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Lie Groups of Measurable Mappings

Helge Glöckner

Abstract. We describe new construction principles for infinite-dimensional Lie groups. In particular,

given any measure space (X,Σ, µ) and (possibly infinite-dimensional) Lie group G, we construct a Lie

group L∞(X,G), which is a Fréchet-Lie group if G is so. We also show that the weak direct product∏
∗

i∈I Gi of an arbitrary family (Gi)i∈I of Lie groups can be made a Lie group, modelled on the locally

convex direct sum
⊕

i∈I L(Gi).

Introduction

Many popular examples of infinite-dimensional Lie groups arise from finite-dimen-
sional Lie groups G by general construction principles. For instance, for any r ∈
N0 ∪ {∞} and compact smooth manifold K, the group C r(K,G) of G-valued C r-
maps on K is a Lie group [6], [23], [24], [31] and so is C r

c(M,G) when M is a non-

compact, finite-dimensional smooth manifold M [1], [12], [23], [26]. It is remark-
able that, although the G-valued mappings are of class C r only, the group operations
on the mapping groups are analytic, as a consequence of analyticity of the group op-
erations of G (cf. [24, p. 1013]). Indeed, C(K,G) is a smooth (resp., analytic) Lie

group when K is an arbitrary compact topological space and G an arbitrary (possibly
infinite-dimensional) smooth (resp., analytic) Lie group [12], [30]. Having passed
from C r-maps on manifolds to continuous mappings on topological spaces, it is a
natural next step to consider groups of measurable mappings on measure spaces.

Well-known examples are the Banach-Lie groups L∞(X,A)× of invertible elements
in the Banach algebra L∞(X,A) of equivalence classes of essentially bounded measur-
able mappings on a measure space (X,Σ, µ), with values in a finite-dimensional Ba-

nach algebra A. For example, L∞
(

S
1,Mn(C)

)×
is encountered in [31], where it arises

as the commutant of the multiplication operator by id : S
1 → S

1 in GL
(

L2(S
1,C

n)
)

.
We also mention the Lie groups associated with Sobolev completions of loop algebras
(see [1], [31]). In this article, we construct Lie groups L∞(X,G) for arbitrary (not
necessarily finite-dimensional) Lie groups G. The Lie groups L∞(X,G) are natural

generalizations of the unit groups just described, as L∞(X,A)× = L∞(X,A×).

Another way to obtain new groups from given ones is the formation of direct
limits. Construction principles for direct limits (mainly) of finite-dimensional Lie
groups are described in [25]–[27] (see also [28, appendix]) and [13]. Examples of
direct limit Lie groups of infinite-dimensional Lie groups can be found, e.g., in [12],

[20], [21], [26], [27], but no general construction principles or criteria ensuring the
existence of direct limit Lie groups of directed systems of infinite-dimensional Lie
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970 Helge Glöckner

groups (in the strong sense used in this article) seem to be available. As we show, at
least for weak direct products

G =

∏

i∈I

∗
Gi = lim−→

F⊆I,
|F|<∞

∏

i∈F

Gi

no pathologies occur and a Lie group structure can always be constructed, even for

uncountable families (Gi)i∈I of Lie groups. We also show that G has the desired
universal property of direct limit in suitable categories of Lie groups, at least when
each Gi has a globally defined exponential function, which is diffeomorphic on some
zero-neighbourhood (for generalizations, see [16]).

The material is organized as follows.
We begin with a brief description of the precise setting of differential calculus used

in the article (Section 1). Section 2 provides specific results from topology and mea-
sure theory which are essential for our constructions. In Section 3, we first define

L∞(X,G) when G is a Hausdorff topological group. It is the group of equivalence
classes (modulo functions ≡ 1 a.e.) of Borel measurable mappings γ : X → G the
closure of whose image is compact and metrizable. L∞(X,G) is a Hausdorff topo-
logical group in a natural way. If E is a Hausdorff locally convex space, then so is

L∞(X, E). If E is a Fréchet space, then also L∞(X, E) is a Fréchet space; in this case,
a mapping γ : X → E belongs to L∞(X, E) if and only if it is a uniform limit of a
sequence (γn)n∈N of finitely-valued, measurable mappings γn : X → E. In Section 4,
we show that the mapping L∞(X, f ) : L∞(X, E) → L∞(X, F), γ 7→ f ◦ γ is smooth

(resp., K-analytic), for every smooth (resp., K-analytic) mapping f : E → F between
locally convex K-vector spaces (where K ∈ {R,C}), and prove various related results.
These considerations allow us to turn L∞(X,G) into a smooth (resp., K-analytic) Lie
group, for every smooth (resp., K-analytic) Lie group G (Section 5). In Section 6, we

have a closer look at the special case of `∞-spaces. We show that `∞(X, E) need not
be complete (nor quasi-complete) when E is a complete locally convex space (Exam-

ple 6.5); its completion is the space ˜̀∞(X, E) of all functions X → E with relatively
compact image (equipped with the topology of uniform convergence). Given a Lie

group G, it is also possible to turn the group ˜̀∞(X,G) of all G-valued mappings with
relatively compact image into a Lie group. However, measure-theoretic pathologies
prevent us from defining Lie groups “L̃∞(X,G)” based on measurable mappings with
relatively compact image, for general measure spaces (X,Σ, µ): the metrizability con-

dition in the definition of L∞(X,G) is essential for our arguments. In Section 7, we
construct a smooth (resp., K-analytic) Lie group structure on the weak direct prod-
uct

∏∗
i∈I Gi of an arbitrary family (Gi)i∈I of smooth (resp., K-analytic) Lie groups,

modelled on the locally convex direct sum
⊕

i∈I L(Gi). This allows us to turn the

subgroup L∞
c (X,G) ⊆ L∞(X,G) of compactly supported mappings into a smooth

(resp., K-analytic) Lie group modelled on L∞
c

(
X, L(G)

)
, for every Borel measure µ

on a σ-compact locally compact space X (Section 8).

To tackle weak direct products of Lie groups, we provide technical results con-
cerning mappings between locally convex direct sums, which are of independent in-
terest. In [15], they serve as the basis of a theory of “patched” locally convex spaces,
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which ensures differentiability properties for suitable mappings between spaces of
compactly supported sections in vector bundles. Variants are used in [16] to con-

struct Lie group structures on diffeomorphism groups of finite-dimensional smooth
manifolds over totally disconnected local fields.

For further connections between Lie theory and measure theory, cf. also [4].

1 The Setting of Differential Calculus

We use the framework of differential calculus of smooth and analytic mappings be-
tween open subsets of locally convex spaces outlined by J. Milnor [24], slightly gen-
eralized however as we do not presume sequential completeness of the locally convex
spaces. See [10] for a detailed exposition of this generalized framework. Background

material can also be found in [2], [5], [17], [21], [22], and [29]. We briefly recall
various basic definitions and facts.

1.1 Suppose that E and F are Hausdorff real locally convex spaces, U is an open subset
of E, and f : U → F a map. We say that f is of class C0 if it is continuous, and set
d0 f := f . If f is continuous, we say that f is of class C1 if the (two-sided) directional

derivative d f (x, h) := limt→0 t−1
(

f (x + th) − f (x)
)

exists for all (x, h) ∈ U × E
(where t ∈ R \ {0} with |t| sufficiently small), and the mapping d f : U × E → F is
continuous. Recursively, we define f to be of class C k for 2 ≤ k ∈ N if it is of class

Ck−1 and dk−1 f : U × E2k−1−1 → F (having been defined recursively) is a mapping

of class C1 on the open subset U × E2k−1−1 of the locally convex space E2k−1

. We then

set dk f := d(dk−1 f ) : U ×E2k−1 → F. The mapping f is called smooth or of class C∞

if it is of class Ck for all k ∈ N.

1.2 Equivalently, set d(0) f := f and, having defined C j-maps and d( j) f : U × E j → F for
0 ≤ j < k ∈ N, call f a mapping of class Ck if it is of class Ck−1, the limit

d(k) f (x, h1, . . . , hk)

:= lim
t→0

t−1
(

d(k−1) f (x + thk, h1, . . . , hk−1) − d(k−1) f (x, h1, . . . , hk−1)
)

exists for all x ∈ U and h1, . . . , hk ∈ E, and the mapping d(k) f : U × Ek → F
so obtained is continuous. This is the usual definition of C k-maps in the sense of
Michal-Bastiani [6, p. 24], [10, Definition 1.8]. It is equivalent to the definition given
in Subsection 1.1 (which is particularly well-suited for inductive arguments) by [10,

Lemma 1.14].1 For later use, we abbreviate δ(k)
x f (h) := d(k) f (x, h, . . . , h) for x ∈ U ,

h ∈ E.

1.3 Since compositions of C r-maps are of class C r for 0 ≤ r ≤ ∞ [10, Proposition 1.15],
Cr-manifolds modelled on Hausdorff locally convex spaces can be defined in the

1The “iterated differentials” dk f defined above are denoted Dk f in [10]; d(k) f is denoted dk f there.
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972 Helge Glöckner

usual way, using an atlas of charts with C r-transition functions. A smooth Lie group
is a group, equipped with a smooth manifold structure modelled on a Hausdorff lo-

cally convex space, with respect to which the group multiplication and inversion are
smooth mappings.

1.4 Let X be a C r-manifold (where 1 ≤ r ≤ ∞), and f : X → E a mapping of class
Cr into a Hausdorff real locally convex space. Then the tangent map T f : TX →
TE = E × E has the form (x, v) 7→

(
f (x), d f (x; v)

)
for x ∈ X and v ∈ TxX, where

d f := pr2 ◦T f : TX → E. We set d0 f := f , T0X := X, and define dk f : TkX → E
recursively via dk f := d(dk−1 f ) for all k ∈ N, k ≤ r.

1.5 Let X be a Hausdorff topological space, E and F be Hausdorff locally convex spaces,
U an open subset of E, and f : X × U → F be a mapping. Given r ∈ N0 ∪ {∞},

we say that f is partially C r in the second argument if f (x, •) : U → F is a mapping

of class C r for all x ∈ X, and the functions dk
2 f : X × U × E2k−1 → F, defined via

dk
2 f (x, •) := dk

(
f (x, •)

)
for x ∈ X, are continuous for all k ∈ N0, k ≤ r.

1.6 Let E and F be Hausdorff complex locally convex spaces, and U ⊆ E be an open sub-

set. A function f : U → F is called complex analytic or C-analytic if it is continuous
and for every x ∈ U , there exists a 0-neighbourhood V in E such that x + V ⊆ U
and f (x + h) =

∑∞
n=0 βn(h) for all h ∈ V as a pointwise limit, where βn : E → F

is a continuous homogeneous polynomial over C of degree n, for each n ∈ N0 [5,

Definition 5.6].

1.7 A mapping f as in Subsection 1.6 is complex analytic if and only if it is smooth and
d f (x, •) : E → F is complex linear for all x ∈ U [10, Lemma 2.5].

1.8 Let E and F be Hausdorff real locally convex spaces, U be an open subset of E, and
f : U → F be a map. Following Milnor’s lines, we call f real analytic or R-analytic if
it extends to a complex analytic map V → FC on some open neighbourhood V of U

in EC.

Throughout this article, K ∈ {R,C}.

1.9 Compositions of composable K-analytic mappings are K-analytic [10, Proposi-
tion 2.7, Proposition 2.8]. Thus complex (analytic) manifolds and real analytic man-
ifolds, as well as complex (analytic) Lie groups and real analytic Lie groups modelled
on Hausdorff locally convex spaces can be defined in the usual way.

2 Background Material and Preparatory Results

In this section, we assemble background material concerning compact metrizable
spaces, continuous semi-metrics, and measurable mappings.
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Lemma 2.1 If K is a metrizable compact topological space and f : K → X a continu-
ous mapping into a Hausdorff topological space X, then im( f ) = f (K) is a metrizable

compact subset of X.

Proof It is well-known that Q := f (K) is compact; the co-restriction q := f |Q is a
closed surjection and thus a quotient map. Inverse images of points being compact,

[9, Theorem 4.2.13] shows that f (K) is metrizable.

Lemma 2.2 Suppose that K1 and K2 are metrizable compact subsets of a Hausdorff
topological group G. Then K1 ∪K2 and K1 ·K2 are metrizable compact subsets of G, and

so is zK1 when G = E is a topological K-vector space and z ∈ K.

Proof Since K1 and K2 are compact and metrizable, so is their topological direct
sum K1

∐
K2. For i ∈ {1, 2}, let εi : Ki → K1

∐
K2 be the canonical embedding, and

λi : Ki → K1 ∪ K2 be the inclusion map. Let f : K1

∐
K2 → K1 ∪ K2 be the unique

continuous mapping such that f ◦ εi = λi for i ∈ {1, 2}. Then K1 ∪ K2 = im( f ),
and thus K1 ∪ K2 is metrizable by Lemma 2.1.

Note that K1 × K2 is compact and metrizable, and K1 · K2 = m(K1 × K2), where

multiplication m : G×G → G, (x, y) 7→ xy is a continuous mapping. By Lemma 2.1,
the compact set K1 · K2 is metrizable.

Let G = E be a topological K-vector space now and z ∈ K. The map mz : E → E,
v 7→ zv being continuous, zK1 = mz(K1) is compact and metrizable by Lemma 2.1.

Given a semi-metric (i.e., finite quasi-metric) d : X × X → [0,∞[ on a set X,
ε > 0, and x ∈ X, we let Bd(x, ε) := {y ∈ X : d(x, y) < ε} denote the open ball

of radius ε about x with respect to d. A family (di)i∈I of semi-metrics on X is called
directed if, for all i, j ∈ I, there exists k ∈ I such that dk ≥ di and dk ≥ d j pointwise
on X × X.

Lemma 2.3 Let K be a metrizable compact topological space, and (di)i∈I be a directed
family of semi-metrics on K determining its topology. Then the following holds:

(a) If d : K × K → [0,∞[ is any continuous semi-metric on K, and ε > 0, then there
exists i0 ∈ I and δ > 0 such that

(1) (∀x ∈ K) Bdi0
(x, δ) ⊆ Bd(x, ε).

(b) There is a countable subset J ⊆ I such that (d j) j∈ J determines the topology on K.

Proof (a) We define A := {(x, y) ∈ K×K : d(x, y) ≥ ε}, Bi,ρ := {(x, y) ∈ K×K :
di(x, y) ≤ ρ} for i ∈ I, ρ > 0. As K is Hausdorff and the family (di)i∈I determines
the topology of K, we have

⋂
i∈I,ρ>0 Bi,ρ = ∆, where ∆ = {(x, x) : x ∈ K} is the

diagonal in K × K. Thus A and each Bi,ρ are compact subsets of X × X, and

⋂

i∈I,ρ>0

(A ∩ Bi,ρ) = A ∩ ∆ = ∅.
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By the finite intersection property of compact sets, there are finite subsets F ⊆ I
and R ⊆ ]0,∞[ such that

⋂
i∈F,ρ∈R(A ∩ Bi,ρ) = ∅. We choose i0 ∈ I such that

di0
≥ di (pointwise) for all i ∈ F, and set δ := min R. Then A ∩ Bi0,δ = ∅ and thus

Bi0,δ ⊆ {(x, y) ∈ K × K : d(x, y) < ε}, entailing (1).
(b) Let d : K × K → [0,∞[ be a metric defining the topology on K. By (a), for

every n ∈ N we find some in ∈ I and δn > 0 such that, for every x ∈ X, we have

Bdin
(x, δn) ⊆ Bd(x, 2−n). Set J := {in : n ∈ N}. Then J is countable, and it readily

follows from the definition of the elements in that the family (d j) j∈ J of continuous
semi-metrics on K determines the topology on K.

Remark 2.4 Recall in this connection that a semi-metric d : G × G → [0,∞[ on
a group G is left invariant if d(gx, g y) = d(x, y) for all x, y, g ∈ G. Then q(x) :=
d(x, e) (where e ∈ G is the identity element) defines a semi-norm on G, i.e., q : G →
[0,∞[ satisfies q(e) = 0, q(x) = q(x−1), and q(xy) ≤ q(x) + q(y), for all x, y ∈ G.

Conversely, any semi-norm q : G → [0,∞[ on G gives rise to a left invariant semi-
metric

(2) dq : G × G → [0,∞[ , dq(x, y) := q(y−1x).

Let Γ be a directed set of semi-norms on a group G and assume that, for all x ∈ G,
q ∈ Γ and ε > 0, there exists p ∈ Γ and δ > 0 such that q(xyx−1) < ε for all
y ∈ G satisfying p(y) < δ (the latter condition is vacuous if G is abelian). Then there

exists a coarsest topological group topology on G making all q ∈ Γ continuous (the
topology defined by the family of semi-metrics (dq)q∈Γ); the sets q−1([0, ε[) (where
q ∈ Γ, ε > 0) form a basis for its filter of identity neighbourhoods. The topology
of any topological group can be obtained in this way, for a suitable family Γ (cf. [18,

Theorem 8.2]).

If H is a Hausdorff topological space, we let B(H) denote its Borel σ-algebra,
generated by the collection of open subsets of H. Measurability of functions on H or
into H always refers to the measurable space

(
H,B(H)

)
.

Lemma 2.5 Suppose (γn)n∈N is a sequence of measurable functions γn : X → H from
a measurable space (X,Σ) to a Hausdorff topological space H, converging pointwise to
a function γ : X → H. Suppose that M := im γ is separable, and suppose there exists

a continuous semi-metric d on H such that δ := d|M×M is a metric on M defining its
topology. Then γ is measurable.

Proof Since B(M) = {ω ∩ M : ω ∈ B(H)} (cf. [3, Section 7, Exercise 2]), we

only need to show that the co-restriction γ|M : X → M is measurable. Let D be a
countable dense subset of M. Every open subset of M being a countable union of
balls Bδ(x, 1

k
) for suitable x ∈ D and k ∈ N, the Borel σ-algebra B(M) is generated

by the sets Bδ(x, 1
k
). It therefore is initial with respect to the family

(
δ(x, •)

)
x∈D

of

mappings δ(x, •) : M → [0,∞[. Thus γ is measurable if and only if δ(x, •) ◦ γ|M is
measurable for each x ∈ D. Due to the continuity of d(x, •), we have d(x, •) ◦ γ =

limn→∞ d(x, •) ◦ γn pointwise; by [33, Theorem 1.14], d(x, •) ◦ γ = δ(x, •) ◦ γ|M is
measurable, as required.
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Proposition 2.6 Let (γn)n∈N be a sequence of measurable functions γn : X → H from
a measurable space (X,Σ) to a completely regular topological space H, converging point-

wise to a function γ : X → H. If K := im γ is compact and metrizable, then γ is
measurable.

Proof Since H is completely regular, its topology is determined by a set Γ of con-
tinuous semi-metrics (see [35, Section II.2.7, Satz 1 and Satz 2]). Lemma 2.3 entails
that there is a sequence (di)i∈N in Γ such that (di |K×K )i∈N defines the topology of K.

Then d : H × H → [0, 1], d(x, y) :=
∑∞

i=1 2−i di (x,y)
1+di (x,y)

is a continuous semi-metric

on H whose restriction to K × K is a metric on K defining the topology of K. By
Lemma 2.5, γ is measurable.

Lemma 2.7 If X and Y are Hausdorff topological spaces and X is second countable,

then the Borel σ-algebra B(X × Y ) of the direct product X × Y of topological spaces
coincides with the product σ-algebra B(X) ⊗ B(Y ).

Proof The inclusion B(X) ⊗ B(Y ) ⊆ B(X × Y ) holds for any Hausdorff spaces X
and Y , the coordinate projections being continuous and thus measurable with respect

to the Borel σ-algebras. Now if X is second countable, we let C be a countable basis
of open sets for the topology of X. Let U ⊆ X × Y be an open subset. For any p =

(x, y) ∈ U , we find V p ∈ C and an open subset W p ⊆ Y such that p ∈ V p×W p ⊆ U .
Given V ∈ C , we set PV := {p ∈ U : V = V p}, and set WV :=

⋃
p∈PV

W p.

Then V and WV are open subsets of X, resp., Y and thus Borel measurable, and so
V ×WV ∈ B(X)⊗B(Y ). Thus also U =

⋃
V∈C V ×WV is a member of B(X)⊗B(Y ),

being a countable union of members of B(X) ⊗ B(Y ). We deduce that B(X × Y ) ⊆
B(X) ⊗ B(Y ).

As a consequence:

Lemma 2.8 Let (X,Σ) be a measurable space, Y1,Y2, . . . ,Yn and Z be Hausdorff
topological spaces (where n ∈ N), f : Y1 × · · · × Yn → Z be a continuous mapping,

and γi : (X,Σ) →
(

Yi ,B(Yi)
)

be a measurable mapping such that Ki := im(γi) is a
metrizable compact subset of Y i , for i = 1, . . . , n. Then

f ◦ (γ1, . . . , γn) : X → Z, x 7→ f
(
γ1(x), . . . , γn(x)

)

is measurable as a mapping from (X,Σ) to
(

Z,B(Z)
)

.

Proof It is easy to see that (γ1, . . . , γn) is measurable as a mapping into K1 × · · · ×
Kn, equipped with the product σ-algebra B(K1) ⊗ · · · ⊗ B(Kn). Since metrizable
compact spaces are second countable, Lemma 2.7 gives B(K1) ⊗ · · · ⊗ B(Kn) =

B(K1 × · · · × Kn). Since f |K1×···×Kn
: K1 × · · · × Kn → Z is continuous and thus

Borel measurable, we deduce that the composition f ◦ (γ1, . . . , γn) = f |K1×···×Kn
◦

(γ1, . . . , γn)|K1×···×Kn is measurable.
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3 The Topological Groups L∞(X,G) and L∞(X,G); The Spaces
L
∞(X, E) and L∞(X, E)

Throughout this section, G denotes a Hausdorff topological group, E a Hausdorff,

locally convex topological K-vector space, and (X,Σ, µ) an arbitrary (not necessarily
σ-finite) measure space. We shall define a Hausdorff topological group L∞(X,G)
and Hausdorff locally convex space L∞(X, E), and study some of their properties.

General Convention When considering topological groups as uniform spaces, we
shall always refer to the left uniform structure (as in [18, Definition 4.11]).

Definition 3.1 We let L∞(X,G) be the set of all mappings γ : X → G such that

(a) γ is measurable as a mapping (X,Σ) →
(

G,B(G)
)

, and
(b) the closure of im(γ) is a metrizable, compact subset of G.

Remark 3.2 It follows readily from Lemma 2.2 and Lemma 2.8 that L∞(X,G) is a
subgroup of GX . For example, if γ1, γ2 ∈ L∞(X,G), then γ1 · γ2 = m ◦ (γ1, γ2)

in terms of the continuous multiplication map m : G × G → G, whence γ1 · γ2 is
measurable (Lemma 2.8). Its image being contained in the metrizable compact set
im(γ1) · im(γ2) (Lemma 2.2), it has metrizable compact closure.

Remark 3.3 A particularly important special case of the preceding definition is ob-

tained by choosing G = E; then L
∞(X, E) is a vector subspace of EX .

For many familiar locally convex spaces E, compact subsets are automatically
metrizable, making it unnecessary to require metrizability of im(γ) in the definition

of L
∞(X, E) for such spaces:

Proposition 3.4 Suppose that E satisfies at least one of the following conditions:

(a) E is metrizable (e.g., E is a Fréchet space or a Banach space);

(b) E = lim−→ En is the locally convex direct limit of an ascending sequence E1 ⊆ E2 ⊆
· · · of metrizable locally convex spaces, such that En is a closed vector subspace of
En+1 and equipped with the induced topology (e.g., E might be any LF-space);

(c) E = (F ′,T) is the dual of some separable locally convex space F, equipped with any

locally convex vector topology T which is finer than the weak-∗-topology.

Then every compact subset of E is metrizable.

Proof (a) is trivial.

(b) If K is a compact subset of E, then K is contained in En for some n ∈ N by [34,
Assertion 6.5]. As E induces the given topology on En (loc. cit., Assertion 6.4) and En

is metrizable, its subspace K is metrizable.
(c) Let K be a compact subset of E = (F ′,T), and D be a countable dense subset

of F. Then the family (dx)x∈D of continuous semi-metrics dx : K × K → [0,∞[,
dx(λ1, λ2) := |λ1(x) − λ2(x)| determines a Hausdorff topology O on K which is
coarser than the given compact topology, and thus coincides with the latter. The
family (dx)x∈D being countable, O is metrizable.
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In particular, (c) applies if E = F ′
b is the strong dual of a separable locally con-

vex space (where the index “b” indicates the topology of uniform convergence on

bounded sets).

Example 3.5 Let Ω be an open subset of R
n. Then the space of test functions D(Ω)

is a separable LF-space. By Proposition 3.4, every compact subset of D(Ω) is metriz-
able, and so is every compact subset of the distribution space D ′(Ω) := D(Ω) ′b.

Recall that the essential supremum of a non-negative measurable function f : X →
[0,∞[ on the measure space (X,Σ, µ) is defined as

ess supµ( f ) := min{sup f (X \ A) : A ∈ Σ s.t. µ(A) = 0} ∈ [0,∞].

3.6 Let Γ be a set of continuous semi-norms on G defining its topology (see Remark 2.4);
if G = E is a locally convex K-vector space, we assume that each q ∈ Γ is a semi-norm
on E considered as a vector space, i.e., furthermore q(zx) = |z| · q(x) for all z ∈ K,
x ∈ E.

Given q ∈ Γ, we define q̃ : L∞(X,G) → [0,∞[ via

q̃(γ) := ess supµ(q ◦ γ) for γ ∈ L
∞(X,G).

We set N :=
{
γ ∈ L∞(X,G) : µ

(
γ−1(G \ {e})

)
= 0

}
.

3.7 It is clear that q̃ is a semi-norm on the group L
∞(X,G), for all q ∈ Γ, and clearly N is

a normal subgroup of L∞(X,G). Given q ∈ Γ, γ ∈ L∞(X,G) and ε > 0, in view of
the compactness of K := im γ there exists p ∈ Γ and δ > 0 such that q(xyx−1) ≤ ε
for all x ∈ K and y ∈ G such that p(y) ≤ δ. As a consequence, q̃(γηγ−1) ≤ ε for all

η ∈ L
∞(X,G) such that p̃(η) ≤ δ. We give L

∞(X,G) the (usually non-Hausdorff)
group topology determined by the family of semi-norms (q̃)q∈Γ (see Remark 2.4). It
is easily verified that the topology on L∞(X,G) is independent of the choice of Γ in
Subsection 3.6.

3.8 If G = E, then each q̃ is a semi-norm on L∞(X, E) as a vector space, whence the

semi-norms q̃ give rise to a locally convex vector topology on L
∞(X, E). In this case,

N is the set of those γ ∈ L∞(X, E) vanishing µ-almost everywhere, which is a vector
subspace of L∞(X, E)

Then we have:

Lemma 3.9 Let γ ∈ L∞(X,G). Then γ ∈ N if and only if q̃(γ) = 0 for all q ∈ Γ.
Thus N = {e} in L∞(X,G).

Proof If γ ∈ N , then apparently q̃(γ) = 0 for all q ∈ Γ.
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Conversely, assume that γ ∈ L∞(X,G) and q̃(γ) = 0 for all q ∈ Γ. The topology
on the compact metrizable set K := im(γ) ∪ {e} ⊆ G is defined by the family of

semi-metrics (dq)q∈Γ, where

dq : K × K → [0,∞[ , dq(x, y) := q(y−1x).

By Lemma 2.3, the topology on K is determined by (dq)q∈ J , for some countable subset

J ⊆ Γ. As q̃(γ) = 0 for q ∈ J, we have µ(Aq) = 0, where Aq :=
{

x ∈ X : q
(
γ(x)

)
6=

0
}

. As A :=
⋃

q∈ J Aq is a countable union ofµ-null sets, we have µ(A) = 0. However,

as (dq)q∈ J determines the topology on im(γ)∪{e}, we have A = {x ∈ X : γ(x) 6= e}.
Thus γ ∈ N .

The remainder is obvious.

The hypothesis that the compact sets im(γ) be metrizable is essential for the va-

lidity of Lemma 3.9, as the following example shows.

Example 3.10 Given an uncountable set X, let Σ := P(X) be its power set and
define a measure µ : Σ → [0,∞] via µ(A) := 0 for countable subsets A ⊆ X and

µ(A) := ∞ for uncountable ones. Let E := R
X , equipped with the product topology,

and consider the function

γ : X → E, x 7→ δx,• = 1{x}.

Then im(γ) ⊆ {0, 1}X and thus im(γ) is compact. As Σ = P(X), γ is measurable.
The semi-norms qx : R

X → [0,∞[, qx( f ) := | f (x)| (for x ∈ X) determine the locally
convex topology on E = R

X , and as qx ◦γ = δx,• vanishes outside a finite set and thus
µ-almost everywhere, we have q̃x(γ) = 0, for all x ∈ X. However, γ−1(E \ {0}) = X

is a set of infinite (and thus non-zero) measure.

Definition 3.11 We define L∞(X,G) := L∞(X,G)/N and give L∞(X,G) the quo-
tient topology, which makes it a Hausdorff topological group. If G = E, apparently
L∞(X, E) is a Hausdorff locally convex space.

Remark 3.12 In the present section, we strictly distinguish functions γ ∈ L∞(X,G)
and the associated equivalence classes [γ] := γN ∈ L∞(X,G). Following the general
custom, for convenience of formulations we shall occasionally abandon this strict

distinction in later sections, when no confusion can arise.

For q ∈ Γ, the continuous semi-norm q̃ on L∞(X,G) gives rise to a continuous
semi-norm on L∞(X,G), also denoted q̃, via q̃([γ]) := q̃(γ) for γ ∈ L∞(X,G).

Definition 3.13 Given an open subset U ⊆ G, we define

L
∞(X,U ) := {γ ∈ L

∞(X,G) : im γ ⊆ U} ⊆ L
∞(X,G) and

L∞(X,U ) := {[γ] : γ ∈ L
∞(X,U )} ⊆ L∞(X,G).
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Lemma 3.14

(a) L∞(X,U ) is open in L∞(X,G), for every open subset U ⊆ G.
(b) When U ranges through the open identity neighbourhoods of G, the sets L∞(X,U )

form a basis for the filter of identity neighbourhoods of L∞(X,G).

Proof (a) If f ∈ L∞(X,U ), there exists γ ∈ L
∞(X,G) such that [γ] = f and

K := γ(X) ⊆ U . The set K being compact and U being open, there exists an open
identity neighbourhood V in G such that KV ⊆ U . There is q ∈ Γ and ε > 0 such
that q−1([0, ε[) ⊆ V . If h ∈ L∞(X,G) such that q̃(h) < ε, there exists η ∈ L∞(X,G)

such that [η] = h and sup q
(
η(X)

)
< ε. Noting that sup q

(
η(X)

)
= sup q

(
η(X)

)
,

we deduce that the compact set M := η(X) is contained in V . Thus im(γη) ⊆ KM ⊆
KV ⊆ U , and thus f h ∈ L∞(X,U ). We have shown that f q̃−1([0, ε[) = Bdq̃

( f , ε) ⊆
L∞(X,U ), which is a neighbourhood of f .

(b) The assertion easily follows from (a) and the observation that

L∞
(

X, q−1([0, ε[)
)

= q̃−1([0, ε[),

for every q ∈ Γ and ε > 0.

If U is an open subset of E, we shall consider the open subset L∞(X,U ) ⊆
L∞(X, E) as an open K-analytic submanifold of L∞(X, E).

Lemma 3.15 If φ : G → H is a continuous homomorphism between Hausdorff topo-
logical groups, then also L∞(X, φ) : L∞(X,G) → L∞(X,H), [γ] 7→ [φ ◦ γ] is a con-

tinuous homomorphism.

Proof In view of Lemma 2.1, we have φ ◦ γ ∈ L∞(X,H) for all γ ∈ L∞(X,G).
Clearly [φ ◦ γ] only depends on [γ], and L∞(X, φ) is a homomorphism. Given an

open identity neighbourhood U in H, the homomorphism L∞(X, φ) takes the open
identity neighbourhood L∞

(
X, φ−1(U )

)
into L∞(X,U ). In view of Lemma 3.14,

this means that L∞(X, φ) is continuous at the identity and thus continuous.

As a consequence:

Lemma 3.16 L∞(X,G×H) ∼= L∞(X,G)×L∞(X,H) canonically, for all Hausdorff
topological groups G and H. If E is a real locally convex space, then L∞(X, E)C =

L∞(X, EC).

For the remainder of this section, we investigate completeness properties of
L∞(X,G), and alternative characterizations of the functions γ ∈ L∞(X,G).

Definition 3.17 F(X,G) denotes the group of all measurable mappings γ : X → G
with finite image.
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Proposition 3.18 For every γ ∈ L∞(X,G), there exists a sequence (γn)n∈N in
F(X,G) converging uniformly to γ (and thus also with respect to the topology on

L
∞(X,G)). In particular, the group F(X,G) of all finitely-valued measurable map-

pings is dense in L∞(X,G). If, conversely, γ : X → G is a uniform limit of a sequence
(γn)n∈N in F(X,G) (or, more generally, in L∞(X,G)), then im γ is pre-compact; hence
if im γ is compact and metrizable, then γ ∈ L∞(X,G).

Proof Given γ ∈ L∞(X,G), set K := im(γ). Then K is a metrizable compact
subset of G. The family (dq)q∈Γ of semi-metrics dq : K × K → [0,∞[, dq(v,w) :=
q(v−1w) determines the topology on K. By Lemma 2.3 and since Γ is directed, we

find an ascending sequence q1 ≤ q2 ≤ · · · of semi-norms qn ∈ Γ such that (dn)n∈N

determines the topology on K, where dn := dqn
. Given v ∈ K and ε > 0, let Bdn

(v, ε)
be the open dn-ball of radius ε around v in K. Due to compactness, for every n ∈ N

we have K =
⋃m(n)

i=1 Bdn
(vn

i ,
1
n

) for finitely many elements vn
1 , . . . , v

n
m(n) ∈ K. Then

An,i := Bdn
(vn

i ,
1
n

) \
i−1⋃

j=1

Bdn
(vn

j ,
1
n

)

is a measurable subset of K, for every n ∈ N, i = 1, . . . ,m(n). Since K = An,1 ∪ · · · ∪
An,m(n) is a disjoint union, and im γ ⊆ K, setting γn(x) := vn

i for x ∈ γ−1(An,i) we
obtain a function γn ∈ F(X,G). By definition, im γn ⊆ K. We claim that γn → γ
uniformly as n → ∞. To see this, let q ∈ Γ and ε > 0. By Lemma 2.3, there exists
k ∈ N and δ > 0 such that

(∀v,w ∈ K) dk(v,w) < δ ⇒ dq(v,w) < ε.

We find n0 ≥ k such that 1
n0
< δ. For every n ∈ N such that n ≥ n0 and x ∈ X, there

exists a unique i ∈ {1, . . . ,m(n)} such that γ(x) ∈ An,i , and then γn(x) = vn
i . As

An,i ⊆ Bdn
(vn

i ,
1
n

), we deduce that dk

(
γn(x), γ(x)

)
≤ dn

(
γn(x), γ(x)

)
< 1

n
< δ and

thus dq

(
γn(x), γ(x)

)
< ε. Consequently, sup

{
dq

(
γn(x), γ(x)

)
: x ∈ X

}
≤ ε. Thus

γn → γ uniformly indeed. Furthermore, q
(
γ(x)−1γn(x)

)
= dq

(
γn(x), γ(x)

)
< ε

entails that q̃(γ−1γn) ≤ ε for all n ≥ n0, whence γn → γ in L∞(X,G).
To prove the partial converse, suppose that γ : X → G is the uniform limit of a

sequence (γn)n∈N in L
∞(X,G). Given an identity neighbourhood U in G, choose an

identity neighbourhood V in G such that VV ⊆ U . As γn → γ uniformly, there exists
n ∈ N such that, for all x ∈ X, γ(x) ∈ γn(x)V . Now im γn being compact, we have
im γn ⊆ FV for some finite subset F of G. Then im γ ⊆ (im γn)V ⊆ FVV ⊆ FU ;

we have shown that im γ is pre-compact.
In the preceding situation, assume in addition that im γ is compact and metriz-

able. The Hausdorff group G being completely regular [18, Theorem 8.4], Proposi-
tion 2.6 shows that γ is measurable. Thus γ ∈ L∞(X,G).

Corollary 3.19 If every pre-compact subset of G has metrizable, compact closure, then
a function γ : X → G belongs to L∞(X,G) if and only if it is the uniform limit of a
sequence (γn)n∈N of finitely-valued, measurable functions γn ∈ F(X,G).
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Remark 3.20 Note that the hypotheses of Corollary 3.19 are satisfied for any Fréchet
space, and for any LF-space (cf. [34, Section II.6.5]). For example, they are satisfied

for G = D(Ω), for any open subset Ω of R
n. They are also satisfied for G = D ′(Ω),

since by completeness every pre-compact subset of D ′(Ω) has compact closure, and
the latter is metrizable (see Example 3.5).

Proposition 3.21 If G is metrizable, then so is L∞(X,G). If G is metrizable and
complete, then so is L∞(X,G). If E is a Fréchet space (resp., a Banach space), then so is
L∞(X, E).

Proof If G is metrizable (resp., if E is normable), we can choose a continuous
group-norm (resp., vector space norm) q on G (resp., E) determining the group
topology (resp., locally convex vector topology), and then q̃ is a group-norm (resp.,

vector space norm) on L∞(X,G) (resp., L∞(X, E)) determining its group topology
(resp., locally convex vector topology), whence the latter group is metrizable (resp., a
normed space).

Thus, it only remains to assume that G is complete and metrizable, and show that

every Cauchy sequence (gn)n∈N in L∞(X,G) converges. For every n ∈ N, choose γn ∈
L∞(X,G) such that [γn] = gn. Let q be a continuous norm on G determining the
group topology. Then, for all n,m ∈ N, there exists An,m ∈ Σ such that µ(An,m) = 0
and

q̃(g−1
m gn) = q̃(γ−1

m γn) = sup
(

q ◦ (γ−1
m γn)

)
(X \ An,m).

The set N
2 being countable, we have A :=

⋃
n,m∈N

An,m ∈ Σ, and µ(A) = 0. Then
[ηn] = [γn] = gn for ηn ∈ L∞(X,G) defined via ηn|X\A := γn|X\A and ηn|A := e. We

have

(3) (∀n,m ∈ N) q̃(g−1
m gn) = sup

(
q ◦ (η−1

m ηn)
)

(X),

entailing that
(
ηn(x)

)
n∈N

is a Cauchy sequence in G for each x ∈ X, and thus con-
vergent to some η(x) ∈ G. We claim that ηn → η uniformly. In fact, let ε > 0. There

is n0 ∈ N such that q̃(g−1
m gn) < ε for all n,m ≥ n0. In view of equation (3), we then

have q
(
ηm(x)−1ηn(x)

)
< ε for all x ∈ X and n,m ≥ n0. Letting m → ∞, we deduce

that
(∀n ≥ n0) (∀x ∈ X) q

(
η(x)−1ηn(x)

)
≤ ε.

Thus ηn → η uniformly indeed. By Proposition 3.18, im η is pre-compact. Thus,
being a closed, pre-compact subset of the complete uniform space G, the set im η is
compact; since G is metrizable, so is im η. By Proposition 3.18, η ∈ L∞(X,G). As
ηn → η uniformly, we have gn = [ηn] → [η] a fortiori.

Thus, if E is a Fréchet space, then L∞(X, E) is the completion of F(X, E) (modulo
functions vanishing µ-almost everywhere), as a consequence of Proposition 3.18 and

Proposition 3.21. As a special case of Corollary 3.19, we have:

Remark 3.22 If E is a Fréchet space, then a function γ : X → E belongs to L∞(X, E)
if and only if there exists a sequence (γn)n∈N of finitely-valued measurable functions
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converging uniformly to γ. Thus, we have a close conceptual similarity between the
L∞(X, E)-functions defined here and the so-called strongly measurable functions

with values in a Banach space E, which can be characterized as uniform limits of
countably-valued measurable functions (almost everywhere), see [19, Corollary 1 to
Theorem 3.5.3].2

Remark 3.23 Further motivation for our specific definition of L∞(X, E) came from
[37]. In this paper, differentiability properties of mappings of the type Em

• (X, E1) →
Em
• (X, E2), γ 7→ f ◦ γ are analyzed for smooth maps f : E1 → E2 between quasi-

complete locally convex spaces (or open subsets thereof), where Em
• (X, Ei) denotes

the space of m times k-continuously differentiable Ei-valued mappings with relatively
compact image on an open subset X of a locally convex space F. Our most important
technical tools (to be developed in the next section) are analogues for L∞-spaces of

Thomas’ results.

4 Differentiable Mappings Between L∞-Spaces

In order to turn the topological group L∞(X,G) into a Lie group when G is a Lie
group, we need to understand differentiability properties of certain types of map-
pings on L∞

(
X, L(G)

)
(and open subsets thereof).

As before, (X,Σ, µ) denotes an arbitrary measure space.

Proposition 4.1 Suppose that E and F are locally convex Hausdorff spaces, U ⊆ E
an open subset, P a Hausdorff topological space, and σ : X → P a measurable mapping

such that K := im(σ) is compact and metrizable. Let furthermore f̃ : P × U → F be

a mapping which is partially Ck in the second argument for some k ∈ N0 ∪ {∞}, and
define

f : = f̃ ◦ (σ × idU ) : X ×U → F.

Then

f∗ : L∞(X,U ) → L∞(X, F), f∗([γ]) := [ f ◦ (idX , γ)]

is a mapping of class Ck.

Proof We may assume that k ∈ N0. The definition of f∗[γ] makes sense, since

f∗γ := f ◦ (idX , γ) = f̃ ◦ (σ, γ) ∈ L
∞(X, F) as a consequence of Lemma 2.1 and

Lemma 2.8, for any γ ∈ L∞(X,U ); furthermore, apparently [ f ◦ (idX , γ)] only
depends on [γ].

Step 1: f∗ is continuous. To see this, suppose that γ ∈ L∞(X, E) such that M :=
im γ ⊆ U , and suppose that V is an open zero-neighbourhood in F. Let V1 ⊆ V be a

2Apparently, if we replace µ by its Lebesgue completion µ, we obtain an isomorphic space L∞(X, E),

and then γ : X → E is an L∞(X, E)-function on (X,Σ, µ) if and only if it is a uniform limit of finitely-
valued measurable functions on (X,Σ) µ-almost everywhere. So, for our purposes nothing is lost by
considering measurable functions on (X,Σ) only instead of µ-measurable ones. Rather, we profit from
shorter proofs.
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closed zero-neighbourhood in F. Exploiting the compactness of K and M, we easily
find an open zero-neighbourhood W ⊆ E such that M + W ⊆ U , and such that

(∀p ∈ K, y ∈ M) f̃
(
{p} × (y + W )

)
⊆ f̃ (p, y) + V1.

Now if η ∈ L∞(X,W ), then im(γ + η) ⊆ M + im η ⊆ M + W ⊆ U , and

(
f∗(γ + η)

)
(x) = f̃

(
σ(x), γ(x) + η(x)

)
∈ f̃

(
σ(x), γ(x)

)
+ V1 = ( f∗γ)(x) + V1

for all x ∈ X, entailing that im
(

f∗(γ + η) − f∗γ
)

⊆ V1 ⊆ V and therefore

f∗(γ + η) − f∗γ ∈ L
∞(X,V ). We have shown that f∗ takes [γ] + L∞(X,W ) into

f∗[γ] + L∞(X,V ). In view of Lemma 3.14 (b), the continuity of f∗ follows.

Now suppose that k ≥ 1.

Step 2: f∗ is of class C1. Let γ ∈ L
∞(X,U ) and η ∈ L

∞(X, E) be given. The sets
M := im γ ⊆ U and N := im η being compact, there is ε > 0 such that

im γ + [−ε, ε] · im η ⊆ U .

Then

1
h

(
f∗(γ + hη) − f∗γ

)
(x) =

1
h

(
f̃
(
σ(x), γ(x) + hη(x)

)
− f̃

(
σ(x), γ(x)

))

=

∫ 1

0

d2 f̃
(
σ(x), γ(x) + thη(x), η(x)

)
dt

=

∫ 1

0

H
(
σ(x), γ(x), η(x), th

)
dt

(4)

for all h ∈ [−ε, ε] and x ∈ X, where H : K × M × N × [−ε, ε] → F is defined via

H(u, v,w, s) := d2 f̃ (u, v + sw,w)

for u ∈ K, v ∈ M, w ∈ N , and s ∈ [−ε, ε]. Given an open zero-neighbourhood V
in F, we choose a closed, convex, symmetric zero-neighbourhood W ⊆ V of F. In
view of the compactness of K × M × N , we find δ ∈ ]0, ε] such that H(u, v,w, s) −
H(u, v,w, 0) ∈ W for all u ∈ K, v ∈ M, w ∈ N , and s ∈ ]−δ, δ[. Using equation (4),

we deduce that

h−1
(

f∗(γ + hη) − f∗γ
)

(x) − H
(
σ(x), γ(x), η(x), 0

)
∈ W

for all h ∈ ]−δ, δ[ and x ∈ X. Note that

H
(
σ(x), γ(x), η(x), 0

)
= (d2 f̃ )

(
σ(x), γ(x), η(x)

)

here. Thus

im
(

h−1
(

f∗(γ + hη) − f∗γ
)
− (d2 f̃ ) ◦ (σ, γ, η)

)
⊆ W ⊆ V,
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and thus h−1
(

f∗(γ + hη)− f∗γ
)
− (d2 f̃ ) ◦ (σ, γ, η) ∈ L∞(X,V ) for all h ∈ ]−δ, δ[.

We deduce that h−1
(

f∗(γ + hη) − f∗γ
)
→ d2 f̃ ◦ (σ, γ, η) = g∗(γ, η) in L∞(X, F)

as h → 0, where g := d2 f̃ ◦ (σ × idU×E) (cf. Remark 3.12). Thus d( f∗) exists, and is
given by

(5) d( f∗) = g∗ : L∞(X,U × E) → L∞(X, F),

identifying L∞(X,U )×L∞(X, E) with L∞(X,U×E) ⊆ L∞(X, E2) (see Lemma 3.16).

Note that g is obtained from the function g̃ := d2 f̃ : P × (U × E) → F (which is
partially Ck−1 in the second argument) in the same way in which f is obtained from

f̃ . Thus Step 1, applied to g, shows that d( f∗) = g∗ is continuous.

Step 3: Induction. Suppose the proposition holds for k − 1 in place of k ≥ 1. Step 2
shows that f is of class C1, with d( f∗) = g∗ of class Ck−1 by the induction hypothesis.
Thus f is of class Ck.

Corollary 4.2 Suppose that E and F are complex locally convex Hausdorff spaces,
U ⊆ E an open subset, P a Hausdorff topological space, and σ : X → P a measurable

mapping such that K := im(σ) is compact and metrizable. Let f̃ : P × U → F be a

mapping which is partially C∞ in the second argument and such that f̃ (p, •) : U → F

is complex analytic for each p ∈ P. Define f := f̃ ◦ (σ × idU ) : X × U → F. Then
f∗ : L∞(X,U ) → L∞(X, F) is complex analytic.

Proof By Proposition 4.1 and its proof, f∗ is smooth and d f∗(γ, η) = d2 f̃ ◦(σ, γ, η),

which is complex linear in η as f̃ (p, •) is complex analytic for each p ∈ P. By Sub-

section 1.7, f∗ is complex analytic.

Proposition 4.3 Suppose that E and F are Hausdorff real locally convex spaces, U ⊆
E an open zero-neighbourhood, P a real analytic manifold, modelled on a Hausdorff

locally convex space Z, and σ : X → P a measurable mapping such that K := im(σ)

is compact and metrizable. Given a real analytic mapping f̃ : P × U → F, define

f := f̃ ◦ (σ× idU ) : X ×U → F. Then f∗ : L∞(X,U ) → L∞(X, F) is real analytic on
L∞(X,Q) for some open zero-neighbourhood Q ⊆ U in E.

Proof As P is a real analytic manifold, for every a ∈ P we find a diffeomorphism
φa : Wa → Pa of real analytic manifolds from an open zero-neighbourhood Wa in Z

onto an open neighbourhood Pa of a in P such that φa(0) = a. Then the mapping

θa : Wa × U → F, θa(w, u) := f̃
(
φa(w), u

)
is real analytic and hence extends to a

complex analytic mapping θ̃a : Ea → FC, defined on an open neighbourhood Ea of
Wa × U in ZC × EC. Shrinking Wa if necessary, we may assume that Ea contains a

0-neighbourhood of the form W ′
a ×(Qa + iQ ′

a) for an open neighbourhood W ′
a of Wa

in ZC, an open zero-neighbourhood Qa ⊆ U in E, and an open, symmetric, convex
zero-neighbourhood Q ′

a in E. As im σ is compact, we have im σ ⊆
⋃

a∈A Pa =: P ′

for some finite subset A of P. Then Q ′ :=
⋂

a∈A Q ′
a is an open, symmetric, convex
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zero-neighbourhood in E, and Q :=
⋂

a∈A Qa is an open zero-neighbourhood. If

a, a ′ ∈ A, then for every p ∈ Pa ∩ Pa ′ , the prescriptions x 7→ θ̃a

(
φ−1

a (p), x
)

and

x 7→ θ̃a ′

(
φ−1

a ′ (p), x
)

define complex analytic mappings Q + iQ ′ → FC which coin-

cide on Q (where they coincide with f̃ (p, •)|Q), and which therefore coincide (cf. [5,

Proposition 6.6]). We abbreviate Q1 := Q + iQ ′. By the preceding,

h̃ : P ′ × Q1 → FC, h̃(p, x) := θ̃a

(
φ−1

a (p), x
)

if p ∈ Pa, where a ∈ A

is a well-defined smooth mapping such that h̃(p, •) : Q1 → FC is complex analytic

for each p ∈ P ′. Define h := h̃ ◦ (σ × idQ1
), X × Q1 → FC. By Corollary 4.2,

the mapping h∗ : L∞(X,Q1) → L∞(X, FC) = L∞(X, F)C is complex analytic. Thus

f∗|L∞(X,Q) = h∗

∣∣ L∞(X,F)
L∞(X,Q) is real analytic.

Corollary 4.4 Suppose that E and F are Hausdorff locally convex K-vector spaces, U
an open zero-neighbourhood in E, and f : U → F a smooth (resp., K-analytic) map-

ping. Then

L∞(X, f ) : L∞(X,U ) → L∞(X, F), [γ] 7→ [ f ◦ γ]

is a smooth (resp., K-analytic) mapping, and dL∞(X, f ) = L∞(X, d f ).

Proof Let {0} be a manifold consisting of single point. Define h̃ : {0} × U → F,

h̃(0, u) := f (u) and h := h̃ ◦ (0 × idU ) : X × U → F, h(x, u) = f (u). Then
L∞(X, f ) = h∗.

If f is smooth, then h̃ is smooth and thus partially C∞ in the second argument,

and thus the hypotheses of Proposition 4.1 are satisfied for h̃ (with k = ∞). Thus
L∞(X, f ) = h∗ is smooth, and has the asserted derivative in view of (5).

If f is complex analytic, then h̃ is complex analytic, whence the hypotheses of

Corollary 4.2 are satisfied for h̃, and thus h∗ is complex analytic.

If f is real analytic, there exists a complex analytic function g : Ũ → FC, de-
fined on an open neighbourhood Ũ of U in EC. By the preceding, the mapping

L∞(X, g) : L∞(X, Ũ ) → L∞(X, FC) = L∞(X, F)C is complex analytic. Possessing a

complex analytic extension, L∞(X, f ) = L∞(X, g)
∣∣ L∞(X,F)

L∞(X,U ) is real analytic.

5 The Lie Group L∞(X,G)

Let G be any smooth or K-analytic Lie group. In this section, we show that L∞(X,G)
can be made a smooth, resp., K-analytic Lie group, with Lie algebra L∞

(
X, L(G)

)
.

We shall use the following folklore fact:

Proposition 5.1 (Local Characterization of Lie Groups) Suppose that a subset U of

a group G is equipped with a smooth (resp., K-analytic) manifold structure modelled on
a Hausdorff locally convex space E, and suppose that V is an open subset of U such that
e ∈ V , V = V−1, VV ⊆ U , and such that the multiplication map V × V → U ,
(g, h) 7→ gh is smooth (resp., K-analytic) as well as inversion V → V , g 7→ g−1; here
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V is considered as an open submanifold of U . Suppose that for every element x in a
symmetric generating set of G, there is an open identity neighbourhood W ⊆ U such

that xW x−1 ⊆ U , and such that the mapping W → U , w 7→ xwx−1 is smooth (resp.,
K-analytic).3 Then there is a unique smooth (resp., K-analytic) Lie group structure on
G which makes V , equipped with the above manifold structure, an open submanifold
of G.

Proof The proof of [8, Chapter 3, Section 1.9, Proposition 18] can easily be adapted.

The Lie Group Structure on L∞(X,G)

Theorem 5.2 Let G be a smooth (resp., K-analytic) Lie group, and (X,Σ, µ) be a
measure space. Then there is a uniquely determined smooth (resp., K-analytic) Lie group

structure on the group L∞(X,G), modelled on L∞
(

X, L(G)
)

, such that L∞(X,V1) is
an open identity neighbourhood and

Φ := L∞(X, φ) : L∞(X,V1) → L∞(X,V ) ⊆ L∞
(

X, L(G)
)

is a diffeomorphism of smooth (resp., K-analytic) manifolds, for some chart φ : V1 → V
from an open identity neighbourhood V1 ⊆ G onto an open zero-neighbourhood in L(G)

such that φ(e) = 0. Then in fact L∞(X, ψ) is a diffeomorphism, for every chart ψ of G
whose domain is contained in V1 and which satisfies ψ(e) = 0. The topological group
underlying the Lie group L∞(X,G) coincides with the one described in Definition 3.11.
Furthermore, if φ is chosen such that dφ(e, •) = idL(G), then

dΦ(e, •) : L
(

L∞(X,G)
)
→ L∞

(
X, L(G)

)

is an isomorphism of topological Lie algebras with respect to the “pointwise” Lie bracket
on L∞

(
X, L(G)

)
.

Proof The construction will be given in steps.

5.3 Let κ : U1 → U be a chart of G, defined on an open identity neighbourhood U1 in G,

with values in an open zero-neighbourhood U in L(G), such that κ(e) = 0. Let V1

be an open, symmetric identity neighbourhood in G such that V1V1 ⊆ U1, and set
V := κ(V1). Then the mappings

m : V ×V → U , m(x, y) := κ
(
κ−1(x) · κ−1(y)

)
and

ι : V → V, ι(x) := κ
(
κ−1(x)−1

)

are smooth, resp., K-analytic. We equip L∞(X,U1) ⊆ L∞(X,G) with the smooth
(resp., K-analytic) manifold structure making the bijection

(6) β : L∞(X,U1) → L∞(X,U ), [γ] 7→ [κ ◦ γ]

a diffeomorphism of smooth (resp., K-analytic) manifolds.
3This condition is automatically satisfied if V generates G.
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5.4 Since L∞(X,V ) × L∞(X,V ) ∼= L∞(X,V × V ) and the mapping L∞(X,m) :
L∞(X,V × V ) → L∞(X,U ) is smooth (resp., K-analytic) by Corollary 4.4, we

deduce that the group multiplication of L∞(X,G) restricts to a smooth (resp., K-
analytic) mapping L∞(X,V1) × L∞(X,V1) → L∞(X,U1). Similarly, inversion is
smooth (resp., K-analytic) on L∞(X,V1).

5.5 Let [γ] ∈ L∞(X,G) now. As im γ is compact, there is an open identity neigh-
bourhood W1 ⊆ V1 in G and an open neighbourhood P of im γ in G such that

pW1 p−1 ⊆ U1 for all p ∈ P. Set W := κ(W1). The mapping h : P × W1 → U1,
h(p,w) := pwp−1 being smooth (resp., K-analytic), we deduce that so is f̃ :=
κ ◦ h ◦ (idP ×κ

−1) : P ×W → U . Define

f := f̃ ◦ (γ × idW ) : X ×W → U , f (x, y) = κ
(
γ(x)κ−1(y)γ(x)−1

)
.

In the case where G is a smooth or complex analytic Lie group, we deduce from
Proposition 4.1 (resp., Corollary 4.2) that the mapping f∗ : L∞(X,W ) → L∞(X,U )

is smooth (if G is a smooth Lie group), resp., complex analytic (if G is a complex
Lie group). Thus conjugation Iγ by γ is smooth (resp., complex analytic) on the

open identity neighbourhood L∞(X,W1) ⊆ L∞(X,V1), noting that Iγ
∣∣ L∞(X,U1)

L∞(X,W1) =

β−1 ◦ f∗ ◦ β
∣∣ L∞(X,W )

L∞(X,W1). If G is a real analytic Lie group, Proposition 4.3 shows that
f∗|L∞(X,Q) is real analytic for some open zero-neighbourhood Q ⊆ W , and thus

conjugation by γ is real analytic on L∞
(

X, κ−1(Q)
)
⊆ L∞(X,V1). In either case,

Proposition 5.1 provides a unique smooth, resp., complex analytic, resp., real analytic
Lie group structure on L∞(X,G) making L∞(X,V1) an open submanifold. Thus
L∞(X, φ) is a chart for L∞(X,G), where φ := κ

∣∣V
V1

: V1 → V .

5.6 The assertion concerning ψ follows from Corollary 4.4, applied to the diffeomor-

phism f := ψ ◦ φ
∣∣ dom ψ
φ−1(dom ψ)

and its inverse.

5.7 To see that the topological group underlying the Lie group L∞(X,G) coincides with

the one described in Definition 3.11, note first that the bijection β defined in (6) is
a homeomorphism with respect to the topology induced on L∞(X,U1) by the topo-
logical group L∞(X,G) (cf. proof of Proposition 4.1, Step 1). As a consequence,
the group topology on L∞(X,G) defined in Definition 3.11 and the group topol-

ogy underlying the Lie group L∞(X,G) just defined have the same filter of identity
neighbourhoods, and thus coincide.

5.8 As a topological vector space, we identify the Lie algebra of L∞(X,G) with
L∞

(
X, L(G)

)
by means of the isomorphism of topological vector spaces

dL∞(X, φ)(e, •) : Te

(
L∞(X,G)

)
→ L∞

(
X, L(G)

)
,

where we assume that φ is chosen such that dφ(e, •) : Te(G) = L(G) → L(G) is the
identity map. We have to show that, with respect to this identification, the Lie bracket
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on L
(

L∞(X,G)
)

is the mapping L∞(X, [ . , .]) : L∞
(

X, L(G)2
)
∼= L∞

(
X, L(G)

)2
→

L∞
(

X, L(G)
)

. To see this, let σ, η ∈ L∞
(

X, L(G)
)

. As a consequence of Proposi-

tion 4.1 and its proof (equation (5)), Adγ(η) := (TeIγ).η ∈ L∞
(

X, L(G)
)

is given by

Adγ(η) = f∗(γ) for γ ∈ L∞(X,G), where f̃ : L(G) × G → L(G), (y, g) 7→ Adg(y)

is smooth and f := f̃ ◦ (η × idG) : X × G → L(G). Using that d2 f̃ (y, e, x) =

d
(

Ad
•
(y)

)
(e, x) = [x, y] for all x, y ∈ L(G) by definition of the Lie bracket (see [24,

pp. 1035–1037]), we find that

[σ, η] = d
(

Ad
•
(η)

)
(e, σ) = d2 f̃ ◦ (η, e, σ) = L∞(X, [ . , .])(σ, η),

where the second equality is a consequence of Proposition 4.1 and its proof (equa-
tion (5)). This completes the proof of Theorem 5.2.

Functoriality of L∞(X, •)

The following variant of Corollary 4.4 will be essential for our discussions of universal
complexifications.

Proposition 5.9 Suppose that G1 and G2 are smooth (resp., K-analytic) Lie groups,

and suppose that f : G1 → G2 is a smooth (resp., K-analytic) mapping. Then

L∞(X, f ) : L∞(X,G1) → L∞(X,G2), [γ] 7→ [ f ◦ γ]

is a smooth (resp., K-analytic) mapping.

Proof For j ∈ {1, 2}, let φ j : U j → V j be a diffeomorphism of smooth (resp.,

K-analytic) manifolds from an open zero-neighbourhood U j in L(G j ) onto an open
identity neighbourhood V j in G j , such that φ j(0) = e, L∞(X,V j) is an open identity
neighbourhood in L∞(X,G j), and Φ j := L∞(X, φ j) : L∞(X,U j) → L∞(X,V j) is a
diffeomorphism of smooth (resp., K-analytic) manifolds. The mapping

g̃ : G1 ×U1 → G2, g̃(a, u) := f (a)−1 f
(

a · φ1(u)
)

is smooth (resp., K-analytic), and g̃(a, 0) = e for every a ∈ G1. Suppose γ ∈
L∞(X,G1) is given. Then im γ×{0} being a compact subset of G1×U1 on which g̃ =

e, we find an open neighbourhood P of im γ in G1 and an open zero-neighbourhood
Q ⊆ U1 such that g̃(P × Q) ⊆ V2. Then h̃ := φ−1

2 ◦ g̃
∣∣V2

P×Q, P × Q → U2 ⊆ L(G2) is

a smooth (resp., K-analytic) mapping. We define

(7) h := h̃ ◦ (γ|P × idQ), X × Q → U2.

Thus h(x, q) = φ−1
2

(
f
(
γ(x)

)−1
f
(
γ(x)φ1(q)

))
for all x ∈ X and q ∈ Q.

In the smooth or complex analytic case, the mapping h∗ : L∞(X,Q) → L∞(X,U2)
is smooth (resp., complex analytic), by Proposition 4.1 (resp., Corollary 4.2); we set
Q ′ := Q.
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In the real analytic case, h∗|L∞(X,Q ′) is real analytic for some open zero-neighbour-
hood Q ′ ⊆ Q, by Proposition 4.3.

In either case, we let λγ : L∞(X,G1) → L∞(X,G1), σ 7→ γ · σ denote left transla-
tion by [γ] on L∞(X,G1) and λ f◦γ denote left translation by [ f ◦ γ] on L∞(X,G2).
We abbreviate V ′

1 := φ1(Q ′). Since

Φ
−1
2 ◦

(
λ−1

f◦γ ◦ L∞(X, f ) ◦ λγ
) ∣∣ L∞(X,V2)

L∞(X,V ′

1 )
◦ Φ1

∣∣ L∞(X,V ′

1 )

L∞(X,Q ′) = h∗|L∞(X,Q ′)

is a smooth (resp., K-analytic) mapping, it follows that λ−1
f◦γ◦L∞(X, f )◦λγ is smooth

(resp., K-analytic) on the identity neighbourhood L∞(X,V ′
1 ) of L∞(X,G1). Transla-

tions being diffeomorphisms, this entails that L∞(X, f ) is smooth (resp., K-analytic)

on some neighbourhood of [γ].

Remark 5.10 Applying Proposition 5.9 to smooth (resp., K-analytic) homomor-
phisms in particular, we deduce that functors L∞(X, •) from the category of smooth

Lie groups and smooth homomorphisms (resp., K-analytic Lie groups and K-analytic
homomorphisms) into itself can be defined.

L∞(X,G) When G is a BCH-Lie Group

Definition 5.11 A K-analytic Lie group G modelled on a Hausdorff locally convex
topological K-vector space is called a Baker-Campbell-Hausdorff Lie group (or “BCH-

Lie group” for short) if it has the following properties:

(a) The exponential function expG : L(G) → G is defined on all of L(G), and there
is an open zero-neighbourhood U in L(G) such that V := expG(U ) is open in G
and φ := expG

∣∣V
U : U → V is a diffeomorphism of K-analytic manifolds.

(b) There is a zero-neighbourhood W ⊆ U in L(G) with expG(W ) expG(W ) ⊆ V ,
such that φ−1

(
φ(x)φ(y)

)
=

∑∞
n=1 βn(x, y) =: x ∗ y is given by the BCH-series

for x, y ∈ W (with pointwise convergence).

Thus β1(x, y) = x+y, β2(x, y) =
1
2
[x, y], β3(x, y) =

1
12

([
x, [x, y]

]
+
[

y, [y, x]
])

,
etc.

Remark 5.12 The class of BCH-Lie groups includes all finite-dimensional Lie

groups, Banach-Lie groups, mapping groups C r(K,G) and C∞
c (M,G) (where K is

a compact smooth manifold, M a σ-compact finite-dimensional smooth manifold,
and G any BCH-Lie group) [12], as well as the direct limit Lie groups GL∞(K) =

lim−→n
GLn(K) and their analytic subgroups [25], [12]. Also the unit group of any

sequentially complete (or, more generally, Mackey complete) continuous inverse al-
gebra is a BCH-Lie group [11]. The general Lie theory of BCH-Lie groups (analytic
subgroups, integration of Lie algebra homomorphisms, quotient groups, universal
complexifications) is developed in [12]. See also the earlier paper [32] for informa-

tion concerning the closely related class of CBH-Lie groups.

Theorem 5.13 For every K-analytic BCH-Lie group G, L∞(X,G) is a K-analytic
BCH-Lie group, with Lie algebra L∞

(
X, L(G)

)
and exponential function L∞(X, expG).
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Proof Let us assume first that G is a complex BCH-Lie group.

5.14 We let U be a balanced open zero-neighbourhood in L(G) such that the BCH-

series converges on U × U to a complex analytic function ∗ := m : U 2 → L(G),
m(x, y) :=

∑∞
n=1 βn(x, y). Then m(0, 0) = 0, and M := L∞(X,m) : L∞(X,U 2) →

L∞
(

X, L(G)
)

is a complex analytic mapping by Corollary 4.4. Since L∞(X,U )2 ∼=
L∞(X,U 2) as complex analytic manifolds, we may consider M as a mapping on

L∞(X,U )2. As P := L∞(X,U )2 is a balanced open zero-neighbourhood in

L∞
(

X, L(G)
)2

and M is complex analytic on P, there is a sequence of continuous ho-

mogeneous polynomials αn : L∞
(

X, L(G)
)2

→ L∞
(

X, L(G)
)

such that M(γ, η) =∑∞
n=0 αn(γ, η) for all γ, η ∈ P (as follows from [5, Proposition 5.5]); here α0 = 0

as M(0, 0) = 0. Of course, using the notation introduced in Subsection 1.2, we have

αn =
1
n!
δ(n)

(0,0)M and βn =
1
n!
δ(n)

(0,0)m (see [5]). Inductively, we deduce from Corol-
lary 4.4 that dnM = dnL∞(X,m) = L(X, dnm) for all n ∈ N0. As a consequence,
d(n)M = L∞(X, d(n)m) (cf. [10, Lemma 1.14]) and hence δ(n)

(0,0)M = L∞(X, δ(n)
(0,0)m).

Thus αn(γ, η) =
1
n!
δ(n)

(0,0)M = L∞(X, βn)(γ, η) is in fact the homogeneous term of

order n in the BCH-series, evaluated at (γ, η).

5.15 In view of the connectedness of U , it follows from the Identity Theorems for analytic
functions (cf. [5, Proposition 6.6]) that expG(x ∗ y) = expG(x) expG(y) for all x, y ∈
U . Shrinking U if necessary, we may assume that U1 := expG(U ) is open in G, and

that expG

∣∣U1

U =: κ−1 is a diffeomorphism of complex analytic manifolds. We let
V ⊆ U be any open symmetric zero-neighbourhood in L(G) such that V ∗ V ⊆ U
and set V1 := expG(V ). Then U , U1, V , V1, and κ can be used in Step 5.3 of the
construction of the manifold structure on L∞(X,G). We deduce that L∞(X, κ|VV1

) is a

diffeomorphism of K-analytic manifolds, and so is its inverse L∞(X, expG)
∣∣ L∞(X,V1)

L∞(X,V ) .
It now easily follows that L∞(X,G) is a complex BCH-Lie group with the asserted

properties.

Now assume that G is a real BCH-Lie group.

5.16 Since G is a real BCH-Lie group, there is an open balanced zero-neighbourhood W
in L(G)C such that the BCH-series converges to a complex analytic map m̃ : W×W →
L(G)C. As in Subsection 5.14, we see that the mapping

L∞(X,W )2 ∼= L∞(X,W 2) → L∞
(

X, L(G)C

)
, (γ, η) 7→ m̃ ◦ (γ, η)

is complex analytic, and is given by the BCH-series.

5.17 We let U ⊆ W be an open zero-neighbourhood in L(G) such that (expG |U1

U ) =: κ−1

is a diffeomorphism of real analytic manifolds onto an open subset U1 of G, and let
V ⊆ U be a balanced open zero-neighbourhood in L(G) such that m̃(V × V ) ⊆ U .
Then m := m̃

∣∣ L(G)
V×V is a real analytic function, which is the limit of the BCH-series of
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L(G) on V ×V . We have V1V1 ⊆ U1 for V1 := expG(V ), and φ
(

expG(x) expG(y)
)

=

m(x, y) for x, y ∈ V . In view of the considerations in Subsection 5.16, the mapping

L∞(X,V )2 → L∞
(

X, L(G)
)

, (γ, η) 7→ m ◦ (γ, η) is real analytic and is the limit of

the Campbell-Hausdorff series of L∞
(

X, L(G)
)

on L∞(X,V )2. As we may use U ,
U1, V , V1, and κ in Subsection 5.3, we deduce as in Subsection 5.15 that L∞(X,G)
is a real BCH-Lie group with the asserted properties. This completes the proof of

Theorem 5.13.

The Universal Complexification of L∞(X,G)

Definition 5.18 Let G be a real BCH-Lie group, H be a complex BCH-Lie group,
and φ : G → H a smooth homomorphism. We say that H has a polar decomposition
with respect to φ if the map Φ : G × L(G) → H, Φ(g, x) := φ(g) expH

(
iL(φ).x

)
is a

diffeomorphism of smooth manifolds. We call Φ the polar map in this case. If G and

φ are understood, we simply say that H has a polar decomposition.

If H has a polar decomposition with respect to φ : G → H, then (H, φ) is a uni-
versal complexification of G in the category of all complex Lie groups with complex
analytic exponential functions, i.e., for every smooth homomorphism f : G → S

from G into a complex Lie group S whose exponential function is defined on all of
L(S) and is complex analytic, there exists a unique complex analytic homomorphism

f̃ : H → S such that f̃ ◦ φ = f [12, Theorem 8.8]. We deduce:

Proposition 5.19 Let G be a real BCH-Lie group whose universal complexification
GC in the category of complex BCH-Lie groups exists and has a polar decomposition

with respect to the universal smooth homomorphism γG : G → GC. Let (X,Σ, µ)
be any measure space. Then L∞(X,GC) has a polar decomposition with respect to
L∞(X, γG) : L∞(X,G) → L∞(X,GC), and

L∞(X,G)C = L∞(X,GC)

in the category of all complex Lie groups with complex analytic exponential functions.

Proof Noting that L∞(X,G) × L∞
(

X, L(G)
)

∼= L∞
(

X,G × L(G)
)

(as a con-
sequence of Proposition 5.9), the first assertion follows from the observation that

L∞(X,Φ) : L∞
(

X,G × L(G)
)
→ L∞(M,GC) is a diffeomorphism of smooth mani-

folds by Proposition 5.9, where Φ : G × L(G) → GC is the polar map. The remainder
follows from [12, Theorem 8.8].

6 The Lie Groups `∞(X,G) and ˜̀∞(X,G)

Except for metrizable, complete topological groups G, we could not say much about
completeness properties of L∞(X,G) in Section 3, for general measure spaces

(X,Σ, µ). As we shall see in this section, much more information is available for
`∞(X,G). We shall also define a certain topological group ˜̀∞(X,G) containing
`∞(X,G) as a dense subgroup, and equip it with a Lie group structure when G is
a Lie group.
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6.1 Given a Hausdorff topological group G, we let `∞(X,G) := L∞(X,G) ∼= L∞(X,G),
using the counting measure µ on

(
X,P(X)

)
, where P(X) denotes the power set of

X. We define a larger group ˜̀∞(X,G) := {γ ∈ GX : im γ is compact} by drop-

ping the metrizability condition on im γ (the group operations are pointwise). Then
˜̀∞(X,G) is a topological group with respect to the topology of uniform convergence,
which contains `∞(X,G) as a topological subgroup.

6.2 Every function on
(

X,P(X)
)

being measurable, apparently Proposition 4.1, Corol-

lary 4.2, Proposition 4.3, and Corollary 4.4 remain valid when L∞(X, E) and

L∞(X, F) are replaced with ˜̀∞(X, E) and ˜̀∞(X, F). Therefore Theorem 5.2 (and all

of the results of Section 5) remain valid when L∞(X,G) is replaced with ˜̀∞(X,G).
In particular, we obtain a natural smooth (resp., K-analytic) Lie group structure on
˜̀∞(X,G), for every smooth (resp., K-analytic) Lie group G.

Proposition 6.3 Let G be a Hausdorff topological group, E a Hausdorff real locally

convex space.

(a) Let (X,Σ) be a measurable space such that {x} ∈ Σ for all x ∈ X, and let µ
be counting measure on (X,Σ). Then L∞(X,G) ∼= L∞(X,G). If every closed

pre-compact subset of G is compact and metrizable, then L∞(X,G) is sequentially
complete.

(b) If G is complete, then so is ˜̀∞(X,G). If every closed, pre-compact subset of G is

compact, then ˜̀(X,G) is sequentially complete. If E is quasi-complete, then so is
˜̀∞(X, E).

(c) If every compact subset of G is metrizable, then `∞(X,G) = ˜̀∞(X,G).

Proof (a) The first assertion is obvious. To prove the second, let (γn)n∈N be a
Cauchy sequence in L∞(X,G). Then

(
γn(x)

)
n∈N

is a Cauchy sequence in G and thus

converges to some γ(x) ∈ G, the set {γn(x) : n ∈ N} being closed and pre-compact

and thus compact, by hypothesis. Then γn → γ uniformly. By Proposition 3.18,
im γ is pre-compact. Now im γ being closed and pre-compact and thus compact
and metrizable by hypothesis, Proposition 3.18 shows that γ ∈ L∞(X,G).

(b) The assertion concerning sequential completeness can be shown along the

lines of (a). Now suppose that G is a complete Hausdorff group (resp., a quasi-
complete Hausdorff locally convex space). Let (γα) be a Cauchy net (resp., bounded

Cauchy net) in ˜̀∞(X,G). Given x ∈ X,
(
γα(x)

)
is a Cauchy net (resp., bounded

Cauchy net) in G and thus convergent to some γ(x) ∈ G. As in the proof of Propo-
sition 3.18, we find that im γ is pre-compact. Hence im γ is a closed pre-compact
subset of G and therefore a complete, pre-compact uniform space and thus com-

pact, as G is complete (resp., quasi-complete). Thus γ ∈ ˜̀∞(X,G), and apparently
γα → γ uniformly.

(c) is obvious from the definitions.

Lemma 6.4 For every γ ∈ ˜̀∞(X,G), there exists a net (γα) in F(X,G) converging
uniformly to γ, such that im γα ⊆ im γ for all α.
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Proof Given an open identity neighbourhood U in G, we have im γ ⊆
⋃n

j=1 v jU

for some finite sequence v1, . . . , vn ∈ im γ. Set X j := γ−1(v jU ) \
⋃ j−1

i=1 γ
−1(viU )

for j = 1, . . . , n; then X =
⋃n

j=1 X j as a disjoint union. We define γU ∈ F(X,G) via
γU (x) := v j for x ∈ X j . Then (γU )U∈Ue(G) is a net with the required properties.

Thus `∞(X,G) is non-complete whenever `∞(X,G) is a proper subgroup of
˜̀∞(X,G). If `∞(X, E) is a proper subspace of ˜̀∞(X, E), then `∞(X, E) is not quasi-
complete.

Example 6.5 Let J be a set of cardinality card( J) > 2ℵ0 . Then X := [−1, 1] J

is a non-separable compact topological space in the product topology. We claim that
`∞(X,R

J) is not quasi-complete (although R
J is complete). To see this, let γ : X ↪→ R

J

be the inclusion map. Then γ ∈ ˜̀∞(X,R
J), but γ /∈ `∞(X,R

J) as im γ = im γ = X

is not separable. By Lemma 6.4, there is a net (γα) of functions γα ∈ F(X,R
J)

converging uniformly to γ such that im γα ⊆ im γ = X for all α. Thus (γα) is a
bounded Cauchy net in F(X,R

J) ⊆ `∞(X,R
J), which cannot converge in `∞(X,R

J)
as γ /∈ `∞(X,R

J).

7 Weak Direct Products of Lie Groups

In this section, we show that the “weak direct product”

∏

i∈I

∗
Gi :=

{
(gi)i∈I ⊆

∏

i∈I

Gi : gi = e for i off some finite subset of I
}

of an arbitrary family (Gi)i∈I of smooth (resp., K-analytic) Lie groups can be made
a smooth (resp, K-analytic) Lie group modelled on the locally convex direct sum⊕

i∈I L(Gi).

Mappings Between Locally Convex Direct Sums

Proposition 7.1 Let (Ei)i∈I and (Fi)i∈I be families of Hausdorff locally convex spaces,
with locally convex direct sums E :=

⊕
i∈I Ei and F :=

⊕
i∈I Fi . Suppose that k ∈

N0 ∪ {∞}, and suppose that fi : Ui → Fi is a mapping on an open zero-neighbourhood
Ui of Ei for i ∈ I, such that fi(0) = 0. If I is countable, we assume that each fi is of class

Ck; if I is uncountable, we assume that each fi is of class Ck+1. Then U :=
⊕

i∈I Ui :=
E ∩

∏
i∈I Ui is an open subset of E, and

f :=
⊕

i∈I

fi :=
(∏

i∈I

fi

)∣∣∣
F

U
: U → F,

∑

i∈I

vi 7→
∑

i∈I

fi(vi)

is mapping of class Ck.

Proof It suffices to prove the assertion for k ∈ N0; first we assume that I is uncount-
able.
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Step 1: U is open, and f is continuous. To see that U is a neighbourhood of v
and f is continuous at v =

∑
i∈I vi ∈ U , it suffices to show that U − v is a zero-

neighbourhood and that g := f (v + ·) − f (v) : U − v → F is continuous at 0. Here
U − v =

⊕
i∈I(Ui − vi) and g =

⊕
i∈I gi with gi = fi(vi + ·)− fi (vi), a function built

up in the same way as f . Hence without loss of generality v = 0.
Each Ui contains some convex symmetric zero-neighbourhood C i ; then

conv
⋃

i∈I Ci ⊆ U is a zero-neighbourhood in the locally convex direct sum E.
Given a convex, symmetric, open zero-neighbourhood Q in F , we have

conv
⋃

i∈I Qi ⊆ Q, where Qi := Q ∩ Fi for i ∈ I, which is a convex, symmetric,
open zero-neighbourhood in Fi . Since d fi(0, 0) = 0 and d fi is continuous, there is an

open, convex, symmetric zero-neighbourhood Pi ⊆ Ui such that d fi(Pi × Pi) ⊆ Qi .
Thus, for all u ∈ Pi and t ∈ [0, 1], noting that fi(0) = 0:

(8) fi(tu) = fi(0) + t

∫ 1

0

d fi(stu, u) ds ∈ tQi .

Equation (8) entails that f (conv
⋃

i∈I Pi) ⊆ conv
⋃

i∈I Qi ⊆ Q; it only remains to

note that conv
⋃

i∈I Pi is a zero-neighbourhood in the locally convex direct sum E.

Step 2: f is of class C1 (when k ≥ 2). In fact, given u ∈ U and v ∈ E, we have
u, v ∈

⊕
i∈ J Ei =

∏
i∈ J Ei for some finite subset J ⊆ I. The mapping

∏
i∈ J fi being

of class C1, we deduce that d f (u, v) = limt→0 t−1
(

f (u+tv)− f (u)
)

exists in
∏

i∈ J Fi

and thus in F; its i-coordinate is d fi(ui , vi). Thus

(9) d f =

⊕

i∈I

d fi ,

identifying E × E = (
⊕

i∈I Ei)
2 with

⊕
i∈I(Ei × Ei) in the natural way. As each d fi

is a mapping of class Ck (where k ≥ 1), in view of equation (9), d f is continuous by
Step 1.

Step 3: Induction. Suppose that the proposition holds for k replaced with k − 1, and

suppose that each fi is of class Ck+1, where k ≥ 1. By Step 2, f is of class C1, with
d f =

⊕
i∈I d fi . In view of the latter formula, d f is of class Ck−1 by induction. Thus

f is of class Ck.

The Case of Countable I. The assertion being trivial when I is finite, we may assume
that I = N. Let us show that f is continuous when fn is so for each n ∈ N. We
only need to prove continuity at zero (see Step 1). Given an open, convex, symmetric
zero-neighbourhood Q in F, set Qn := Q ∩ Fn and Tn := 2−nQn. By continuity, for

each n ∈ N there is an open, convex, symmetric zero-neighbourhood Pn ⊆ Un such
that fn(Pn) ⊆ Tn. Then P :=

⊕
n∈N

Pn is an open zero-neighbourhood in E, and
f (P) ⊆

⊕
n∈N

Tn ⊆ Q. Thus f is continuous at 0. To complete the proof, we argue
as in Steps 2 and 3 above.

Corollary 7.2 In the situation of Proposition 7.1, suppose that Ei and Fi are Hausdorff
locally convex K-vector spaces for each i ∈ I, and suppose that fi is K-analytic. Then
f :=

⊕
i∈I fi is K-analytic.
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Proof The case K = C. By Proposition 7.1 and its proof, f is smooth and d f =⊕
i∈I d fi , whence d f (x, •) is complex linear for each x ∈

⊕
i∈I Ui . Thus f is complex

analytic.

The case K = R. For each i ∈ I, there is a complex analytic mapping gi : Vi →
(Fi)C extending fi , defined on some open neighbourhood V i of Ui in (Ei)C. Then⊕

i∈I gi is complex analytic by the preceding, and extends f .

Lie Group Structure on Weak Direct Products

Proposition 7.3 Let (Gi)i∈I be a family of smooth (resp., K-analytic) Lie groups. Then
there exists a uniquely determined smooth (resp., K-analytic) Lie group structure on∏∗

i∈I Gi , modelled on the locally convex direct sum
⊕

i∈I L(Gi), such that, for some

charts φi : Ri → Si ⊆ L(Gi) of Gi taking e to 0, the mapping

(10)
⊕

i∈I

Si →
∏

i∈I

∗
Gi , (xi)i∈I 7→

(
φ−1

i (xi)
)

i∈I

is a diffeomorphism of smooth (resp., K-analytic) manifolds onto an open subset of∏∗
i∈I Gi . If each Gi is a K-analytic BCH-Lie group, then so is

∏∗
i∈I Gi .

Proof For each i ∈ I, let κi : Ui → Vi be a chart of Gi about the identity ele-
ment, where Vi is an open subset of L(Gi) and κi(e) = 0. Let Ri ⊆ Ui be an open,

symmetric identity neighbourhood such that RiRi ⊆ Ui ; define Si := κi(Ri) and
φi := κi

∣∣ Si

Ri
. Proceeding similarly as in the proof of Theorem 5.2 (but using Propo-

sition 7.1 and Corollary 7.2 instead of Proposition 4.1 and its consequences), we de-
duce with Proposition 5.1 that there is a unique smooth (resp., K-analytic) Lie group

structure on the group
∏∗

i∈I Gi making the mapping described in (10) a diffeomor-
phism of smooth (resp., K-analytic) manifolds onto an open subset of

∏∗
i∈I Gi . Also

the remaining assertions follow along similar lines.

Proposition 7.4 Let (Gi)i∈I be a family of K-analytic BCH-Lie groups (resp.,
K-analytic Lie groups Gi with K-analytic globally defined exponential maps inducing
a local diffeomorphism of K-analytic manifolds on some zero-neighbourhood; resp.,
smooth Lie groups Gi with globally defined exponential maps inducing a local C∞-

diffeomorphism on some zero-neighbourhood). Then

(11)
∏

i∈I

∗
Gi = lim−→

F

∏

i∈F

Gi

in the respective category of Lie groups (where F ranges through the set of finite subsets

of I, directed via inclusion). Furthermore, (11) holds in the category of K-analytic Lie
groups with globally defined, K-analytic exponential functions (in the first and second
case) and in the category of smooth Lie groups with globally defined, smooth exponential
functions (in all cases).
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Proof Suppose that each Gi is a K-analytic BCH-Lie group. Given a finite subset F
of I, we identify GF :=

∏
i∈F Gi with the subgroup {(gi)i∈I : gi = e for i ∈ I \ F}

of G :=
∏∗

i∈I Gi . If H is a K-analytic BCH-Lie group and φF : GF → H a K-analytic
homomorphism for each F such that φF|GF1

= φF1
whenever F1 ⊆ F, there is a

unique homomorphism φ : G → H such that φ|GF
= φF for each F, since G =

lim−→ GF as an abstract group. As L(G) =
⊕

i∈I L(Gi) = lim−→F

∏
i∈F L(Gi) = lim−→ L(GF)

in the category of locally convex spaces, there is a unique continuous linear map
ψ : L(G) → L(H) such that ψ|L(GF ) = L(φF) for all F. The map expG inducing a local

diffeomorphism at 0 and expH ◦ψ being K-analytic, we deduce from φ ◦ expG =

expH ◦ψ that the homomorphism φ is K-analytic on some identity-neighbourhood
and thus K-analytic. The other assertions can be proved similarly.

Remark 7.5 See [25]–[28], [12] and [13] for information on direct limits of Lie
groups. Some intricacies inherent to the subject are explained in [13], [14], and
[36]; cf. also [23, Example 10.8]. For direct limit properties of countable weak direct
products of arbitrary Lie groups, see [16].

Exploiting Proposition 7.1, the following result can be obtained; we omit the de-
tails, which closely resemble the proof of Proposition 5.19:

Proposition 7.6 Let (Gi)i∈I be a family of real BCH-Lie groups such that (Gi)C exists
in the category of complex BCH-Lie groups and has a polar decomposition, for each
i ∈ I. Then the complex BCH-Lie group

∏∗
i∈I (Gi)C is the universal complexification

of
∏∗

i∈I Gi in the category of all complex Lie groups with complex analytic exponential
functions, and it has a polar decomposition.

8 The Lie Group L∞
c (X,G)

Let X be a hemi-compact Hausdorff topological space now (viz., there exists a se-
quence K1 ⊆ K2 ⊆ · · · of compact subsets of X such that every compact subset of X
is contained in some Kn). For example, X might be any σ-compact, locally compact

space. Let Σ := B(X) be the Borel σ-algebra of X, and µ a measure on Σ. Given a
Hausdorff topological group G and compact (or, more generally, relatively compact,
measurable) subset K of X, we define L∞

K (X,G) := {γ ∈ L∞(X,G) : γ|G\K = e},
which is a subgroup of L∞(X,G). We set L∞

K (X,G) := {[γ] : γ ∈ L∞
K (X,G)} ⊆

L∞(X,G), and equip this subgroup of L∞(X,G) with the induced topology. Then,
in an obvious way, L∞

K (X,G) ∼= L∞(K,G) as a topological group, using the measure
µ|B(K) on K. When G is a smooth (resp., K-analytic) Lie group, we use the preceding
identification to make L∞

K (X,G) a smooth (resp., K-analytic) Lie group (isomorphic

to L∞(K,G)). It is the goal of this section to equip the group

L∞
c (X,G) :=

⋃

K

L∞
K (X,G) ⊆ L∞(X,G)

with a natural smooth (resp., K-analytic) Lie group structure (where K ranges
through the set K(X) of compact subsets of X).
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The Spaces L∞
c (X, E)

Let R(X) denote the set of Borel measurable, relatively compact subsets of X. Then
R(X) is directed under inclusion of sets, and contains K(X) as a co-final subset.

Given a Hausdorff locally convex K-vector space E, the set L∞
K (X, E) is a vector

subspace of L∞(X, E), for each K ∈ R(X). We equip

L∞
c (X, E) =

⋃

K∈R(X)

L∞
K (X, E) =

⋃

K∈K(X)

L∞
K (X, E)

with the locally convex direct limit topology. Choose an ascending sequence K1 ⊆
K2 ⊆ · · · of compact subsets of X which is co-final in K(X). Then {Kn : n ∈ N} is a
co-final subset of R(X) and thus L∞

c (X, E) = lim−→ L∞
Kn

(X, E) as a locally convex space.

Set R1 := K1, Rn := Kn \ Kn−1 for 2 ≤ n ∈ N. Then Kn =
⋃n

j=1 R j as a disjoint

union, for each n ∈ N, and thus L∞
Kn

(X, E) ∼=
⊕n

j=1 L∞(R j , E). Thus

L∞
c (X, E) = lim−→

n∈N

n⊕

j=1

L∞(R j , E) =

⊕

n∈N

L∞(Rn, E)

as a locally convex space.

The Lie Group Structure on L∞
c (X,G)

Along the preceding lines, we see that L∞
c (X,G) =

∏∗
n∈N

L∞(Rn,G) as an abstract

group, for every topological group G. Hence, if G is a smooth or K-analytic Lie
group, Proposition 7.3 provides a smooth (resp., K-analytic) Lie group structure on
L∞

c (X,G) =
∏∗

n∈N
L∞(Rn,G). Using the cited proposition and Proposition 7.4, we

obtain:

Proposition 8.1 Let X be a hemi-compact Hausdorff space, µ be a measure on(
X,B(X)

)
, and G be a smooth (resp., K-analytic) Lie group. Then there is a unique

smooth (resp., K-analytic) Lie group structure on L∞
c (X,G) modelled on the locally con-

vex direct limit L∞
c

(
X, L(G)

)
= lim−→K∈K(X)

L∞
K

(
X, L(G)

)
such that

L∞
c (X, φ−1) : L∞

c (X,V ) → L∞
c (X,G), [γ] 7→ [φ−1 ◦ γ]

is an isomorphism of smooth (resp., K-analytic) manifolds onto an open subset of

L∞
c (X,G), for some chart φ : U → V ⊆ L(G) of G such that e ∈ U and φ(e) = 0. If G

is a K-analytic BCH-Lie group, then so is L∞
c (X,G), and

L∞
c (X,G) = lim−→

K∈K(X)

L∞(K,G)

holds in the category of K-analytic BCH-Lie groups, as well as in the category of K-
analytic Lie groups with K-analytic exponential functions, and in the category of smooth
Lie groups with smooth exponential functions.
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Here L∞
c (X,V ) := L∞

c

(
X, L(G)

)
∩ L∞(X,V ).

Remark 8.2 If µ is inner regular or X is second countable, then the “essential sup-
port” ess suppµ(γ) of a measurable function γ : X → G can be defined as the comple-
ment of the largest open subset U of X such that γ(x) = e for µ-almost all x ∈ U . In

this case, we may interpret L∞
c (X,G) as the group of equivalence classes of L

∞(X,G)-
functions with compact essential support.

As an immediate consequence of Proposition 5.19 and Proposition 7.6, we obtain:

Proposition 8.3 Suppose that X is a hemi-compact Hausdorff topological space, µ a
measure on

(
X,B(X)

)
, and G a real BCH-Lie group such that GC exists in the cate-

gory of complex BCH-Lie groups and has a polar decomposition. Then L∞
c (X,G)C =

L∞
c (X,GC) in the category of complex Lie groups with complex analytic exponential

functions, and the latter group has a polar decomposition.
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