sw,w)

foru € K,v € M,w € N,and s € [—¢,¢]. Given an open zero-neighbourhood V
in F, we choose a closed, convex, symmetric zero-neighbourhood W C V of F. In
view of the compactness of K x M x N, we find § € ]0, €] such that H(u, v, w,s) —
H(u,v,w,0) € Wforallu € K,v € M,w € N,and s € |—6, d[. Using equation (4),
we deduce that

W (f(y+ ) = fv) (x) — H(o(x), 7(x), n(x),0) € W
forallh € ]—6,¢[ and x € X. Note that
H(o(x),7(x),1(x),0) = (df)(0(x),7(x),7(x))

here. Thus

im(h (f (y+hn) — f’y) (d2f (J,%T)))QWQV,
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and thus h_l(f*('y+hn) — f*'y) — (dzf) o(o,v,m) € 82(X,V)forall h € -9, 4.
We deduce that /™! (f*(’y + hn) — f*’y) — dzfo (o,7v,m = g«(y,m) in L>°(X, F)

ash — 0, where g := d2f~o (0 x idyxg) (¢f Remark 3.12). Thus d( f,) exists, and is
given by

(5) d(f.) = g«: L™(X, U x E) — L™(X, F),

identifying L>° (X, U) x L™ (X, E) with L>°(X, U X E) C L*°(X, E?) (see Lemma 3.16).
Note that g is obtained from the function g := dzf: P x (U x E) — F (which is
partially C¥~! in the second argument) in the same way in which f is obtained from
f~. Thus Step 1, applied to g, shows that d( f.) = g, is continuous.

Step 3: Induction. Suppose the proposition holds for k — 1 in place of k > 1. Step 2
shows that f is of class C', with d( f,) = g of class C*~! by the induction hypothesis.
Thus f is of class C¥. u

Corollary 4.2  Suppose that E and F are complex locally convex Hausdorff spaces,
U C E an open subset, P a Hausdorff topological space, and o: X — P a measurable

mapping such that K := im(o) is compact and metrizable. Let ]7: PxU — Fbea
mapping which is partially C* in the second argument and such that f(p, ):U—F
is complex analytic for each p € P. Define f := fo (o0 xidy): X x U — F. Then
fi: L®(X,U) — L>®(X, F) is complex analytic.

Proof By Proposition 4.1 and its proof, f is smooth and df.(v,n) = dzfo(a, Yy 1)s
which is complex linear in ) as f(p,«) is complex analytic for each p € P. By Sub-
section 1.7, f, is complex analytic. |

Proposition 4.3  Suppose that E and F are Hausdorff real locally convex spaces, U C
E an open zero-neighbourhood, P a real analytic manifold, modelled on a Hausdorff
locally convex space Z, and o: X — P a measurable mapping such that K := im(o)

is compact and metrizable. Given a real analytic mapping f: P x U — F, define
fi=fo(oxidy): X XU — F. Then f,: L*°(X,U) — L*°(X, F) is real analytic on
L (X, Q) for some open zero-neighbourhood Q C U in E.

Proof As P is a real analytic manifold, for every a € P we find a diffeomorphism
¢a: W, — P, of real analytic manifolds from an open zero-neighbourhood W, in Z
onto an open neighbourhood P, of a in P such that ¢,(0) = a. Then the mapping
0,: W, x U — F, 0,(w,u) := f((ﬁg(w)7 u) is real analytic and hence extends to a
complex analytic mapping 0,: E, — Fe, defined on an open neighbourhood E, of
W, x U in Z¢ x Ec. Shrinking W, if necessary, we may assume that E, contains a
0-neighbourhood of the form W/ x (Q,+iQ.) for an open neighbourhood W, of W,
in Z¢, an open zero-neighbourhood Q, C U in E, and an open, symmetric, convex
zero-neighbourhood Q) in E. As im o is compact, we have imo C |J__, P, =: P’

acA " a
for some finite subset A of P. Then Q' := [ aca Q) is an open, symmetric, convex
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zero-neighbourhood in E, and Q := (1,4 Q, is an open zero-neighbourhood. If
a,a’ € A, then for every p € P, N P/, the prescriptions x + au(qﬁa’l(p),x) and
X 55,/ (¢;,1( D), x) define complex analytic mappings Q +iQ’ — F¢ which coin-
cide on Q (where they coincide with f( P, +)|q), and which therefore coincide (cf. [5,
Proposition 6.6]). We abbreviate Q; := Q + iQ’. By the preceding,

h: P x Q — Fg, Z(p,x) = ga(qb;l(p),x) ifp e P, whereac A

is a well-defined smooth mapping such that E( p,e): Qi — Fc is complex analytic
for each p € P’. Define h := ho (0 x idg,), X x Q; — Fc. By Corollary 4.2,
the mapping h.: L=(X, Q;) — L (X, F¢) = L>*(X, F)¢ is complex analytic. Thus
felrex.@) = ha | ioc gjg)) is real analytic. u

Corollary 4.4  Suppose that E and F are Hausdorff locally convex K-vector spaces, U
an open zero-neighbourhood in E, and f: U — F a smooth (resp., K-analytic) map-
ping. Then

L®(X, f): L®(X,U) = L®(X, F), [7] — [ 7]

is a smooth (resp., K-analytic) mapping, and dL>* (X, f) = L*°(X, df).

Proof Let {0} be a manifold consisting of single point. Define h: {0} x U — F,
h(0,u) == f(u) and h := ho (0 x idy): X x U — F, h(x,u) = f(u). Then
L*(X, f) = h..

If f is smooth, then h is smooth and thus partially C*° in the second argument,
and thus the hypotheses of Proposition 4.1 are satisfied for h (with k = o00). Thus
L (X, f) = h, is smooth, and has the asserted derivative in view of (5).

If f is complex analytic, then h is complex analytic, whence the hypotheses of
Corollary 4.2 are satisfied for E, and thus A, is complex analytic. N

If f is real analytic, there exists a complex analytic function g: U — Fc, de-
fined on an open neighbourhood U of U in Ec. By the preceding, the mapping
L*(X,g): L*(X,U) — L>®(X, Fc) = L*°(X, F)¢ is complex analytic. Possessing a

complex analytic extension, L*° (X, f) = L>(X, g)| fzgfj)) is real analytic. ]

5 The Lie Group L*(X, G)

Let G be any smooth or K-analytic Lie group. In this section, we show that L*°(X, G)
can be made a smooth, resp., K-analytic Lie group, with Lie algebra L>° (X , L(G)) .
We shall use the following folklore fact:

Proposition 5.1 (Local Characterization of Lie Groups)  Suppose that a subset U of
a group G is equipped with a smooth (resp., K-analytic) manifold structure modelled on
a Hausdorff locally convex space E, and suppose that V is an open subset of U such that
ecV,V =V~ VV C U, and such that the multiplication map V. x V. — U,
(g, h) — gh is smooth (resp., K-analytic) as well as inversion V. — V, g — ¢~ '; here
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V is considered as an open submanifold of U. Suppose that for every element x in a
symmetric generating set of G, there is an open identity neighbourhood W C U such
that xWx~' C U, and such that the mapping W — U, w — xwx " is smooth (resp.,
K-analytic).?> Then there is a unique smooth (resp., K-analytic) Lie group structure on
G which makes V, equipped with the above manifold structure, an open submanifold
of G.

Proof The proofof [8, Chapter 3, Section 1.9, Proposition 18] can easily be adapted.
|

The Lie Group Structure on L*° (X, G)

Theorem 5.2  Let G be a smooth (resp., K-analytic) Lie group, and (X,%, u) be a
measure space. Then there is a uniquely determined smooth (resp., K-analytic) Lie group
structure on the group L*° (X, G), modelled on L™ (X, L(G)) , such that L°(X, V) is
an open identity neighbourhood and

@ = L%(X, ¢): L(X, V) — L¥(X, V) C L™(X, L(G))

is a diffeomorphism of smooth (resp., K-analytic) manifolds, for some chart ¢: V, — V
from an open identity neighbourhood V|, C G onto an open zero-neighbourhood in L(G)
such that ¢(e) = 0. Then in fact L°°(X, 1) is a diffeomorphism, for every chart ¢ of G
whose domain is contained in V| and which satisfies 1)(e) = 0. The topological group
underlying the Lie group L°° (X, G) coincides with the one described in Definition 3.11.
Furthermore, if ¢ is chosen such that d¢(e, ) = id ), then

d®(e,+): L(L>®(X,G)) — L™ (X, L(G))

is an isomorphism of topological Lie algebras with respect to the “pointwise” Lie bracket
on L (X, L(G)).

Proof The construction will be given in steps.

5.3 Let x: U; — U be a chart of G, defined on an open identity neighbourhood U, in G,
with values in an open zero-neighbourhood U in L(G), such that k(e) = 0. Let V;
be an open, symmetric identity neighbourhood in G such that V,V; C Uy, and set
V := k(V}). Then the mappings

m:VxV—-U, mxy):= n(m_l(x) . /-e_l(y)) and
V-V, u(x) = n(m_l(x)_l)

are smooth, resp., K-analytic. We equip L>°(X,U;) C L*°(X, G) with the smooth
(resp., K-analytic) manifold structure making the bijection

(6) B: L*(X,Uy) — L*¥(X,U), [v]— [ko7]

a diffeomorphism of smooth (resp., K-analytic) manifolds.

3This condition is automatically satisfied if V generates G.
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5.4 Since L™®(X,V) x L®(X,V) = L*(X,V x V) and the mapping L™ (X,m):
L*(X,V x V) — L*®(X,U) is smooth (resp., K-analytic) by Corollary 4.4, we
deduce that the group multiplication of L*°(X, G) restricts to a smooth (resp., K-
analytic) mapping L*°(X,V;) x L*(X,V;) — L*°(X,U;). Similarly, inversion is
smooth (resp., K-analytic) on L*° (X, V).

5.5 Let [y] € L®(X,G) now. As im~ is compact, there is an open identity neigh-
bourhood W; C V; in G and an open neighbourhood P of im in G such that
pWip~! C U, forall p € P. Set W := x(W,;). The mapping h: P x W, — Uy,
h(p,w) := pwp~' being smooth (resp., K-analytic), we deduce that so is f :=
koho (1dp xk~1): P x W — U. Define

fi=Ffo(yxidw): XxW —=U, f(x,y)=r(vx)s"(yx7").

In the case where G is a smooth or complex analytic Lie group, we deduce from
Proposition 4.1 (resp., Corollary 4.2) that the mapping f.: L(X,W) — L*(X,U)
is smooth (if G is a smooth Lie group), resp., complex analytic (if G is a complex
Lie group). Thus conjugation I, by v is smooth (resp., complex analytic) on the

open identity neighbourhood L*° (X, W;) C L*°(X, V), noting that I, &

L°° xw) =
B7lof.o ﬂ‘ émgx )- If G is a real analytic Lie group, Proposition 4.3 shows that
filro(x.q) is real analytic for some open zero-neighbourhood Q C W, and thus
conjugation by <y is real analytic on L™ (X , I{_I(Q)) C L*(X, V7). In either case,
Proposition 5.1 provides a unique smooth, resp., complex analytic, resp., real analytic
Lie group structure on L*°(X, G) making L>°(X, V) an open submanifold. Thus

L>°(X, ¢) is a chart for L°(X, G), where ¢ := k| }, : V] — V.

5.6 The assertion concerning 1 follows from Corollary 4.4, applied to the diffeomor-
phism f := 1o ¢| domv " and its inverse.

—1(dom 1))

5.7  To see that the topological group underlying the Lie group L*>°(X, G) coincides with
the one described in Definition 3.11, note first that the bijection 8 defined in (6) is
a homeomorphism with respect to the topology induced on L* (X, U;) by the topo-
logical group L>*°(X, G) (cf. proof of Proposition 4.1, Step 1). As a consequence,
the group topology on L>°(X, G) defined in Definition 3.11 and the group topol-
ogy underlying the Lie group L*°(X, G) just defined have the same filter of identity
neighbourhoods, and thus coincide.

5.8 As a topological vector space, we identify the Lie algebra of L°°(X,G) with
L> ( X, L(G)) by means of the isomorphism of topological vector spaces

dL>®(X, ¢)(e,): T.(L®(X,G)) — L>(X,L(G)),

where we assume that ¢ is chosen such that d¢(e,«): T.(G) = L(G) — L(G) is the
identity map. We have to show that, with respect to this identification, the Lie bracket
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on L(L®(X, G)) is the mapping L(X, [ ., .]): L® (X, L(G)?) = L*°(X,L(G))" —
L™ (X, L(G)) . To see this, let 0,7 € L™ (X, L(G)) . As a consequence of Proposi-
tion 4.1 and its proof (equation (5)), Ad, (1) := (T.I,).n € L*> (X, L(G)) is given by
Ad,(n) = fu(y) for v € L*(X, G), where f~: L(G) x G — L(G), (y,8) — Adg(y)
is smooth and f := fo (n xidg): X x G — L(G). Using that dzf(y, e,x) =
d(Ad.(y)) (e,x) = [x, y] forall x, y € L(G) by definition of the Lie bracket (see [24,
pp- 1035-1037]), we find that

[0,n] = d(Ad.(n)) (e,0) = dyf o (n,e,0) = L®(X, ., .])(o, ),

where the second equality is a consequence of Proposition 4.1 and its proof (equa-
tion (5)). This completes the proof of Theorem 5.2. [ |

Functoriality of L>°(X, )

The following variant of Corollary 4.4 will be essential for our discussions of universal
complexifications.

Proposition 5.9  Suppose that Gy and G, are smooth (resp., K-analytic) Lie groups,
and suppose that f: G — G, is a smooth (resp., K-analytic) mapping. Then

L¥X, /): L7(X,G1) = LF(X,Ga),  [v] = [foen]
is a smooth (resp., K-analytic) mapping.

Proof For j € {1,2}, let ¢;: U;j — V; be a diffeomorphism of smooth (resp.,
IK-analytic) manifolds from an open zero-neighbourhood U; in L(G;) onto an open
identity neighbourhood V; in G, such that ¢;(0) = ¢, L**(X, V;) is an open identity
neighbourhood in L (X, G;), and ®; := L*(X, ¢;): L*(X,U;) — L*(X,V;)isa
diffeomorphism of smooth (resp., K-analytic) manifolds. The mapping

g:G xU; — Gy, g(a,u):= f(a)*lf(a-gbl(u))

is smooth (resp., K-analytic), and g(a,0) = e for every a € G;. Suppose v €
£°(X, Gy) is given. Then im % {0} being a compact subset of G; x U; on which § =
e, we find an open neighbourhood P of im v in G, and an open zero-neighbourhood
Q C Uy suchthat g(P x Q) € V,. Then b := ;' 08|12 0, P x Q = Uy C L(Gy) is
a smooth (resp., K-analytic) mapping. We define

(7) h:=ho(y|" xidg), XxQ—U,.

_ —1
Thus h(x,q) = 65 (£(71(x) " f(7(x)61(0)) ) forall x € X and g € Q
In the smooth or complex analytic case, the mapping h..: L= (X, Q) — L>*(X,U,)
is smooth (resp., complex analytic), by Proposition 4.1 (resp., Corollary 4.2); we set

Q' = Q.
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In the real analytic case, h.| 1 (x,q’) is real analytic for some open zero-neighbour-
hood Q' C Q, by Proposition 4.3.

In either case, we let A, : L*°(X, G) — L*°(X, G}), 0 — 7y - 0 denote left transla-
tion by [y] on L>(X, G,) and Ay, denote left translation by [f o 7] on L*(X, G,).
We abbreviate V{ := ¢1(Q’). Since
X

L®(X,V3) L*(X,VY) _
o L>(X, f)o Av) L°°(X,V?) © (I)1|L°°(X,Ql’) = h*|L°°<X,Q’)

@, o (Ao,
is a smooth (resp., K-analytic) mapping, it follows that )\;OIN oL>®(X, f)o\, is smooth
(resp., K-analytic) on the identity neighbourhood L (X, V) of L>*(X, G;). Transla-
tions being diffeomorphisms, this entails that L*° (X, f) is smooth (resp., K-analytic)
on some neighbourhood of [7]. [ |

Remark 5.10 Applying Proposition 5.9 to smooth (resp., K-analytic) homomor-
phisms in particular, we deduce that functors L°°(X, «) from the category of smooth
Lie groups and smooth homomorphisms (resp., KK-analytic Lie groups and K-analytic
homomorphisms) into itself can be defined.

L>®(X,G) When G is a BCH-Lie Group

Definition 5.11 A K-analytic Lie group G modelled on a Hausdorff locally convex
topological IK-vector space is called a Baker-Campbell-Hausdorff Lie group (or “BCH-
Lie group” for short) if it has the following properties:

(a) The exponential function exp: L(G) — G is defined on all of L(G), and there
is an open zero-neighbourhood U in L(G) such that V := exp,(U) is open in G
and ¢ := expg ‘ Ui U — V is a difffomorphism of K-analytic manifolds.

(b) There is a zero-neighbourhood W C U in L(G) with exp,(W) exps(W) C V,
such that ¢! (¢(x)¢(y)) = Eiil Bu(x, y) =: x * y is given by the BCH-series
for x, y € W (with pointwise convergence).

Thus 81 (x, y) = x+y, Ba(x, ) = 31x, y], Bs(x, ) = 15 ([x [x, y1] +[ 5, [ %1] ).,
etc.

Remark 5.12 The class of BCH-Lie groups includes all finite-dimensional Lie
groups, Banach-Lie groups, mapping groups C"(K, G) and C>°(M, G) (where K is
a compact smooth manifold, M a o-compact finite-dimensional smooth manifold,
and G any BCH-Lie group) [12], as well as the direct limit Lie groups GL(K) =
hi>n’1 GL,(K) and their analytic subgroups [25], [12]. Also the unit group of any
sequentially complete (or, more generally, Mackey complete) continuous inverse al-
gebra is a BCH-Lie group [11]. The general Lie theory of BCH-Lie groups (analytic
subgroups, integration of Lie algebra homomorphisms, quotient groups, universal
complexifications) is developed in [12]. See also the earlier paper [32] for informa-
tion concerning the closely related class of CBH-Lie groups.

Theorem 5.13  For every K-analytic BCH-Lie group G, L*°(X, G) is a K-analytic
BCH-Lie group, with Lie algebra L (X, L(G)) and exponential function L (X, exp).
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Proof Let us assume first that G is a complex BCH-Lie group.

5.14  We let U be a balanced open zero-neighbourhood in L(G) such that the BCH-
series converges on U x U to a complex analytic function * := m: U? — L(G),
m(x, y) := > oo Bulx, y). Then m(0,0) = 0, and M := L>®(X, m): L*(X,U?) —
L*°(X,L(G)) is a complex analytic mapping by Corollary 4.4. Since L*°(X, U)*
L®(X,U?) as complex analytic manifolds, we may consider M as a mapping on
L®(X,U)?. As P := L°(X,U)? is a balanced open zero-neighbourhood in
L>(X, L(G))2 and M is complex analytic on P, there is a sequence of continuous ho-

mogeneous polynomials «,,: L™ (X, L(G))2 — L™ (X, L(G)) such that M(~v,n) =
Z:io ay(y,n) for all v, € P (as follows from [5, Proposition 5.5]); here ag = 0
as M(0,0) = 0. Of course, using the notation introduced in Subsection 1.2, we have
a, = nilégg‘)o)M and 8, = %558‘)0)m (see [5]). Inductively, we deduce from Corol-
lary 4.4 that d"M = d"L>°(X,m) = L(X,d"m) for all n € Ny. As a consequence,
d"™M = L=(X,d"'m) (cf. [10, Lemma 1.14]) and hence 85y M = L% (X, 5y m).
Thus a,(y,n) = nl!é((g?O)M = L*°(X, B,)(vy,n) is in fact the homogeneous term of
order # in the BCH-series, evaluated at (-, n).

5.15  Inview of the connectedness of U, it follows from the Identity Theorems for analytic
functions (cf. [5, Proposition 6.6]) that exp(x * y) = exp(x) exp;(y) forall x, y €
U. Shrinking U if necessary, we may assume that U; := exp;(U) is open in G, and
that exp, ’ g‘ =: ! is a diffeomorphism of complex analytic manifolds. We let
V' C U be any open symmetric zero-neighbourhood in L(G) such that V « V. C U
and set V; := exp,(V). Then U, U;, V, Vi, and & can be used in Step 5.3 of the

construction of the manifold structure on L*° (X, G). We deduce that L>° (X, /<c|¥] )isa

diffeomorphism of IK-analytic manifolds, and so is its inverse L>° (X, expG)| ﬁz gg‘))

It now easily follows that L>°(X, G) is a complex BCH-Lie group with the asserted
properties.

Now assume that G is a real BCH-Lie group.

5.16  Since G is a real BCH-Lie group, there is an open balanced zero-neighbourhood W
in L(G) such that the BCH-series converges to a complex analytic map m: WxW —
L(G)c. As in Subsection 5.14, we see that the mapping

L®(X,W)* 2 L®°(X,W?) — L(X,L(G)c), (v,m) > mo(y,n)

is complex analytic, and is given by the BCH-series.

5.17  WeletU C W be an open zero-neighbourhood in L(G) such that (exp |g‘ ) =: k!
is a diffeomorphism of real analytic manifolds onto an open subset U; of G, and let
V' C U be a balanced open zero-neighbourhood in L(G) such that m(V x V) C U.
Then m := 1n| L@ 'is a real analytic function, which is the limit of the BCH-series of
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L(G) on V x V. We have V,V; C U, for V; := exp;(V), and (b(expc(x) eXpG(y)) =
m(x, y) for x, y € V. In view of the considerations in Subsection 5.16, the mapping
L®(X,V)? — L™ (X, L(G)) , (v,m) — mo (v,n) is real analytic and is the limit of
the Campbell-Hausdorff series of L°°(X,L(G)) on L*(X,V)?. As we may use U,
Ui, V, Vi, and « in Subsection 5.3, we deduce as in Subsection 5.15 that L (X, G)
is a real BCH-Lie group with the asserted properties. This completes the proof of
Theorem 5.13.

The Universal Complexification of L>°(X, G)

Definition 5.18 Let G be a real BCH-Lie group, H be a complex BCH-Lie group,
and ¢: G — H a smooth homomorphism. We say that H has a polar decomposition
with respect to ¢ if the map ®: G x L(G) — H, ®(g,x) := ¢(g) eXpH(iL((b).x) isa
diffeomorphism of smooth manifolds. We call ® the polar map in this case. If G and
¢ are understood, we simply say that H has a polar decomposition.

If H has a polar decomposition with respect to ¢: G — H, then (H, ¢) is a uni-
versal complexification of G in the category of all complex Lie groups with complex
analytic exponential functions, i.e., for every smooth homomorphism f: G — §
from G into a complex Lie group S whose exponential function is defined on all of
L(S) and is complex analytic, there exists a unique complex analytic homomorphism

f: H — S such that fo ¢ = f [12, Theorem 8.8]. We deduce:

Proposition 5.19  Let G be a real BCH-Lie group whose universal complexification
G in the category of complex BCH-Lie groups exists and has a polar decomposition
with respect to the universal smooth homomorphism vg: G — Gc. Let (X, %, )
be any measure space. Then L*°(X, Gc) has a polar decomposition with respect to
L*(X,v6): L7(X, G) — L™(X, Gc), and

L*(X, G)c = L>(X, Gc)

in the category of all complex Lie groups with complex analytic exponential functions.

Proof Noting that L*°(X, G) x L‘X’(X,L(G)) = LOO(X,G X L(G)) (as a con-
sequence of Proposition 5.9), the first assertion follows from the observation that
L>*(X,®): L= (X, G X L(G)) — L (M, G¢) is a diffeomorphism of smooth mani-
folds by Proposition 5.9, where ®: G x L(G) — G is the polar map. The remainder
follows from [12, Theorem 8.8]. [ |

6 The Lie Groups (~(X, G) and EN"O(X, G)

Except for metrizable, complete topological groups G, we could not say much about
completeness properties of L°>°(X,G) in Section 3, for general measure spaces
(X, %, ). As we shall see in this section, much more information is available for
{>°(X,G). We shall also define a certain topological group ¢*>°(X, G) containing
{>°(X, G) as a dense subgroup, and equip it with a Lie group structure when G is
a Lie group.
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6.1 Given a Hausdorff topological group G, we let £°(X, G) := L*°(X, G) = L (X, G),
using the counting measure 1 on (X, P(X)), where P(X) denotes the power set of
X. We define a larger group /*°(X, G) := {y € G* : im~ is compact} by drop-
ping the metrizability condition on im + (the group operations are pointwise). Then
0o (X , G) is a topological group with respect to the topology of uniform convergence,
which contains £*° (X, G) as a topological subgroup.

6.2 Every function on (X, P(X)) being measurable, apparently Proposition 4.1, Corol-
lary 4.2, Proposition 4.3, and Corollary 4.4 remain valid when L*°(X,E) and
L>°(X, F) are replaced with > (X,E) and > (X, F). Therefore Theorem 5.2 (and all
of the results of Section 5) remain valid when L*>°(X, G) is replaced with TES X, G).
In particular, we obtain a natural smooth (resp., K-analytic) Lie group structure on
0>°(X , G), for every smooth (resp., K-analytic) Lie group G.

Proposition 6.3 Let G be a Hausdorff topological group, E a Hausdorff real locally
convex space.

(a) Let (X,X) be a measurable space such that {x} € X for all x € X, and let p
be counting measure on (X,X). Then L*°(X,G) = L>(X,G). If every closed
pre-compact subset of G is compact and metrizable, then L*°(X, G) is sequentially
complete.

(b) If G is complete, then so is 0°°(X , G). If every closed, pre-compact subset of G is
compact, then Z(X, G) is sequentially complete. If E is quasi-complete, then so is
(>(X,E). B

(c) If every compact subset of G is metrizable, then {*°(X, G) = (> (X, G).

Proof (a) The first assertion is obvious. To prove the second, let (y,),en be a
Cauchy sequence in £>°(X, G). Then (,(x)) , _ is a Cauchy sequence in G and thus

converges to some y(x) € G, the set {~,(x) : n € N} being closed and pre-compact
and thus compact, by hypothesis. Then v, — ~ uniformly. By Proposition 3.18,
im 7y is pre-compact. Now im ~y being closed and pre-compact and thus compact
and metrizable by hypothesis, Proposition 3.18 shows that v € (X, G).

(b) The assertion concerning sequential completeness can be shown along the
lines of (a). Now suppose that G is a complete Hausdorft group (resp., a quasi-
complete Hausdorff locally convex space). Let (v,) be a Cauchy net (resp., bounded
Cauchy net) in /°(X, G). Given x € X, (7a(x)) is a Cauchy net (resp., bounded
Cauchy net) in G and thus convergent to some y(x) € G. As in the proof of Propo-
sition 3.18, we find that im +y is pre-compact. Hence im 7 is a closed pre-compact
subset of G and therefore a complete, pre-compact uniform space and thus com-
pact, as G is complete (resp., quasi-complete). Thus v € (>(X, G), and apparently
Yo — 7y uniformly.

(c) is obvious from the definitions. [ |

Lemma 6.4 For every y € /> (X, G), there exists a net () in F(X, G) converging
uniformly to ~y, such that im v, C im +y for all c.
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Proof Given an open identity neighbourhood U in G, we have imy C U?:l v;U
for some finite sequence vy,...,v, € im~. Set X; := v~ '(v;U) \ Uf:_ll v~ twU)
for j =1,...,nthen X = (Ji_, X; as a disjoint union. We define vy € F(X, G) via
v (x) := vj for x € X;. Then (yy)ueu, () is a net with the required properties. W

_ Thus (X, G) is non-complete whenever £>°(X, G) is a proper subgroup of
{>°(X, G). If £>°(X, E) is a proper subspace of £*°(X, E), then £°°(X, E) is not quasi-
complete.

Example 6.5 Let ] be a set of cardinality card(J) > 2™. Then X := [—1,1]/
is a non-separable compact topological space in the product topology. We claim that
0°°(X, R7) is not quasi-complete (although R’ is complete). To see this, let y: X — R/
be the inclusion map. Then y € £°°(X, R/), buty ¢ £>°(X,R/) asim v = im v = X
is not separable. By Lemma 6.4, there is a net (v,) of functions 7, € F(X,R’)
converging uniformly to  such that im v, C im~y = X for all . Thus (v,) is a
bounded Cauchy net in F(X, R/) C ¢°°(X, R/), which cannot converge in £>°(X, R/)
asy ¢ >°(X,R/).

7 Weak Direct Products of Lie Groups

In this section, we show that the “weak direct product”

H*Gi = {(gi)iel - H G; : g = efor i off some finite subset ofl}

i€l icl

of an arbitrary family (G;);c; of smooth (resp., K-analytic) Lie groups can be made
a smooth (resp, K-analytic) Lie group modelled on the locally convex direct sum

@iel L(Gy).

Mappings Between Locally Convex Direct Sums

Proposition 7.1  Let (E;);c; and (F;);e; be families of Hausdorff locally convex spaces,
with locally convex direct sums E := @, E; and F := D, F;. Suppose that k €
No U {00}, and suppose that f;: U; — F; is a mapping on an open zero-neighbourhood
Ui of E; fori € I, such that f;(0) = 0. If I is countable, we assume that each f; is of class
Ck; if I is uncountable, we assume that each f; is of class C¥*'. Then U := .., U; :=
EN]I,;c; Ui is an open subset of E, and

F=@si= 15| v—8 SweSfm
iel i€l iel

i€l

iel

is mapping of class C*.

Proof It suffices to prove the assertion for k € No; first we assume that I is uncount-
able.
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Step 1: U is open, and f is continuous. To see that U is a neighbourhood of v
and f is continuous at v = > ., v; € U, it suffices to show that U — v is a zero-
neighbourhood and that g := f(v+:) — f(v): U — v — F is continuous at 0. Here
U—v=@,;,U;—v)andg = P, g with g = fi(vi +-) — fi(v;), a function built
up in the same way as f. Hence without loss of generality v = 0.

Each U, contains some convex symmetric zero-neighbourhood Cj;; then
conv J;; C; C U is a zero-neighbourhood in the locally convex direct sum E.

Given a convex, symmetric, open zero-neighbourhood Q in F, we have
conv UieI Qi C Q, where Q; := QN F,; for i € I, which is a convex, symmetric,
open zero-neighbourhood in F;. Since df;(0,0) = 0 and df; is continuous, there is an
open, convex, symmetric zero-neighbourhood P; C U; such that df;(P; x P;) C Q;.
Thus, forall u € P; and ¢ € [0, 1], noting that f;(0) = 0:

1
(8) filtu) = £(0) +1 / dfi(stu, u) ds € £Q;.
0

Equation (8) entails that f(conv | J;.; P;) € conv|J;c; Qi € Qs it only remains to
note that conv | J;; P; is a zero-neighbourhood in the locally convex direct sum E.
Step 2: f is of class C! (when k > 2). In fact, given u € U and v € E, we have
u,v € @,;c;Ei = [[;c; Ei for some finite subset ] C I. The mapping [[;.; f; being
of class C', we deduce that d f (u, v) = lim, ot~ ( f(u+tv) — f(u)) existsin [];, F;
and thus in F; its i-coordinate is d f;(u;, v;). Thus

9) df = @,

icl

identifying E x E = (¢, Ei)* with @, ;(Ei x E;) in the natural way. As each df;
is a mapping of class C* (where k > 1), in view of equation (9), df is continuous by
Step 1.

Step 3: Induction. Suppose that the proposition holds for k replaced with k — 1, and
suppose that each f; is of class C¥*!, where k > 1. By Step 2, f is of class C', with
df = @, dfi. In view of the latter formula, df is of class C*1 by induction. Thus
f is of class C*.

The Case of Countable I. The assertion being trivial when I is finite, we may assume
that I = N. Let us show that f is continuous when f, is so for each n € N. We
only need to prove continuity at zero (see Step 1). Given an open, convex, symmetric
zero-neighbourhood Q in F, set Q, := QN F, and T}, := 27"Q,,. By continuity, for
each n € N there is an open, convex, symmetric zero-neighbourhood P, C U,, such
that f,(P,) C T,. Then P := @neN P, is an open zero-neighbourhood in E, and
f(P) € @,cn Tn € Q. Thus f is continuous at 0. To complete the proof, we argue
as in Steps 2 and 3 above. ]

Corollary 7.2 In the situation of Proposition 7.1, suppose that E; and F; are Hausdorff
locally convex IK-vector spaces for each i € I, and suppose that f; is K-analytic. Then

fi= @ie fi is K-analytic.
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Proof The case K = C. By Proposition 7.1 and its proof, f is smooth and df =
Dic; dfi, whence df(x, .) is complex linear for each x € €, ; U;. Thus f is complex
analytic.

The case K = R. For each i € I, there is a complex analytic mapping g;: V; —
(Fi)c extending f;, defined on some open neighbourhood V; of U; in (E;)¢c. Then
;¢ & is complex analytic by the preceding, and extends f. ]

i€l

Lie Group Structure on Weak Direct Products

Proposition 7.3  Let (G;)icy be a family of smooth (resp., K-analytic) Lie groups. Then
there exists a uniquely determined smooth (resp., K-analytic) Lie group structure on
Hi*e 1 Gi, modelled on the locally convex direct sum EBIE 1 L(G;), such that, for some
charts ¢;: R; — S; C L(G;) of Gj taking e to 0, the mapping

(10) @Si — H*Gi, (xier = (7' (x60) ;g

i€l i€l

is a diffeomorphism of smooth (resp., IK-analytic) manifolds onto an open subset of
[T, Gi. If each G; is a K-analytic BCH-Lie group, then so is [ [/, Gi.

Proof For each i € I, let k;: U; — V; be a chart of G; about the identity ele-
ment, where V; is an open subset of L(G;) and x;(e) = 0. Let R; C U, be an open,
symmetric identity neighbourhood such that R;R; C Uj; define S; := k;(R;) and
oi = /{,»| ISQI,-' Proceeding similarly as in the proof of Theorem 5.2 (but using Propo-
sition 7.1 and Corollary 7.2 instead of Proposition 4.1 and its consequences), we de-
duce with Proposition 5.1 that there is a unique smooth (resp., K-analytic) Lie group
structure on the group [}, Gi making the mapping described in (10) a diffeomor-
phism of smooth (resp., K-analytic) manifolds onto an open subset of []:,; G;. Also
the remaining assertions follow along similar lines. ]

Proposition 7.4 Let (G;)ic; be a family of K-analytic BCH-Lie groups (resp.,
IK-analytic Lie groups G; with K-analytic globally defined exponential maps inducing
a local diffeomorphism of K-analytic manifolds on some zero-neighbourhood; resp.,
smooth Lie groups G; with globally defined exponential maps inducing a local C*°-
diffeomorphism on some zero-neighbourhood). Then

(11) [[6=tim][]c

i€l F ieF

in the respective category of Lie groups (where F ranges through the set of finite subsets
of I, directed via inclusion). Furthermore, (11) holds in the category of K-analytic Lie
groups with globally defined, K-analytic exponential functions (in the first and second
case) and in the category of smooth Lie groups with globally defined, smooth exponential
functions (in all cases).
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Proof Suppose that each G; is a K-analytic BCH-Lie group. Given a finite subset F
of I, we identify Gr := [[;.; Gi with the subgroup {(gi)ic; : & = efori € I\ F}
of G := [],G;. If H is a K-analytic BCH-Lie group and ¢r: Gr — H a K-analytic
homomorphism for each F such that ¢F|GF1 = ¢, whenever F; C F, there is a
unique homomorphism ¢: G — H such that ¢|g, = ¢F for each F, since G =
lim Gr asan abstract group. As L(G) = Dic; L(G) = hLQF [Lcr L(G) = lim L(Gp)
in the category of locally convex spaces, there is a unique continuous linear map
12 L(G) — L(H) such that ¥|g,) = L(¢r) for all F. The map exp inducing a local
diffeomorphism at 0 and expj, o> being K-analytic, we deduce from ¢ o exp,; =
expy oy that the homomorphism ¢ is K-analytic on some identity-neighbourhood
and thus K-analytic. The other assertions can be proved similarly. ]

Remark 7.5 See [25]-[28], [12] and [13] for information on direct limits of Lie
groups. Some intricacies inherent to the subject are explained in [13], [14], and
[36]; ¢f. also [23, Example 10.8]. For direct limit properties of countable weak direct
products of arbitrary Lie groups, see [16].

Exploiting Proposition 7.1, the following result can be obtained; we omit the de-
tails, which closely resemble the proof of Proposition 5.19:

Proposition 7.6 Let (G;);cr be a family of real BCH-Lie groups such that (G;)¢ exists
in the category of complex BCH-Lie groups and has a polar decomposition, for each
i € I. Then the complex BCH-Lie group [[;,(Gi)c is the universal complexification
of [1;c; Gi in the category of all complex Lie groups with complex analytic exponential
functions, and it has a polar decomposition. ]

8 The Lie Group L(X, G)

Let X be a hemi-compact Hausdorff topological space now (viz., there exists a se-
quence K; C K; C --- of compact subsets of X such that every compact subset of X
is contained in some K,,). For example, X might be any o-compact, locally compact
space. Let 3 := B(X) be the Borel o-algebra of X, and 1 a measure on X. Given a
Hausdorff topological group G and compact (or, more generally, relatively compact,
measurable) subset K of X, we define £ (X, G) := {y € L2°(X,G) : v|o\x = e},
which is a subgroup of (X, G). We set L (X, G) = {[y] : v € L¥(X,G)} C
L*°(X, G), and equip this subgroup of L (X, G) with the induced topology. Then,
in an obvious way, Lg° (X, G) = L*°(K, G) as a topological group, using the measure
| By on K. When G is a smooth (resp., K-analytic) Lie group, we use the preceding
identification to make Lg° (X, G) a smooth (resp., K-analytic) Lie group (isomorphic
to L (K, G)). It is the goal of this section to equip the group

LZ(X,G) = JL¥(X,G) € L*(X,G)
K

with a natural smooth (resp., K-analytic) Lie group structure (where K ranges
through the set X(X) of compact subsets of X).
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The Spaces L°(X, E)

Let R(X) denote the set of Borel measurable, relatively compact subsets of X. Then
R(X) is directed under inclusion of sets, and contains KX (X) as a co-final subset.

Given a Hausdorff locally convex K-vector space E, the set L (X, E) is a vector
subspace of L (X, E), for each K € R(X). We equip

*x.p= J pXxE= J X5
KER(X) KeX(X)

with the locally convex direct limit topology. Choose an ascending sequence K; C
K, C -+ of compact subsets of X which is co-final in X(X). Then {K, : n € N} isa
co-final subset of R(X) and thus L°(X, E) = lim L (X, E) as a locally convex space.
SetRy := K|, R, := K, \K,,—1 for2 < n € N. ThenK, = U;’Zl R; as a disjoint
union, for each n € N, and thus L (X, E) = @?:1 L*(R;, E). Thus

L®(X, E) = lim @ L®(R;, E) = @D L®(R,, E)
neN j=1 neN

as a locally convex space.

The Lie Group Structure on L°(X, G)

Along the preceding lines, we see that L>°(X, G) = H:eN L*°(R,, G) as an abstract
group, for every topological group G. Hence, if G is a smooth or K-analytic Lie
group, Proposition 7.3 provides a smooth (resp., K-analytic) Lie group structure on
L(X,G) = H:GN L*°(R,, G). Using the cited proposition and Proposition 7.4, we
obtain:

Proposition 8.1 Let X be a hemi-compact Hausdorff space, | be a measure on
(X, B(X)) , and G be a smooth (resp., K-analytic) Lie group. Then there is a unique
smooth (resp., K-analytic) Lie group structure on L2° (X, G) modelled on the locally con-
vex direct limit L® (X, L(G)) = liLQK Ly (X, L(G)) such that
€X(X)
LE(X,¢71): LE(X,V) = LE(X,G), [y] = [¢7 0]

is an isomorphism of smooth (resp., K-analytic) manifolds onto an open subset of
L (X, G), for some chart ¢: U — V C L(G) of G such thate € U and ¢(e) = 0. If G
is a K-analytic BCH-Lie group, then so is L°(X, G), and

LX(X,G) = lim L*¥(K,G)
—
KeX(X)

holds in the category of K-analytic BCH-Lie groups, as well as in the category of K-
analytic Lie groups with IK-analytic exponential functions, and in the category of smooth
Lie groups with smooth exponential functions. ]
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Here (X, V) := L°(X, L(G)) NL*®(X, V).

Remark 8.2 If 1 is inner regular or X is second countable, then the “essential sup-
port” ess supp,, () of a measurable function y: X — G can be defined as the comple-
ment of the largest open subset U of X such that y(x) = e for y-almost all x € U. In
this case, we may interpret L2°(X, G) as the group of equivalence classes of £*°(X, G)-
functions with compact essential support.

As an immediate consequence of Proposition 5.19 and Proposition 7.6, we obtain:

Proposition 8.3  Suppose that X is a hemi-compact Hausdorff topological space, 11 a
measure on (X, B(X)) , and G a real BCH-Lie group such that G exists in the cate-
gory of complex BCH-Lie groups and has a polar decomposition. Then L°(X, G)¢ =
L (X, Ge) in the category of complex Lie groups with complex analytic exponential
functions, and the latter group has a polar decomposition. ]
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