Editorial Review

Neoplastic chemotherapy and head and neck cancer

A. S. Jones M.D., F.R.C.S.

Sulphur mustard was synthesized in 1854 and its vesicant properties described in 1887. Medical attention was focused on the chemical during World War I when its vesicant action on the skin, eyes and respiratory tract was noted in full and it was developed as a chemical weapon. It became apparent that those who survived gassing with sulphur mustard frequently developed leukaemia and in those that died, aplasia of the bone marrow was noted by Krumbhaar and Krumbhaar in 1919. Between World War I and II, nitrogen mustards were developed and much work was carried out by Gilman et al. (1963). Regrettably, early phases of research were carried out under the restrictions of military secrecy, but fortunately, at the end of World War II research could go on unabated and openly. Thus, the nitrogen mustards, the first successful chemotherapeutic agents, came into being.

Perhaps next most important historically was methotrexate. This is an antifolate drug and is very important as it produced the first striking, although temporary, remission in leukaemia (Farber et al., 1948) and the first cure of a solid tumour (choriocarcinoma) (Hertz, 1963).

Drugs that have subsequently been found to be useful in head and neck squamous carcinomas and salivary tumours included 5-fluorouracil, methotrexate, bleomycin, mytomycin C, and cisplatin. Some studies have also included vincristine, cyclophosphamide and, the new agent taxol.

It is impossible to give a full account of chemotherapy of the head and neck region in a short article but the salient points will be discussed. Chemotherapy may be given alone with curative intent (very rarely successful in head and neck cancer). It may be given with palliation in mind or it may be given in combination with other modalities of treatment with an aim to cure the tumour. When administered with this intent there are various regimes. These are neo-adjuvant (before the other methods of treatment), adjuvant (at the same time as the other treatment), or as a radiation sensitizer (for instance, cisplatin and radical radiotherapy in combination).

According to Forastiere (1994) 20–30 per cent of all deaths from head and neck cancer occurred due to distant metastases and it was with a view to reducing distant metastases that most chemotherapy is given. Whilst chemotherapy in head and neck cancer has shown some impressive results in phase II studies, randomized trials that show convincing evidence of survival are extremely few. The most active single agents in head and neck chemotherapy are cisplatin, 5-fluorouracil, methotrexate, and bleomycin. Several other agents also have some activity. Response rates can be as high as 30–40 per cent but complete responses are uncommon. The duration of response is usually no more than six months. In an effort to improve the results of chemotherapy, combination therapy was evolved. Whilst increased response rates have been noted using this strategy, increased survival has not. Of the various studies that have been carried out on various agents, the most successful combination appears to be 5-fluorouracil and cisplatin. The overall response rate with this regimen is in the region of 33 per cent (Forastiere, 1994).

The main problem with cisplatin is its ability to cause severe nausea and vomiting, although the new histamine H3 antagonists have reduced this problem very significantly. The main problem with 5-fluorouracil is that it causes mucositis. In 1992, Jacobs et al. compared 5-fluorouracil and cisplatin in combination and each on its own as a single agent. The response rate was better with the combination treatment but survival time for these end-stage patients was no different with a median survival of around six months.

In a complex study, the Liverpool Head and Neck Oncology Group headed by Philip Stell (1992) compared single agent cisplatin and methotrexate with the combination of cisplatin and 5-fluorouracil. Although there was no difference in response rate, the survival was significantly better in the cisplatin arm of the study, although there was still less than six months median survival.

Chemotherapy is one of those treatment modalities, like many others, that can make the patient worse rather than better. In an editorial by Philip Stell (1990) it was noted that adjuvant chemotherapy reduced cancer morbidity by three per cent. He found, by meta-analysis, that the death rate from toxicity from the agents he studied was 6.5 per cent. This shows an overall reduced survival from adju-
vant chemotherapy of 3.5 per cent! Because of this, one must beware of using tumour-specific survival and response to treatment alone as a meaningful outcome measure of a regimen. This is particularly true when palliative treatment is being investigated. Here even the symptoms created by chemotherapy may make the treatment not worthwhile. There is no point making the patient's last few months miserable with no chance of cure. Browman and Cromin (1994) performed a meta-analysis of randomized trials of chemotherapy in recurrent disease and supported the conclusion that combination chemotherapy was better than single agent chemotherapy and there was a strong trend to suggest that cisplatin with 5-fluorouracil was the best combination. In spite of good response rates, the overall median survival was still only around six months. Regrettably, the authors showed that the cisplatin, 5-fluorouracil combination produces greater problems in nausea and vomiting, although as mentioned earlier, this should be alleviated by the newer H3 antagonists.

It rapidly became apparent that chemotherapy was very rarely curative in itself in squamous cell carcinoma of the head and neck. It was felt, however, that in conjunction with surgery and/or radiotherapy a treatment advantage may be attained.

The concept of combining chemotherapy and radiation is that chemotherapy has the potential to eradicate sub-clinical metastases and to reduce locoregional tumour bulk. Irradiation on the other hand, is mainly effective in dealing with low volume disease, therefore, the combination of treatments may be expected to be efficacious (Steel and Peckham, 1979).

In one large organ preservation series, The Department of Veterans Affairs Laryngeal Cancer Group (1991) carried out a randomized control trial of 332 patients with locally advanced laryngeal cancer. Half the group received surgery and post-operative radiotherapy and the other half received chemotherapy, the responders, in addition, receiving radical radiotherapy and the non-responders surgery and radiotherapy. The survival rate was similar in both arms of the study (nearly 70 per cent). This result is a little surprising as the chemotherapy group demonstrated fewer distant metastases, which is considered as one of the main killers in head and neck cancer.

One of the problems in chemotherapy is delivering the drug to the tumour. One way of improving drug delivery is by intra-arterial injection into the tumour's blood supply. Regrettably, this has been associated with high complication rates (Arcangeli, 1983).

As mentioned above, the Veterans study compares surgery and radiotherapy with chemotherapy and radiotherapy. Chemotherapy and radiotherapy given together, as previously mentioned, should offer advantages over either modality alone. Certain drugs are known to be radiosensitizing, these include 5-fluorouracil, mytomycin, cisplatin, carboplatin, hydroxyurea and paclitaxel. Two types of clinical trials have been carried out using chemoradiation.

The first is with chemotherapy added to standard radiotherapy, with no modification to the radiotherapy. Here, the chemotherapy is frequently a single agent given at low to moderate doses with radiosensitization as the goal. The second approach uses chemotherapy administered in full doses, both to sensitize and also kill cells. This results in considerably increased toxicity and requires interruption of treatment to allow normal tissue to recover. Interrupting radiotherapy is a potentially bad concept as it gives tumour cells a chance to proliferate. In the case of chemoradiation however, the drug may be expected to stop repopulation of the cells when radiotherapy is not being administered (Tannock, 1995). Toxicity is increased using two modalities of treatment and in one trial, the incidence of mucositis, which was severe in the radiation field, rose from nine per cent to 21 per cent in those patients receiving concurrent methotrexate (100 mg per m²) (Arcangeli et al., 1987). In addition, bone marrow toxicity may become a problem and make the mucositis much worse and potentially life-threatening.

In spite of these potential problems, six trials combining low dose chemotherapy with radiation have shown an improvement in local control and have even shown a trend in improved survival. This is particularly true for the oral cavity and oropharynx (Lo, 1976; Gupta et al., 1987). In a meta-analysis of 16 randomized trials, Munro (1995) demonstrated that single agent chemotherapy with radiation improved survival by about 12 per cent. Cisplatin appears to be the most effective single agent and has been shown to reduce repair of radiation-induced damage (Dewitt, 1987). Bachaud et al. (1991) gave cisplatin at a dose of 50 mg m² administered weekly, with post-operative radiotherapy. Whilst only between half and two thirds of patients received scheduled chemotherapy, local control and survival were improved. Glicksman et al. (1994) gave cisplatin by continuous infusion on days 1 and 4 and 22–25 during pre-operative radiation therapy. Twenty-two patients with Stage 3 and Stage 4 disease had a pathological complete remission of the disease at surgery. These patients went on to have post-operative irradiation at 27 Gy with cisplatin on days 1 and 4. The disease-specific survival was encouraging at 78 per cent at three years. This trial suggests that continuous cisplatin infusion may be necessary ensuring the drug is present at the time of radiation, although the toxicity from such regimes is quite high, it does appear acceptable. Merlano et al. (1992) combines cisplatin and 5-fluorouracil alternating with radiotherapy at a dose of 60 Gy. The median survival was 41 per cent in the combined treatment group compared with 23 per cent in the radiotherapy alone group, the difference in survival was attributed to an improvement in locoregional control.

It would be prudent here to give an overview of the various trials that have been carried out in head and neck cancer. Arcangeli (1983) using intra-arterial methotrexate as the adjuvant treatment...
found an improved survival with chemotherapy 
(p<0.05). Kun (1986) found a poor survival with 
a very complex chemotherapy regime of bleomycin, 
cyclophosphamide, methotrexate and 5-fluorouracil. 
Such complex regimes should probably not be used. 
The Head and Neck Contracts Programme (1987) 
used cisplatin and bleomycin as the adjuvant treat-
ment and did find a survival benefit. Schuller et al. 
(1988) using a combination of adjuvant chemother-
apy agents found no difference in survival and 
nor did Gehanno et al. (1992) using carboplatin and 
5-fluorouracil. A similar lack of improved results 
were noted by Paccagnella et al. (1994) using 
cyclophosphamide and 5-fluorouracil, distant 
metastases were, however, decreased. Randomized 
trials using concomitant chemotherapy and radio-
therapy frequently do show an increased survival in 
the chemotherapy arm compared with the radio-
therapy arm alone. Typical results are 18 per cent 
improved to 49 per cent at two years in the 
chemotherapy arm (Lo et al., 1976); 17 per cent 
improved to 72 per cent at five years (Shanta and 
Krishnamurti, 1980); 15 per cent to 31 per cent at 
three years (Fu et al., 1987); (Weissberg et al. 1989) 
55 per cent to 75 per cent at 55 years and (Bachaud 
et al., 1991) from 41 per cent to 65 per cent at two 
years. These studies all use single agent treatment, 
either 5-fluorouracil, bleomycin or cisplatin. Against 
these good results should be noted a study by 
Brownman and Cromin (1994) who, using 5-fluorour-
acil noted no improvement in survival in the 
chemotherapy arm and Eschwege et al. in the 

Conclusion

The evidence presented from randomized trials 
shows that response rates from neoadjuvent chemoth-
ery show some promise but long-term survival 
differences are small. It should also be noted that 
patient compliance with these relatively complex 
therapies tends to be reduced. Nevertheless, several 
trials have shown a reduction in distance metastases 
in the chemotherapy arm and this is obviously 
encouraging. Concomitant chemoradiation seems 
particularly promising, the optimum drug and dosage 
of that drug still requires further elucidation by 
clinical trials, as does the dose and timing of 
radiation. In all such trials it should be noted that 
toxicity must be well documented.

It seems likely that neo-adjuvant chemotherapy, 
particular with radiation, as well as perhaps in 
patients also treated by surgery will become standard 
practice.

At present, chemotherapy, no matter how it is 
delivered and in what regime, should probably only 
be given in centres where trials are under way. 
Exceptions to this rule would be when the drugs are 
used in palliation, or rarely perhaps, as a method of 
downstaging otherwise inoperable and untreatable 
tumours in young patients.

References

Arcangeli, G. (1983) Combined radiation and drugs. The 
effect of intra-arterial chemotherapy followed by radio-
therapy in head and neck cancer. Radiotherapy and 

Combined post-operative radiotherapy and weekly cisplatin 
infusion for locally advanced squamous cell carcinoma of 
the head and neck. Preliminary report of a randomised trial. 
International Journal of Radiation Oncology, Biology and 

squamous cell head and neck cancer: what have we learned 

Calabressi, P., Chabner, B. A. (1992) Chemotherapy of 
neoplastic diseases section 12. In Goodman and Gilman’s 
the Pharmacological Basis of Therapeutics vol II. 8th 
Edition, (Goodman Gilman. A., Rall, T. W., Nies, A. S., 
York, pp 1202–1263.

Department of Veteran Affairs Laryngeal Cancer Study 
Group (1991) Induction chemotherapy plus radiation 
compared with surgery plus radiation in patients with 
advanced laryngeal cancer. New England Journal of 
Medicine 324: 1685–1690.

diaminedichloroplatinum (II). A review of experimental 
and clinical data. International Journal of Radiation 
Oncology, Biology and Physics 13: 463–462.

year results of a randomised trial comparing radiotherapy 
and concomitant bleomycin to radiotherapy alone in 
epidermoid carcinomas of the oropharynx. Experience of the 
EORTC. National Cancer Institute Monograph 6: 275–278.

Farber, S., Diamond, L. K., Mercer, R. D., Silvester, R. F., 
Wolff, V. A. (1948) Temporary remissions in acute 
leukaemia in children reduced by folic antagonists 4-
amethopteryglutamic acid (aminopterin). New England 

Forastiere, A. (1994) Overview of platinum chemotherapy in 

Fu, K. K., Phillips, T. L., Silverberg, I. V. (1987) Combined 
radiotherapy and chemotherapy with bleomycin and 
methotrexate for advanced inoperable head and neck 
cancer. Update of a Northern Californian oncology group 

Gehanno, P., Depondt, J., Peynegre, R., Peytral, C, Martin, 
M., Baille, F., Guerrier, B., Dubreuil, C, Pellae-Cosset, B. 
(1992) Neoadjuvant combination of carboplatin and fluor-
ouracil in head and neck cancer: a randomised study. 
Annals of Oncology 3 (suppl. 3) 43–46.


Glicksman, A. S., Slotman, G., Doolittle, C, Clark, J., Koness, 
J., Coachman, N., Posner, M., Derosa, E., Wanebo, H. 
(1994) Concurrent cisplatin and radiation with or with-
out surgery for advanced head and neck cancer. Interna-
tional Journal of Radiation Oncology, Biology and Physics 
36: 1043–1050.

randomised clinical trial to contrast radiotherapy with 
radiotreatment and methotrexate given synchronously in 

Head and Neck Contracts Program (1987) Adjuvant chemoth-
ery for advanced head and neck squamous cancer. 
Final report of the head and neck contracts program. 
Cancer 60: 301–311.

Hertz, R. (1963) Folic acid antagonists: effects on the cell and 
the patient. Clinical staff confidence at the NIH. 

randomised study comparing cisplatinum and fluorouracil 
as single agents and in combination for advanced squamous 
cell carcinoma of the head and neck. Journal of Clinical 
Oncology 10: 257–263.


Address for correspondence:
Professor A. S. Jones,
Department of Otolaryngology-Head and Neck Surgery,
University of Liverpool,
University Clinical Departments,
Duncan Building,
Daulby Street,
Liverpool L69 3GA.