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A two-dimensional model describing river morphodynamic processes under mixed-size
sediment conditions is analysed with respect to its well posedness. Well posedness
guarantees the existence of a unique solution continuously depending on the problem
data. When a model becomes ill posed, infinitesimal perturbations to a solution grow
infinitely fast. Apart from the fact that this behaviour cannot represent a physical
process, numerical simulations of an ill-posed model continue to change as the grid
is refined. For this reason, ill-posed models cannot be used as predictive tools. One
source of ill posedness is due to the simplified description of the processes related
to vertical mixing of sediment. The current analysis reveals the existence of two
additional mechanisms that lead to model ill posedness: secondary flow due to the
flow curvature and the effect of gravity on the sediment transport direction. When
parametrising secondary flow, accounting for diffusion in the transport of secondary
flow intensity is a requirement for obtaining a well-posed model. When considering
the theoretical amount of diffusion, the model predicts instability of perturbations
that are incompatible with the shallow water assumption. The effect of gravity on the
sediment transport direction is a necessary mechanism to yield a well-posed model,
but not all closure relations to account for this mechanism are valid under mixed-size
sediment conditions. Numerical simulations of idealised situations confirm the results
of the stability analysis and highlight the consequences of ill posedness.
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1. Introduction
Modelling of fluvial morphodynamic processes is a powerful tool not only to

predict the future state of a river after, for instance, an intervention or a change in
the discharge regime (Blom et al. 2017), but also as a source of understanding of the
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natural processes responsible for patterns such as dunes, meanders and bars (Callander
1969; Seminara 2006; Colombini & Stocchino 2012). A framework for modelling the
morphodynamic development of alluvial rivers is composed of a system of partial
differential equations for modelling the flow, change in bed elevation and change in
the bed surface texture. The Saint-Venant (1871) equations account for conservation
of water mass and momentum and enable modelling processes with a characteristic
length scale significantly longer than the flow depth in one-dimensional cases. The
shallow water equations describe the depth-averaged flow in two-dimensional cases.
Conservation of unisize bed sediment is typically modelled using the Exner (1920)
equation and, under mixed-size sediment conditions, the active layer model (Hirano
1971) accounts for mass conservation of bed sediment of each grain size.

Although widely successful in predicting river morphodynamics, a fundamental
problem arises when using the above framework. Under certain conditions the
description of the natural phenomena is not captured by the system of equations,
which manifests as an ill-posed model. Models describe a simplified version of reality,
which allows us to understand the key elements playing a major role in the dynamics
of the system studied (Paola & Leeder 2011). Major simplifications such as reducing
streamwise morphodynamic processes to a diffusion equation allow for insight into
the creation of stratigraphic records and evolution on large spatial scales (Paola, Heller
& Angevine 1992; Paola 2000; Paola & Leeder 2011). There is a difference between
greatly simplified models and models that do not capture the physical processes.
A simplified model reproduces a reduced-complexity version of reality (Murray
2007) and it is mathematically well posed, as a unique solution exists that depends
continuously on the data (Hadamard 1923; Joseph & Saut 1990). An ill-posed model
lacks crucial physical processes that cause the model to be unsuitable to capture the
dynamics of the system (Fowler 1997). An ill-posed model is unrepresentative of a
physical phenomenon, as the growth rate of infinitesimal perturbations to a solution
(i.e. negligible noise from a physical perspective) tends to infinity (Kabanikhin 2008).
This is different from chaotic systems, in which noise similarly causes the solution
to diverge but not infinitely fast (Devaney 1989; Banks et al. 1992).

An example of an ill-posed model is the one describing the dynamics of granular
flow. The continuum formulation of such a problem depends on deriving a model for
the granular viscosity. Jop, Forterre & Pouliquen (2005, 2006) relate viscosity to a
dimensionless shear rate. The model captures the dynamics of granular flows if the
dimensionless shear rate is within a certain range, but otherwise the model is ill-posed
and loses its predictive capabilities (Barker et al. 2015). A better representation of the
physical processes guaranteeing that viscosity tends to 0 when the dimensionless shear
rate tends to 0 extends the domain of well posedness (Barker & Gray 2017).

Under unisize sediment and one-dimensional flow conditions, the Saint-Venant–
Exner model may be ill posed when the Froude number is larger than 6 (Cordier, Le
& De Luna 2011). As most flows of interest are well below this limit, we can consider
modelling of fluvial problems under unisize sediment conditions to be well posed.
This is not the case when considering mixed-size sediment. Using the active layer
model we assume that the bed can be discretised into two layers: the active layer and
the substrate. The sediment transport rate depends on the grain size distribution of
the active layer. A vertical flux of sediment occurs between the active layer and the
substrate if the elevation of the interface between the active layer and the substrate
changes. The active layer is well mixed, whereas the substrate can be stratified. The
above simplification of the physical processes responsible for vertical mixing causes
the active layer model to be ill posed (Ribberink 1987; Stecca, Siviglia & Blom 2014;
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Chavarrías, Stecca & Blom 2018). In particular, the active layer is prone to be ill
posed under degradational conditions into a substrate finer than the active layer (i.e.
an armoured bed (Parker & Sutherland 1990)) for any value of the Froude number.

Previous analyses of river morphodynamic models regarding their well posedness
have been focused on conditions of one-dimensional flow (Ribberink 1987; Cordier
et al. 2011; Stecca et al. 2014; Chavarrías et al. 2018). Our objective is to extend
these analyses to conditions of two-dimensional flow. More specifically we include
the secondary flow and the bed slope effect in the analysis of the well posedness of
the system of equations.

As the flow is intrinsically three-dimensional, the depth-averaging procedure
eliminates an important flow component: the secondary flow (Van Bendegom
1947; Rozovskii 1957). The secondary flow causes, for instance, an increase in
the amplitude of meanders (Kitanidis & Kennedy 1984) and plays an important role
in bar development (Olesen 1982). To understand the morphology of two-dimensional
features, it is necessary to account for the fact that the sediment transport direction
is affected by the gravitational pull when the bed slope in the transverse direction
is significant (Dietrich & Smith 1984; Seminara 2006). This is usually done using
a closure relation that sets the angle between the flow and the sediment transport
directions as a function of the flow and sediment parameters (Van Bendegom 1947;
Engelund 1974; Talmon, Struiksma & Mierlo 1995; Seminara, Solari & Parker 2002;
Parker, Seminara & Solari 2003; Francalanci & Solari 2007, 2008; Baar et al. 2018).

In this paper we show that combining these two effects, secondary flow and
sediment deflection by the bed slope, leads in some cases to an ill-posed system of
equations. The paper is organised as follows. In § 2 we present the model equations
describing the primary and secondary flow, as well as changes in bed elevation
and surface texture. In § 3 we extend the explanation of ill posedness and relate
it to growth of perturbations. We subsequently conduct a stability analysis of the
equations, which indicates the conditions under which the secondary flow model and
the closure relation for the bed slope effect yield an ill-posed model (§ 4). In § 5
we run numerical simulations of idealised cases to test the validity of the analytical
results and study the consequences of ill posedness.

2. Mathematical model
In this section we present the two-dimensional mathematical model of flow,

accounting for secondary flow, coupled to a morphodynamic model for mixed-size
sediment. We subsequently introduce the equations describing the primary flow (§ 2.1),
the secondary flow (§ 2.2) and morphodynamic change (§ 2.3). In § 2.4 we linearise
the system of equations to study the stability of perturbations.

2.1. Primary flow equations
The primary flow is described using the depth-averaged shallow water equations (e.g.
Vreugdenhil 1994):

∂h
∂t
+
∂qx

∂x
+
∂qy

∂y
= 0, (2.1)

∂qx

∂t
+
∂(q2

x/h+ gh2/2)
∂x

+

∂
(qxqy

h

)
∂y

+ gh
∂η

∂x
− Fsx
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= 2
∂

∂x

νh
∂
(qx

h

)
∂x

+ ∂

∂y

νh

∂
(qx

h

)
∂y

+

∂
(qy

h

)
∂x


− ghSfx, (2.2)

∂qy

∂t
+
∂(q2

y/h+ gh2/2)
∂y

+

∂
(qxqy

h

)
∂x

+ gh
∂η

∂y
− Fsy

= 2
∂

∂y

νh
∂
(qy

h

)
∂y

+ ∂

∂x

νh

∂
(qy

h

)
∂x

+

∂
(qx

h

)
∂y


− ghSfy, (2.3)

where (x, y) (m) are Cartesian coordinates and t (s) is the time coordinate. The
variables (qx, qy) = (uh, vh) (m2 s−1) are the specific water discharges in the x
and y direction, respectively, where h (m) is the flow depth and u (m s−1) and
v (m s−1) are the depth-averaged flow velocities. The variable η (m) is the bed
elevation and g (m s−2) the acceleration due to gravity. The friction slopes are
(Sfx, Sfy) (−) and the diffusion coefficient ν (m2 s−1) is the horizontal eddy viscosity.
The depth-averaging procedure of the equations of motion introduces terms that
originate from the difference between the actual velocity at a certain elevation in the
water column and the depth-averaged velocity. We separate the contributions due to
turbulent motion and secondary flow caused by the flow curvature. The contribution
due to turbulent motion is accounted for by the diffusion coefficient. Elder (1959)
derived an expression for the diffusion coefficient that accounts for the effect of
turbulent motion on the depth-averaged flow assuming a logarithmic profile for the
primary flow and negligible effect of molecular viscosity:

νE =
1
6κhu∗, (2.4)

where κ = 0.41 (−) is the von Kármán constant and u∗ =
√

Cf Q/h (m s−1) is the
friction velocity. Parameter Cf (−) is a non-dimensional friction coefficient, which we
assume to be constant (Ikeda, Parker & Sawai 1981; Schielen, Doelman & De Swart
1993) and Q =

√
q2

x + q2
y (m2 s−1) is the module of the specific water discharge. In

the numerical simulations we will assume the eddy viscosity to be a constant equal
to the value given by νE in a reference state (e.g. Falconer 1980; Lien et al. 1999).
Appendix A presents the limitations of the coefficient derived by Elder (1959).

The terms (Fsx,Fsy) (m2 s−2) account for the effect of secondary flow. These terms
are responsible for a transfer of momentum that shifts the maximum velocity to the
outer bend (Kalkwijk & De Vriend 1980), as well as for a sink of energy in the
secondary circulation (Flokstra 1977; Begnudelli, Valiani & Sanders 2010). We deal
with these terms in § 2.2.

We assume a Chézy-type friction:

Sfx =
Cf qxQ

gh3
, Sfy =

Cf qyQ
gh3

. (2.5a,b)

One underlying assumption of the system of equations presented above is that
the vertical length and velocity scales are negligible with respect to the horizontal
ones. Another assumption is the fact that the concentration of sediment (the ratio
between the solid and liquid discharge) is small (below 6× 10−3 (Garegnani, Rosatti
& Bonaventura 2011, 2013)), such that we apply the clear water approximation.
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2.2. Secondary flow equations
This section describes the equations that model secondary flow (i.e. formulations
for Fsx and Fsy in (2.2) and (2.3)). The secondary flow velocity profile us (m s−1)
(i.e. the vertical profile of the velocity component perpendicular to the primary
flow) is assumed to have a universal shape as a function of the relative elevation
in the water column ζ = (z − η)/h (−), where z (m) is the vertical Cartesian
coordinate perpendicular to x and y increasing in the upward direction (Rozovskii
1957; Engelund 1974; De Vriend 1977, 1981; Booij & Pennekamp 1984). Worded
differently, the vertical profile of the secondary flow is parametrised by a single
value representing the intensity of the secondary flow I (m s−1), such that us

= f (ζ )I.
The secondary flow intensity I is the integral of the absolute value of the secondary
flow velocity profile (De Vriend 1981). Among others, Rozovskii (1957), Engelund
(1974) and De Vriend (1977), derive equilibrium profiles of the secondary flow that
differ in the description of the eddy viscosity, vertical profile of the primary flow
and the boundary condition of the flow at the bed. Following De Vriend (1977), we
assume a logarithmic profile for the primary flow (i.e. a parabolic distribution of the
eddy viscosity) and vanishing velocity close to the bed at ζ = exp (−1− 1/α) where
α =

√
Cf /κ < 0.5.

The depth-averaging procedure yields the integral value (along z) of the force
per unit mass that the secondary flow exerts on the primary flow (De Vriend 1977;
Kalkwijk & De Vriend 1980):

Fsx =
∂Txx

∂x
+
∂Txy

∂y
, (2.6)

Fsy =
∂Tyx

∂x
+
∂Tyy

∂y
, (2.7)

where Tlm (m3 s−2) is the integral shear stress per unit mass in the direction l-m.
Assuming a large width-to-depth ratio (i.e. B/h� 1, where B (m) is the characteristic
channel width) and a mild curvature (i.e. h/Rs � 1, where Rs (m) is the radius of
curvature of the streamlines), the shear stress terms are:

Txx =−2
β∗I
Q

qxqy, (2.8)

Txy = Tyx =
β∗I
Q
(q2

x − q2
y), (2.9)

Tyy = Tyy = 2
β∗I
Q

qxqy, (2.10)

where β∗ = 5α − 15.6α2
+ 37.5α3.

The simplest strategy to account for secondary flow assumes that the secondary
flow is fully developed. This is equivalent to saying that the secondary flow intensity
is equal to the equilibrium value Ie =Q/Rs (m s−1) found in an infinitely long bend
(Rozovskii 1957; Engelund 1974; De Vriend 1977, 1981; Booij & Pennekamp 1983).
A change in channel curvature leads to the streamwise adaptation of secondary flow
to the equilibrium value (De Vriend 1981; Ikeda & Nishimura 1986; Johannesson &
Parker 1989; Seminara & Tubino 1989). Booij & Pennekamp (1984) and Kalkwijk
& Booij (1986) not only account for the spatial adaptation but also the temporal
adaptation of the secondary flow associated with a variable discharge or tides. Here
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we adopt the latter strategy, which has been applied, for instance, in modelling
the morphodynamics of braided rivers (Javernick et al. 2016; Williams et al. 2016;
Javernick, Redolfi & Bertoldi 2018). The spatial and temporal adaptation of secondary
flow is expressed by (Jagers 2003):

∂I
∂t
+

qx

h
∂I
∂x
+

qy

h
∂I
∂y
−
∂

∂x

(
ν
∂I
∂x

)
−
∂

∂y

(
ν
∂I
∂y

)
= Ss, (2.11)

where Ss (m s−2) is a source term which depends on the difference between the local
secondary flow intensity and its equilibrium value:

Ss =−
I − Ie

TI
, (2.12)

where TI (s) is the adaptation time scale of the secondary flow:

TI =
LIh
Q
, (2.13)

where LI = L∗I h (m) is the adaptation length scale of the secondary flow, which
depends on the non-dimensional length scale L∗I = (1− 2α)/2κ2α (Kalkwijk & Booij
1986).

The radius of curvature of the streamlines is defined as (e.g. Legleiter & Kyriakidis
2006):

1
Rs
=

dx
dt

d2y
dt2
−

dy
dt

d2x
dt2((

dx
dt

)2

+

(
dy
dt

)2
)3/2 , (2.14)

assuming steady flow and in terms of water discharge we obtain:

1
Rs
=

−qxqy
∂qx

∂x
+ q2

x
∂qy

∂x
− q2

y
∂qx

∂y
+ qxqy

∂qy

∂y
(q2

x + q2
y)

3/2
. (2.15)

The secondary flow model described in this section closes the primary flow model
described in § 2.1 given a certain bed elevation. In the following section we describe
the model equations that describe changes in bed elevation as a function of the
primary and secondary flow.

2.3. Morphodynamic equations
We consider an alluvial bed composed of an arbitrary number N of non-cohesive
sediment fractions characterised by a grain size dk (m), where the subscript k denotes
the grain size fraction in increasing order (i.e. d1 < d2 < · · · < dN). Bed elevation
change depends on the divergence of the sediment transport rate (Exner 1920):

∂η

∂t
+
∂qbx

∂x
+
∂qby

∂y
= 0, (2.16)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

16
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.166


Ill posedness in two-dimensional problems 467

where qbx=
∑N

k=1 qbxk (m2 s−1) and qby=
∑N

k=1 qbyk (m2 s−1) are the total specific (i.e.
per unit of differential length) sediment transport rates including pores in the x and y
direction, respectively. The variables qbxk (m2 s−1) and qbyk (m2 s−1) are the specific
sediment transport rates of size fraction k including pores. For simplicity we assume
a constant porosity and density of the bed sediment. The sediment transport rate is
assumed to be locally at capacity, which implies that we do not model the temporal
and spatial adaptation of the sediment transport rate to capacity conditions (Bell &
Sutherland 1983; Phillips & Sutherland 1989; Jain 1992).

Changes in the bed surface grain size distribution are accounted for using the active
layer model (Hirano 1971). For simplicity, we assume a constant active layer thickness
La (m). Conservation of sediment mass of size fraction k in the active layer reads:

∂Mak

∂t
+ f I

k
∂η

∂t
+
∂qbxk

∂x
+
∂qbyk

∂y
= 0 k ∈ {1,N − 1}, (2.17)

and in the substrate (Chavarrías et al. 2018):

∂Msk

∂t
− f I

k
∂η

∂t
= 0 k ∈ {1,N − 1}, (2.18)

where Mak =FakLa (m) and Msk =
∫ η0+η−La

η0
fsk(z) dz (m) are the volume of sediment of

size fraction k per unit of bed area in the active layer and the substrate, respectively.
Parameter η0 (m) is a datum for bed elevation. Parameters Fak ∈ [0, 1], fsk ∈ [0, 1]
and f I

k ∈ [0, 1] are the volume fraction content of sediment of size fraction k in the
active layer, substrate and at the interface between the active layer and the substrate,
respectively. By definition, the sum of the volume fraction content over all size
fractions equals 1:

N∑
k=1

Fak = 1,
N∑

k=1

fsk(z)= 1,
N∑

k=1

f I
k = 1. (2.19a−c)

Under degradational conditions, the volume fraction content of size fraction k at
the interface between the active layer and the substrate is equal to that at the top
part of the substrate ( f I

k = fsk(z = η − La) for ∂η/∂t < 0). This allows for modelling
of arbitrarily abrupt changes in grain size due to erosion of previous deposits. Under
aggradational conditions the sediment transferred to the substrate is a weighted
mixture of the sediment in the active layer and the bed load (Parker 1991; Hoey &
Ferguson 1994; Toro-Escobar, Paola & Parker 1996). Here we simplify the analysis
and we assume that the contribution of the bed load to the depositional flux is
negligible (i.e. f I

k = Fak for ∂η/∂t> 0) (Hirano 1971).
The magnitude of the sediment transport rate is assumed to be a function of the

local bed shear stress. We apply the sediment transport relation by Engelund &
Hansen (1967) in a fractional manner (Blom, Viparelli & Chavarrías 2016; Blom
et al. 2017) as well as the one by Ashida & Michiue (1971) (appendix B).

The direction of the sediment transport (ϕsk (rad)) is affected by the secondary flow
and the bed slope (Van Bendegom 1947):

tan ϕsk =

sin ϕτ −
1

gsk

∂η

∂y

cos ϕτ −
1

gsk

∂η

∂x

k ∈ {1,N}, (2.20)
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where gsk (−) is a function that accounts for the influence of the bed slope on the
sediment transport direction and ϕτ (rad) is the direction of the sediment transport
accounting for the secondary flow only:

tan ϕτ =
qy − hαI

qx

Q
I

qx − hαI
qy

Q
I
. (2.21)

Assuming a mild curvature, uniform flow conditions and a logarithmic profile of the
primary flow, the constant αI (−) is (De Vriend 1977):

αI =
2
κ2
(1− α). (2.22)

The effect of the bed slope on the sediment transport direction depends on the grain
size (Parker & Andrews 1985). We account for this effect setting:

gsk = Asθ
Bs
k k ∈ {1,N}, (2.23)

where As (−) and Bs (−) are non-dimensional parameters and θk (−) is the Shields
(1936) stress (appendix B). Different values of the coefficients As and Bs have been
proposed (for a recent review, see Baar et al. (2018)). We consider two possibilities:
(i) As = 1, Bs = 0 (Schielen et al. 1993) and (ii) As = 1.70 and Bs = 0.5 (Talmon
et al. 1995). In the first and simpler case, the bed slope effect is independent of the
bed shear stress (Engelund & Skovgaard 1973; Engelund 1975). In the second, more
complex, case, the bed slope effect is assumed to be dependent on the fluid drag force
on the grains, which is assumed to depend on the Shields stress (Koch & Flokstra
1981).

2.4. Linearised system of equations
The system of equations describing the flow, change of bed level and change of the
bed surface texture is highly nonlinear. Here we linearise the system of equations to
provide insight on the fundamental properties of the model and to study the stability
of perturbations. To this end we consider a reference state that is a solution to the
system of equations. The reference state is a steady uniform straight flow in the x
direction over an inclined plane bed composed of an arbitrary number of size fractions.
Mathematically: h0= ct., qx0= ct., qy0= 0, I0= 0, ∂η/∂x= ct.=−Cf q2

x0/gh3
0, ∂η/∂y= 0,

Mak0= ct. ∀k ∈ {1,N − 1}, where ct. denotes a constant different from 0 and subscript
0 indicates the reference solution.

We add a small perturbation to the reference solution denoted by ′ and we linearise
the resulting system of equations. After substituting the reference solution we obtain
a system of equations of the perturbed variables:

∂Q′

∂t
+ Dx0

∂2Q′

∂x2
+ Dy0

∂2Q′

∂y2
+ Ax0

∂Q′

∂x
+ Ay0

∂Q′

∂y
+ B0Q′ = 0, (2.24)

where the vector of dependent variables is:

Q′ = [h′, q′x, q′y, I′, η′, [M′ak]]
T, (2.25)

where the square bracket indicates the vector character.
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The diffusive matrix in x direction is:

Dx0 =



0 0 0 0 0 0

2ν
qx0

h0
−2ν −ν 0 0 0

0 0 −ν 0 0 0
0 0 0 −ν 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (2.26)

where 0 denotes the zero matrix. The diffusive matrix in the y direction is:

Dy0 =



0 0 0 0 0 0

ν
qx0

h0
−ν 0 0 0 0

ν
qx0

h0
−ν −2ν 0 0 0

0 0 0 −ν 0 0

0 0 0 0
∂qby

∂
∂η

∂y

∣∣∣∣∣∣∣∣
0

0

0 0 0 0

 ∂qbyk

∂
∂η

∂y

∣∣∣∣∣∣∣∣
0

− f I
k0
∂qby

∂
∂η

∂y

∣∣∣∣∣∣∣∣
0

 0



. (2.27)

The advective matrix in the x direction is:

Ax0 =



0 1 0 0 0 0

gh0 −

(
qx0

h0

)2

2
qx0

h0
0 0 gh0 0

0 0
qx0

h0
−β∗qx0 0 0

0 0 −
qx0

h2
0L∗I

qx0

h0
0 0

−qx0

h0

∂qbx

∂qx

∣∣∣∣
0

∂qbx

∂qx

∣∣∣∣
0

0 0 0
[
∂qbx

∂Mal

∣∣∣∣
0

]
[
−qx0

h0

∂qbxk

∂qx

∣∣∣∣
0

+ f I
k0

qx0

h0

∂qbx

∂qx

∣∣∣∣
0

] [
∂qbxk

∂qx

∣∣∣∣
0

− f I
k0
∂qbx

∂qx

∣∣∣∣
0

]
0 0 0

[
∂qbxk

∂Mal

∣∣∣∣
0

− f I
k0
∂qbx

∂Mal

∣∣∣∣
0

]


.

(2.28)
The advective matrix in the y direction is:

Ay0 =



0 0 1 0 0 0

0 0
qx0

h0
−β∗qx0 0 0

gh0 0 0 0 gh0 0
0 0 0 0 0 0

0 0
∂qby

∂qy

∣∣∣∣
0

∂qby

∂I

∣∣∣∣
0

0 0

0 0
[
∂qbyk

∂qy

∣∣∣∣
0

− f I
k0
∂qby

∂qy

∣∣∣∣
0

] [
∂qbyk

∂I

∣∣∣∣
0

− f I
k0
∂qby

∂I

∣∣∣∣
0

]
0 0


.

(2.29)
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The matrix of linear terms is:

B0 =



0 0 0 0 0 0
−3Cf q2

x0

h3
0

2Cf qx0

h2
0

0 0 0 0

0 0
Cf qx0

h2
0

0 0 0

0 0 0
qx0

h2
0L∗I

0 0

0 0 0 0 0 0
0 0 0 0 0 0


. (2.30)

We assume that the perturbations can be represented as a Fourier series, which
implies that they are piecewise smooth and bounded for x = ±∞. Using this
assumption the solution of the perturbed system is expressed in the form of normal
modes:

Q′ =Re(Vei(kwx+kwy−ωt)), (2.31)

where i is the imaginary unit, kwx (rad m−1) and kwy (rad m−1) are the real
wavenumbers in the x and y direction, respectively, ω = ωr + iωi (rad s−1) is the
complex angular frequency, V is the complex amplitude vector and Re denotes the
real part of the solution (which we will omit in the subsequent steps). The variable
ωr is the angular frequency and ωi the attenuation coefficient. A value of ωi > 0
implies growth of perturbations and ωi < 0 decay. Substitution of (2.31) in (2.24)
yields:

[M0 −ω1]V = 0, (2.32)

where:

M0 = Dx0k2
wxi+ Dy0k2

wyi+ Ax0kwx + Ay0kwy − B0i, (2.33)

and 1 denotes the unit matrix. Equation (2.32) is an eigenvalue problem in which
the eigenvalues of M0 (as a function of the wavenumber) are the values of ω
satisfying (2.32).

The solution of the linear model provides information regarding the development of
small amplitude oscillations only, but for an arbitrary wavenumber. For this reason the
linear model is convenient for studying the well posedness of the model, which we
will assess in the following section.

3. Instability, hyperbolicity and ill posedness
Ill posedness has been related to the system of governing equations losing its

hyperbolic character. Stability analysis investigates growth and decay of perturbations
of a base state. The two mathematical problems may seem unrelated but in fact they
are strongly linked. In this section we clarify the terms unstable, hyperbolic and
ill posed, and present the mathematical framework that we use to study the well
posedness of the system of equations.

A system is stable if perturbations to an equilibrium state decay and the solution
returns to its original state. This is equivalent to saying that all possible combinations
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u (m s−1) v (m s−1) h (m) Cf (−)

1 0 1 0.007

TABLE 1. Reference state.

Case Model Fr Stability Mathematical character

I1 iSWE 0.32 Stable Well posed
B1 iSWE+Exner 0.32 Unstable Well posed
I2 iSWE 2.01 Unstable Ill posed

TABLE 2. Cases of a stable well-posed model (I1), an unstable well-posed model (B1)
and an ill-posed model (I2). Case I2 has the same parameter values as Case I1 but for a
mean flow velocity which is equal to 6.30 m s−1.

of wavenumbers in the x and y directions yield a negative growth rate (ωi (2.31)). An
example of a stable system in hydrodynamics is the inviscid shallow water equations
(iSWE) for a Froude number smaller than 2 (Jeffreys 1925; Balmforth & Mandre
2004; Colombini & Stocchino 2005). In figure 1(a) we show the maximum growth
rate of perturbations to a reference solution (Case I1, tables 1 and 2) of the iSWE
on an inclined plane (i.e. the first three equations of the complete system (2.24),
with neither secondary flow nor diffusion). The growth rate is obtained numerically
by computing the eigenvalues of the reduced matrix M0 (the first three rows and
columns in (2.33)) for wavenumbers between 0 and 250 rad m−1, which is equivalent
to wavelengths (lwx = 2π/kwx and equivalently for y) down to 1 cm. Figure 1(b)
presents the same information as figure 1(a) in terms of wavelength rather than
wavenumber to better illustrate the behaviour for large wavelengths. The growth rate
is negative for all wavenumbers, which confirms that the iSWE for Fr < 2 yield a
stable solution.

A system is unstable when perturbations to an equilibrium state grow and the
solution diverges from the initial equilibrium state. The growth of river bars is an
example of an unstable system in river morphodynamics. A straight alluvial channel
is stable if the width-to-depth ratio is sufficiently small and, above a certain threshold
value, the channel becomes unstable and free alternate bars grow (Engelund &
Skovgaard 1973; Fredsøe 1978; Colombini, Seminara & Tubino 1987; Schielen et al.
1993). Mathematically, an unstable system has a region, a domain in the wavenumber
space, in which the growth rate of perturbations is positive. In figure 1(c,d) we present
the growth rate of perturbations to a reference solution consisting of uniform flow
(table 1) on an alluvial bed composed of unisize sediment with a characteristic grain
size equal to 0.001 m (Case B1, table 2). The sediment transport rate is computed
using the relation by Engelund & Hansen (1967) (B 4) and the effect of the bed slope
on the sediment transport direction is accounted for using the simplest formulation,
gs = 1. Figure 1(d) confirms the classical result of linear bar theory: there exists
a critical transverse wavelength (lwyc) below which all perturbations decay. In our
particular case lwyc = 40.2 m. Impermeable boundary conditions at the river banks
limit the possible wavelengths to fractions of the channel width B (m) such that
lwy = 2B/m for m = 1, 2, . . . (Callander 1969). As the most unstable mode is the
first one (i.e. m = 1, alternate bars) (Colombini et al. 1987; Schielen et al. 1993),
the minimum channel width above which perturbations grow is Bc = lwyc/2= 20.1 m,
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FIGURE 1. (Colour online) Growth rate of perturbations added to the reference case
(tables 1 and 2) as a function of the wavenumber and the wavelength: (a–b) iSWE,
Fr< 2 (Case I1, well posed), (c–d) iSWE+Exner (Case B1, well posed) and (e–f ) iSWE,
Fr > 2 (Case I2, ill posed). The panels in the two columns show the same information
but highlight the behaviour for large wavenumbers (left column) and for large wavelengths
(right column). Red and green indicates growth and decay of perturbations, respectively.

which confirms the results of Schielen et al. (1993). Figure 1(c) highlights, as for
Case I1, the decay of short waves.

A particular case of instability is that in which the domain of positive growth
rate extends to infinitely large wavenumbers (i.e. short waves). Under this condition
there is no cutoff wavenumber above which we can neglect the contribution of ever
shorter waves with non-zero growth rates. For any unstable perturbation a shorter
one can be found which is even more unstable. This implies that the growth rate
of an infinitesimal perturbation (i.e. noise) tends to infinity. Such a system cannot
represent a physical phenomenon, as the growth rate of any physical process in nature
is bounded. A system in which the growth rate of infinitesimal perturbations tends
to infinity does not have a unique solution depending continuously on the initial and
boundary conditions, which implies that the system is ill posed (Hadamard 1923;
Joseph & Saut 1990). An example of an ill-posed hydrodynamic model is the iSWE
for flow with a Froude number larger than 2. In figure 1(e, f ) we show the growth
rate of perturbations to the reference solution of a case in which the Froude number
is slightly larger than 2 (Case I2, table 2). The growth rate extends to infinitely large
wavenumbers, which confirms that this case is ill posed. A model being ill posed is
an indication that there is a relevant physical mechanism that has been neglected in
the model derivation (Fowler 1997). Viscous forces regularise the iSWE (i.e. make
the model well posed) and rather than ill posed, the viscous shallow water equations
become simply unstable for a Froude number larger than 2, predicting the formation
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of roll waves (Balmforth & Mandre 2004; Balmforth & Vakil 2012; Rodrigues &
Zumbrun 2016; Barker et al. 2017a,b).

Chaotic models, just as ill-posed models, are sensitive to the initial and boundary
conditions and lose their predictive capabilities in a deterministic sense (Lorenz 1963).
Yet, there are two essential differences. First, chaotic systems lose their predictive
capabilities after a certain time (Devaney 1989; Banks et al. 1992), yet there exists
a finite time in which the dynamics is predictable. In ill-posed models infinitesimal
perturbations to the initial condition cause a finite divergence in the solution in an
arbitrarily (but fixed) short time. Second, while the dynamics of a chaotic model is not
predictable in deterministic terms after a certain time, these continue to be predictable
in statistical terms. For this reason, although being sensitive to the initial and boundary
conditions, a model presenting chaotic properties can be used, for instance, to capture
the essential dynamics and spatio-temporal features of river braiding (Murray & Paola
1994, 1997). On the contrary, the dynamics of an ill-posed model cannot be analysed
in statistical terms.

The numerical solution of an ill-posed problem continues to change as the grid is
refined because a smaller grid size resolves larger wavenumbers with faster growth
rates (Joseph & Saut 1990; Kabanikhin 2008; Barker et al. 2015; Woodhouse et al.
2012). In other words, the numerical solution of an ill-posed problem does not
converge when the grid cell size is reduced. This property emphasises the unrealistic
nature of ill-posed problems and shows that ill-posed models cannot be applied in
practice.

We present an example of grid dependence specifically related to river morpho-
dynamics under conditions with mixed-size sediment. We consider a case of
degradation into a substrate finer than the active layer, as this is a situation in
which the active layer model is prone to be ill posed (§ 1). The reference state
is the same as in Case B1, yet the sediment is a mixture of two sizes equal to
0.001 m and 0.010 m. The bed surface is composed of 10 % fine sediment. The
active layer thickness is equal to 0.05 m, which in this case is representative of
small dunes covering the bed (e.g. Deigaard & Fredsøe 1978; Armanini & di Silvio
1988; Blom 2008). Depending on the substrate composition, this situation yields an
ill-posed model (Chavarrías et al. 2018). When the substrate is composed of 50 %
fine sediment (Case H1, table 3), the problem is well posed and it is ill posed when
the substrate is composed of 90 % fine sediment (Case H2, table 3).

We use the software package Delft3D (Lesser et al. 2004) to solve the system
of equations. We stress that the problem of ill posedness is inherent to the system
of equations and independent from the numerical solver. We have implemented
a subroutine that assesses the well posedness of the system of equations at each
node and time step. The domain is 100 m long and 10 m wide. The downstream
water level is lowered at a rate of 0.01 m h−1 to induce degradational conditions. The
upstream sediment load is constant and equal to the equilibrium value of the reference
state (Blom et al. 2017). The cells are square and we consider three different sizes
(table 3). The time step varies between simulations to maintain a constant value of
the CFL (Courant, Friedrichs & Lewy 1928) number.

Figure 2 presents the bed elevation after 10 h. The result of the well-posed case
(H1, left column) is grid independent. The result of the ill-posed case (H2, right
column) changes as the grid is refined and presents an oscillatory pattern characteristic
of ill-posed simulations (Joseph & Saut 1990; Woodhouse et al. 2012; Barker et al.
2015; Chavarrías et al. 2018). The bed seems to be flat in the ill-posed simulation
with a coarser grid (figure 2b). This is because oscillations grow slowly on a coarse

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

16
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.166


474 V. Chavarrías, R. Schielen, W. Ottevanger and A. Blom

Case f I
1 (−) 1x (m) Mathematical character

H1a 0.5 0.50 Well posed
H1b 0.5 0.25 Well posed
H1c 0.5 0.10 Well posed
H2a 0.9 0.50 Ill posed
H2b 0.9 0.25 Ill posed
H2c 0.9 0.10 Ill posed

TABLE 3. Cases showing the effect of grid cell size on the numerical solution of
well-posed and ill-posed models.

grid and require more time to be perceptible. The waviness of the bed is seen in
the result of the check routine, as it predicts ill posedness only at those locations
where the bed degrades (the stoss face of the oscillations). The fact that the model
is well posed in almost the entire domain in the ill-posed case solved using a cell
size equal to 0.25 m (H2b, figure 2d) and 0.10 m (H2c, figure 2f ) does not mean
that the results are realistic. Non-physical oscillations have grown and vertically mixed
the sediment such that the situation is well posed after 10 h (Chavarrías et al. 2018).
We provide a movie of figure 2 in the online supplementary material available at
https://doi.org/10.1017/jfm.2019.166.

In the above idealised situations it is evident that the oscillations are non-physical
and it is straightforward to do a converge test to clarify that the solution is grid
dependent. In complex domains in which several processes play a role, it is
more difficult to associate oscillations with ill posedness. Moreover, in long term
applications the growth rate of perturbations may be fast compared to the frequency at
which model results are assessed, which may hide the consequences of ill posedness.
If one studies a process that covers months or years (and consequently analyses
the results on a monthly basis) but perturbations due to ill posedness grow on an
hourly scale, it may be difficult to identify that the problem is ill posed. Using poor
numerical techniques to solve the system of equations also contributes to hiding
the consequences of ill posedness as numerical diffusion dampens perturbations.
These factors may explain why the problem of ill posedness in mixed-sediment river
morphodynamics is not widely acknowledged.

In the river morphodynamics community, the term ellipticity has been used to
refer to the ill posedness of the system of equations in contrast to hyperbolicity,
which is associated with well posedness (Ribberink 1987; Mosselman 2005; Stecca
et al. 2014; Siviglia, Stecca & Blom 2017; Chavarrías et al. 2018). In general
the terms are equivalent, but not always. We consider a unit vector n̂ in the
direction (x, y), n̂ = (n̂x, n̂y). The system of equations (2.24) is hyperbolic if matrix
A = Ax0n̂x + Ay0n̂y diagonalises with real eigenvalues ∀n̂ (e.g. LeVeque 2004; Castro
et al. 2009). Neglecting friction and diffusive processes (i.e. B0 = Dx0 = Dy0 = 0),
hyperbolicity implies that the eigenvalues of M0 (2.33) are real. In this case, as the
growth rate of perturbations (i.e. the imaginary part of the eigenvalues of M0) is equal
to 0 regardless of the wavenumber, the system of equations is well posed. As the
coefficients of A are real, complex eigenvalues appear in conjugate pairs. This means
that if A has a complex eigenvalue (i.e. the problem is not hyperbolic), at least one
wave will have a positive growth rate. Neglecting friction and diffusive processes,
non-hyperbolicity implies that infinitely large wavenumbers have a positive growth
rate. We conclude that, in the absence of diffusion and friction, lack of hyperbolicity
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FIGURE 2. (Colour online) Simulated bed elevation (surface) and mean grain size at the
bed surface (colour) of a well-posed case (left column, H1, table 3) and an ill-posed case
(right column, H2, table 3). In each row we present the results for varying cell size. The
colour of the x–y plane shows the result of the routine that checks whether the conditions
at each node yield a well-posed (green) or an ill-posed (red) model.

implies ill posedness. Note that ellipticity (i.e. the eigenvalues of A are all complex)
is not required for the problem to be ill posed, as it suffices that the problem is
not hyperbolic. When considering diffusion and friction even when A has complex
eigenvalues, the imaginary part of the eigenvalues of M0 may all be negative and the
problem well posed.

Finally, well posedness and hyperbolicity are similar terms when dealing with
problems arising from conservation laws and changes with time, as hyperbolicity
guarantees the existence of wave solutions (Lax 1980; Courant & Hilbert 1989;
Strikwerda 2004; Toro 2009; Dafermos 2010; Bressan 2011; Dafermos 2016). In
communities such as materials science, it is the term hyperbolicity that is associated
with ill posedness, as a smooth solution of, for instance the stress, requires that the
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Case Secondary flow ν Stability Mathematical character

S1 No νE Stable Well posed
S2 Yes νE Unstable Well posed
S3 Yes 0 Unstable Ill posed

TABLE 4. Variations to the reference state (table 1) and results of the linear analysis
with respect to secondary flow.

system is elliptic (Knowles & Sternberg 1975, 1976; Veprek, Steiger & Witzigmann
2007).

4. Stability analysis
In this section we study the applicability of the system of equations to model two-

dimensional river morphodynamics by means of a stability analysis of perturbations.
We study the effects of the secondary flow model (§ 4.1) and the bed slope (§ 4.2) on
model ill posedness.

4.1. Ill posedness due to secondary flow
In this section we study how the stability of the system of equations is affected by
the secondary flow model. To gain insight we compare three cases. In the first case
we omit secondary flow. In the second and third cases we include the secondary flow
model with and without considering diffusion (table 4).

The first case is equivalent to I1 (table 2), yet the eddy viscosity is equal to the
value derived by Elder ((2.4), ν = νE = 0.0057 m2 s−1). In figure 3(a,b) we plot
the maximum growth rate of perturbations as a function of the wavenumber and
the wavelength, respectively. Diffusion appears to significantly dampen perturbations
(compare figure 1(a) in which diffusion is neglected to figure 3a).

In the second case we repeat the analysis including the equation for advection
and diffusion of the secondary flow intensity (i.e. the first four rows and columns
of matrix M0 in (2.33), Case S2, table 4). We observe that accounting for secondary
flow introduces an instability mechanism (figure 3d). For the specific conditions
of the case, a growth domain appears for wavelengths between 0.7 m and 39 m
long and between 0.4 m and 19 m wide. The maximum growth corresponds to a
wavelength in the x and y direction equal to 1.29 m and 0.74 m, respectively. This
situation is well posed, as for large wavenumbers perturbations decay (figure 3c).
Yet, the model is unsuitable for reproducing such instability, as it predicts growth of
perturbations with a length scale of the order of the flow depth and shorter, for which
the shallow water equation model is not suited. Given the fact that we consider a
depth-averaged formulation of the primary flow, processes that scale with the flow
depth are not resolved by the model and consequently perturbations at that scale
must decay to yield physically realistic results. Otherwise, scales of the order of the
flow depth become relevant, which contradicts the assumptions of the depth-averaged
formulation. To model processes that scale with the flow depth such as dune growth,
it is necessary to account for non-depth-averaged flow formulations that consider, for
instance, rotational flow (Colombini & Stocchino 2011, 2012), or non-hydrostatic
pressure (Giri & Shimizu 2006; Shimizu et al. 2009).

In the third case we test the secondary flow model without accounting for diffusion
in the system of equations (ν = 0, Case S3, table 4). We observe that the instability
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FIGURE 3. (Colour online) Growth rate of perturbations added to the reference case
(tables 1 and 4) as a function of the wavenumber and the wavelength: (a,b) without
secondary flow (Case S1, well posed), (c,d) accounting for secondary flow with diffusion
(Case S2, well posed) and (e, f ) accounting for secondary flow without diffusion (Case S3,
ill posed). The panels in the two columns show the same information but highlight the
behaviour for large wavenumbers (a,c,e) and for large wavelengths (b,d, f ). Red and green
indicate growth and decay of perturbations, respectively.

domain extends to infinitely large wavenumbers (figure 3e), which implies that this
model is ill posed (§ 3). We now aim to prove that the shallow water equations in
combination with the secondary flow model without diffusion always yields an ill-
posed model. To this end we obtain the characteristic polynomial of matrix M0 (2.33).
We compute the discriminant of the fourth-order characteristic polynomial and we find
that for kwx< kwy the growth rate of perturbations is positive (appendix C). The model
is ill posed, as there always exists a domain of growth extending to infinitely large
wavenumbers in the transverse direction.

We assess how the length scale of the instability related to the secondary flow
model depends on the flow parameters. For this purpose we compute the shortest
wave with positive growth for a varying diffusion coefficient and flow conditions
(figure 4). We observe that, independently of the flow conditions, the theoretical
value of the diffusion coefficient derived by Elder (1959) (2.4) is insufficient for
dampening oscillations scaling with the flow depth. We conclude that if the diffusion
coefficient is realistic, the treatment of the secondary flow yields an unrealistic model.
It is necessary to use an unrealistically large value of the diffusion coefficient to
obtain a realistic depth-averaged model in which perturbations scaling with the flow
depth decay.
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FIGURE 4. (Colour online) Wavelength of the shortest perturbation with positive growth
rate (lwm) relative to the flow depth (h) as a function of the Froude number (Fr) and
the diffusion coefficient (ν) relative to the diffusion coefficient according to Elder (1959)
(νE). Different flow conditions are studied varying the flow depth between 0.2 m and
1.5 m from the reference case (table 1). The cyan markers indicate the conditions of three
numerical simulations with different values of the diffusion coefficient (§ 5.1). The arrow
next to the diamond marker indicates that the value lies outside the figure. Red (green)
colour indicates that the shortest wavelength with positive growth rate are smaller (larger)
than the flow depth.

4.2. Ill posedness due to bed slope effect
In this section we study the influence of considering the effect of the bed slope on
model well posedness. To gain insight we compare five cases in which we consider
unisize and mixed-size sediment, various sediment transport relations and various
bed slope functions (table 5). We neglect secondary flow and diffusion to reduce
the complexity of the problem (Parker 1976; Fredsøe 1978; Colombini et al. 1987;
Schielen et al. 1993).

Our reference case is B1 (§ 3) which considers unisize sediment conditions, and
the effect of the bed slope on the sediment transport direction is accounted for
using the simplest formulation, gs = 1. We have shown that this case is well posed.
Neglecting the effect of the bed slope on the sediment transport direction (Case B2,
table 5) makes the problem ill posed (figure 5a). This illustrates that accounting for
the effect of the bed slope is required for obtaining not only physically realistic but
also mathematically well-posed results. We prove that the shallow water equations in
combination with the Exner (1920) equation without considering the effect of the bed
slope always yields an ill-posed model by studying the growth rate of perturbations
in the limit as the wavenumber kwy tends to infinity (appendix D).
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FIGURE 5. (Colour online) Growth rate of perturbations added to the reference case
(tables 1 and 5) as a function of the wavenumber and the wavelength: (a,b) Case B2 (ill
posed), (c,d) Case B3 (well posed), (e, f ) Case B4 (ill posed) and (g,h) Case B5 (ill posed).
The panels in the two columns show the same information but highlight the behaviour for
large wavenumbers (a,c,e,g) and for large wavelengths (b,d, f,h). Red and green indicate
growth and decay of perturbations, respectively.

Case Sediment d2 (m) Sed. trans. Bed slope Mathematical character

B1 Unisize — EH gs = 1 Well posed
B2 Unisize — EH No Ill posed
B3 Mixed size 0.004 AM gsk = 1 Well posed
B4 Mixed size 0.004 AM gsk = 1.7θ 0.5

k Ill posed
B5 Mixed size 0.012 AM gsk = 1 Ill posed

TABLE 5. Variations to the reference state (table 1) and results of the linear analysis with
respect to the effect of the bed slope on the sediment transport direction. EH and AM refer
to the sediment transport relations by Engelund & Hansen (1967) and Ashida & Michiue
(1971), respectively.

The fact that the bed slope effect dampens perturbations under unisize conditions
is expected from the fact that the only diffusive term in the system of equations is
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∂qby/∂sy (2.27), where sy = ∂η/∂y. This term is negative and approximately equal to
−qb/gs for a small streamwise slope. When we consider more than one grain size,
diffusive terms appear in each active layer equation. We find that these diffusive terms
may be positive, which hints at the possibility of an antidiffusive behaviour, which
may lead to ill posedness. To study this possibility we compute the growth rate of
perturbations of a simplified case consisting of two sediment size fractions. In the
limit for the wavenumbers tending to infinity, the maximum growth rate is:

ωlim
i = α1(ry1 − dx1,1)

2
+ α2(ry1 − dx1,1)+ α3, (4.1)

where αi for i = 1, 2, 3 are parameters relating the flow and the sediment transport
rate (appendix E). The parameter ry1 explains how the sediment transport rate of the
fine fraction is affected by changes in the transverse bed slope:

ry1 =
∂qby1/∂sy

∂qby/∂sy
, (4.2)

and the parameter dx1,1 relates changes in the sediment transport rate to changes in
the volume of sediment in the active layer:

dx1,1 =
∂qbx1/∂Ma1

∂qbx/∂Ma1
. (4.3)

As α1 > 0 (appendix E), there exists an interval (ry1 − dx1,1)
− < (ry1 − dx1,1) < (ry1 −

dx1,1)
+ in which ωlim

i < 0 and the model is well posed. Outside the interval, ωlim
i > 0

and the problem is ill posed.
The physical interpretation of the limit values for obtaining a well-posed model is as

follows. The effect of the transverse bed slope (ry1) needs to be balanced with respect
to the effect of changes in surface texture (dx1,1) to obtain a well-posed model. For a
given dx1,1, if parameter ry1 is too small (i.e. the bed slope effect is not sufficiently
strong) perturbations in the transverse direction are not dampened and the model is ill
posed. On the other hand, for a given ry1, if parameter dx1,1 is too small (e.g. due to
relatively strong hiding or in conditions close to incipient motion) perturbations in the
streamwise direction do not decay and the model is also ill posed. The critical values
r±y1 that allow for a well-posed model are shown in appendix E.

In Cases B3–B5 we illustrate the possibility of ill posedness due to the bed slope
closure relation (table 5). In Case B3 the sediment mixture consists of two grain
size fractions with characteristic grain sizes equal to 0.001 m and 0.004 m. The
volume fraction content of the fine sediment in the active layer and at the interface
between the active layer and the substrate is equal to 0.5. The sediment transport rate
is computed using the relation developed by Ashida & Michiue (1971). The other
parameters are equal to the reference case (table 1). The system is well posed when
the effect of the bed slope does not depend on the bed shear stress (figure 5c). The
situation is ill posed if the effect of the bed slope depends on the bed shear stress
(Case B4, table 5, figure 5e). The cause of the ill posedness is not found in the
closure relation for the bed slope effect only but in the combination of the closure
relation with the flow and bed surface conditions. A case equal to B3 except for the
fact that the coarse grain size is equal to 0.012 m is ill posed (Case B5, table 5,
figure 5g).

We assess how the domain of ill posedness due to the bed slope effect depends
on the model parameters. For given sediment sizes, flow and bed surface texture,
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parameter Bs (2.23) controls the effect of the bed slope by modifying ry1 only. The
parameter As (2.23) cancels in ry1 and does not play a role. For this reason we study
how gs1/As (−) affects the domain of ill posedness for varying sediment properties,
flow and bed surface grain size distribution (figure 6). We consider Case B3 and
we vary Bs between 0 and 0.5 to vary the bed slope effect. The sediment size of
the coarse fraction varies between d1 and 0.020 m. The mean flow velocity varies
between 1 m s−1 and 2.8 m s−1. The volume fraction content of fine sediment at the
bed surface varies between 0 and 1. We aim to isolate the problem of ill posedness
due to bed slope effect from the problem of ill posedness due to a different grain size
distribution at the bed surface and at the interface between the bed surface and the
substrate (Chavarrías et al. 2018). For this reason, in this analysis the volume fraction
content of fine sediment at the interface is equal to the one at the bed surface. Under
this condition the problem can be ill posed due to the effect of the bed slope only.

As we have shown analytically, under unisize conditions (i.e. d1/d2 = 1 or Fa1 = 1
or Fa1= 0) the model is well posed (figure 6a,c). For sufficiently different grain sizes
(d1/d2 / 0.15) the model is well posed regardless of the bed slope effect but for a
small range of values (0.08 / d1/d2 / 0.1). This small range of ill-posed values is
associated with ry1 increasing for decreasing values of d1/d2 and acquiring a value
larger than r+y1 such that the model becomes ill posed for all values of the bed slope
effect. A further decrease in d1/d2 increases the limit value r+y1 faster than ry1 such
that the model becomes well posed for all values of the bed slope effect.

An increase in the Froude number decreases the domain of well posedness, which
is explained from the fact that an increase in Froude number decreases ry1 while it
does not modify r−y1. We have assumed steady flow in deriving ωlim

i to reduce the
complexity of the model such that we can find an analytical solution (appendix E).
This causes a physically unrealistic resonance phenomenon for Fr→ 1 (Colombini &
Stocchino 2005). In reality we do not expect that for Fr= 1 the model is always ill
posed regardless of the bed slope effect. Apart from the limit values in which the
problem becomes unisize, the surface volume fraction content does not significantly
affect the domain of ill posedness (figure 6c) as it rescales in more or less a similar
way r±y1 and ry1.

While Case B4 is ill posed because the effect of the bed slope (ry1) is small, Case
B5 is ill posed because parameter dx1,1 is small. The different origin of ill posedness
does not cause a significant difference in the growth rate of perturbations as a function
of the wavenumber (figure 5e–g). However, we will find out that the pattern resulting
from the perturbations depends on the origin of the ill posedness.

5. Application
The results of the linear stability analysis (§ 4) neglect second-order terms and

nonlinear interactions. In this section we study the effects of the terms neglected
in the linear analysis and the development of perturbations by means of numerical
simulations. We use the software package Delft3D (Lesser et al. 2004). This exercise
provides information on the consequences of ill posedness in numerical simulations
and clarifies the limitations of the current modelling approach. We study the effect
of secondary flow (§ 5.1) and the bed slope effect (§ 5.2).

5.1. Secondary flow
We run five numerical simulations with a fixed bed (i.e. only the flow is computed) to
study the roles of the secondary flow model and the diffusion coefficient in the ill
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FIGURE 6. (Colour online) Domain of ill posedness due to the bed slope effect under
mixed-size sediment conditions: as a function of the ratio between fine and coarse
sediment (a), the Froude number (b) and the volume fraction content of fine sediment
in the active layer (c). The bed slope effect is measured by gs1/As and the range of
parameters is obtained by varying Bs (2.23). The range of values of d1/d2 is obtained
by varying d2. The range of values of the Froude number is obtained by varying u. The
volume fraction content of fine sediment at the interface between the active layer and the
substrate is kept equal to the volume fraction content of fine sediment in the active layer.
The conditions represent unisize sediment when d1/d2 = 1, Fa1 = 0, or Fa1 = 1.

posedness of the system of equations. The first three simulations reproduce the
conditions of Cases S1, S2 and S3 (table 4). The domain is rectangular, 100 m long
and 10 m wide. We use square cells with size equal to 0.1 m. The time step is equal
to 0.01 s and we simulate 10 min of flow. We set a constant water discharge and the
downstream water level remains constant with time. The initial condition represents
normal flow for the values in table 1 (i.e. equilibrium conditions).

The simulation not accounting for secondary flow does not present growth of
perturbations as predicted by the linear analysis and remains stable with time
(figure 7a). We observe growth of perturbations when we account for secondary
flow with the diffusion coefficient derived by Elder (1959) (figure 7b). The results
are physically unrealistic as the flow depth presents variations of up to 7 % of
the normal flow depth and the length scale of the perturbations is smaller than
the flow depth. We have not introduced any perturbation in the initial or boundary
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FIGURE 7. (Colour online) Flow depth at the end of the simulations: (a) without
accounting for secondary flow (Case S1), (b) setting ν = νE (Case S2), (c) setting ν = 0
(Case S3), (d) setting ν = 100νE and (e) setting ν = νE using a coarser numerical grid
(Case S2). The colour map is adjusted for each case and centred on the initial and
equilibrium values (h= 1 m).

conditions which implies that perturbations grow from numerical truncation errors.
This supports the fact that the simulation is physically unrealistic. The case with a
diffusion coefficient equal to 0 is ill posed and the solution presents unreasonably
large oscillations (figure 7c). These numerical results confirm the results of the linear
stability analysis.

In the fourth simulation we set a diffusion coefficient 100 times larger than the
one derived by Elder (1959) (figure 7d). Under this condition the linear analysis
predicts all short waves to decay (diamond in figure 4). These numerical results
confirm the linear theory. The last simulation is equal to Case S2 except for the
fact that we use a coarser grid (1x=1y= 1 m). In this case the numerical grid is
not sufficiently detailed to resolve the perturbations due to secondary flow and the
simulation is stable (figure 7e). This last case highlights an important limitation of
a physically unrealistic model. Although Case S2 is mathematically well posed, the
solution presents similarities with ill-posed cases in the sense that a refinement of the
grid causes non-physical oscillations to appear.

5.2. Bed slope effect
In this section we focus on the consequences of accounting for the bed slope
effect on the mathematical character of the model. To this end we run five more
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FIGURE 8. (Colour online) Flow depth at the end of the simulations of: (a) Case B1, (b)
Case B2; and volume fraction content of fine sediment in the active layer: (c) Case B3,
(d) Case B4, (e) Case B5. The colour map is adjusted for each case and centred on the
initial and equilibrium values.

numerical simulations without accounting for secondary flow and updating the bed
(i.e. accounting for morphodynamic change). The simulations reproduce Cases B1–B5
(table 5). We simulate 8 h using a time step 1t= 0.1 s.

We have proved that accounting for the effect of the bed slope makes a unisize
simulation well posed (§ 4.2 and figure 1c). The numerical solution of this case (B1,
table 2) is stable and perturbations do not grow (figure 8a). Moreover, no alternate
bars appear as the channel width is below the critical value (§ 3). Perturbations grow
when the effect of the bed slope is not taken into account (Case B2, figure 8b), which
confirms that this case is ill posed.

The mixed-size sediment conditions of Case B3 yield a well-posed model (figure 5e)
and the simulation is stable (figure 8c). On the other hand, the ill-posed cases B4 and
B5 present growth of unrealistic and non-physical perturbations (figure 8d,e). While
the growth of perturbations in Case B5 seems random, in Case B4 we observe a clear
pattern. Moreover, oscillations have grown significantly faster in Case B5 than in Case
B4. While after 8 h the changes in volume fraction content at the bed surface are of
the order of 10−3 in Case B4, these are of order 1 in Case B5.

The fact that oscillations grow faster in Case B5 than in Case B4 is related to the
different origin of ill posedness. While Case B4 is ill posed because the effect of
the bed slope is not sufficiently strong (i.e. ry1 < r−y1), Case B5 is ill posed because
changes in the sediment transport rate due to changes in the volume of fine sediment
in the active layer are too small (i.e. ry1 > r+y1). The first case is closely linked to the
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lateral direction, in which sediment transport is initially zero. The fact that initially
the lateral sediment transport rate is zero limits the rate at which lateral changes occur.
In the second case perturbations are linked to the streamwise direction, in which the
sediment transport rate initially is non-zero, which enhances the rate at which changes
develop.

6. Discussion

The origin of the instability due to secondary flow is found in the source term
(Ss in (2.11)). As the source term depends on the flow curvature, the source term is
0 in a straight flow. A small perturbation in the flow causes the flow to curve.
The flow curvature causes a source of secondary flow intensity, which further
increases the flow curvature, causing a positive feedback. The flow curvature is
largest for the smallest perturbations, which explains why the model is ill posed if
a dampening mechanism (i.e. diffusion) is not taken into account. This destabilising
mechanism may seem plausible to explain secondary flow circulation observed in
straight channels (Nikuradse 1930; Brundrett & Baines 1964; Nezu & Nakagawa
1984; Gavrilakis 1992). However, secondary flow in a straight channel can only be
caused by anisotropy of turbulence (Einstein & Li 1958; Gessner & Jones 1965;
Bradshaw 1987; Colombini 1993), which is not included in the model for secondary
flow. For this reason, the secondary flow model must predict decay of secondary flow
intensity in case of straight flow. Diffusion of secondary flow intensity causes decay
of perturbations, but the theoretical diffusion coefficient derived by Elder (1959)
appears to be insufficient to dampen perturbations.

The advection equation for the secondary flow intensity was initially derived for
steady decaying secondary flow on a straight reach after a bend neglecting the effect
of diffusion (De Vriend 1981). It is assumed that the same advective behaviour is
valid for a varying curvature (De Vriend 1981; Olesen 1982) and in an unsteady
situation (Booij & Pennekamp 1984). These assumptions have, to our knowledge,
not been tested. Moreover, secondary flow affects the vertical profile of the primary
flow. This feedback mechanism, which limits the development of secondary flow
(Blanckaert & De Vriend 2004; Blanckaert 2009), is not included in the model.
Blanckaert & De Vriend (2003), Blanckaert & Graf (2004) and Ottevanger et al.
(2013) propose nonlinear models that take into consideration this mechanism. We
expect that accounting for the feedback mechanism yields a well-posed model.

The feedback mechanism between the secondary and the primary flow may be
seen as an increase of diffusivity, as it causes an enhanced momentum redistribution.
For a situation in which the nonlinear model for the secondary flow appears to be
excessively expensive in computational terms, a diffusion coefficient depending on
the secondary flow intensity would (partially) account for the enhanced momentum
redistribution and provide a well-posed and realistic model.

We have assumed that the diffusion coefficient is constant and equal in all directions,
which is a crude approximation, as in the streamwise direction diffusion is larger than
in the transverse direction (appendix A). It would be interesting to study the effect
of anisotropic diffusion, however, we do not expect that this will significantly alter
our results. This is because a larger diffusion coefficient in the streamwise direction
will not alter the most unstable wavelength in the lateral direction. For this reason the
shortest unstable waves remain of the order of the flow depth.

The nonlinear relation between the flow and the sediment transport rate causes the
growth of perturbations in bed elevation. Worded differently, a deep flow attracts the
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flow and vice versa, which enhances the growth of perturbations. This mechanism
is counteracted by the bed slope effect, which causes deep parts to fill in. In this
sense, it seems logical that it is necessary to account for bed slope effects to obtain
a well-posed model. This may be confirmed by the facts that Parker (1976), by
not considering the bed slope effect, found that all streams tend to form bars and,
similarly, Olesen (1982) concluded that ‘the stream will develop an infinite number of
submerged bars’. From our point of view the fact that all streams seem to be unstable
and develop an infinite number of submerged bars is a consequence of the model
being ill posed. Our analysis shows that the bed slope effect is a crucial physical
process in analysing two-dimensional morphodynamic processes.

Nevertheless, the numerical simulations by Qian et al. (2016) for bar development
without accounting for the bed slope effect do not show unrealistic oscillatory
behaviour as is characteristic of ill posedness. Yet, there is an essential difference
between their model and the one we analyse here. We do not model the interaction
between the sediment in the bed and the sediment in transport as we assume that
the sediment transport rate adapts instantaneously to changes in the flow (i.e. the
sediment transport rate depends on the flow variables only). Essentially, sediment
in transport is not conserved and bed elevation and surface texture changes depend
on the divergence of the sediment transport rate at capacity conditions. Qian et al.
(2016) account for the conservation of mass of the sediment in transport and use an
entrainment–deposition formulation for modelling bed elevation and surface texture
changes (Parker, Paola & Leclair 2000). In this formulation changes depend on the
difference between the rate at which sediment is entrained from the bed and at which
it is deposited on the bed. The fact that their model does not show symptoms of ill
posedness, while the effect of the bed slope is not taken into consideration, raises
the question as to whether the entrainment–deposition formulation in combination
with mass conservation of the sediment in transport is responsible, like the bed slope
effect, for a mechanism that counteracts growth of perturbations in bed elevation. If
the model used by Qian et al. (2016) is indeed well posed, the effect of the bed
slope may be a crucial process only when mass conservation of the sediment in
transport is not considered.

Lanzoni & Tubino (1999) investigated the development of alternate bars under
mixed-size sediment conditions using a model similar to the one we apply here. They
assumed secondary flow to be negligible and considered a different set of closure
relations for friction, the sediment transport rate and the effect of the bed slope.
Under the conditions they studied, they found that, similarly to the unisize case,
growth of perturbations occurs if the width-to-depth ratio is above a critical value.
This implies that they found that their model is well posed, as short wavelength
perturbations decay. Given that the essence of the closure relations they considered is
the same as that of the ones considered here and there is no fundamental difference,
we suppose that their model may become ill posed if different conditions are studied
(i.e. different flow or sediment parameters). This is because well posedness is not
related to the model equations only, but also to the conditions in which the model is
applied.

The bed slope effect (represented by the parameter ry1) needs to be balanced
with respect to the effect of changes in the bed surface grain size distribution
(represented by dx1,1) to yield a well-posed model. The balance depends on the
flow and bed conditions. For this reason, a particular closure relation may yield an
ill-posed model in some subdomain of a simulation and a well-posed model in some
other subdomain. It is necessary to further study the development of the transverse
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May be ill posed

Bed slope effect

Stable

Fr > 2

Secondary flow Flow viscosity

Flow viscosity

Stable UnstableIll posed UnstableIll posed

Unisize

1D

Bed slope effect

Ill posedActive layer model 

Flow(a)

(b) Morphodynamics

S2S3S1 I2 

Cordier et al.
(2011)

B2

H1-H2

B3-B4

Balmforth &
Mandre (2004)

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

B/h > ıc
*

Stable

B1

Unstable

Colombini et al.
(1987)

FIGURE 9. (Colour online) Conditions in which the flow model (a) and the
morphodynamic model (b) is stable, unstable or ill posed. The code below the
model type (e.g. S1) indicates an example case of such a situation. See tables 2–5 for
an explanation of the cases S1-3, B1-4, H1-2 and I2; ∗ parameter βc denotes the critical
width-to-depth ratio (Engelund & Skovgaard 1973; Colombini et al. 1987; Schielen et al.
1993).

bed slope under mixed-size sediment conditions (e.g. Baar et al. 2018) to obtain a
universally applicable closure relation.

Overall, there are three causes of ill posedness of the model: (i) the secondary
flow parametrisation, (ii) the closure relation for the bed slope effect and (iii) the
representation of the vertical mixing processes when using the active layer model
(Ribberink 1987; Chavarrías et al. 2018). We summarise all the conditions in which
the model may become ill posed in figure 9.

Only in idealised simulations is it straightforward to relate the instability of the
system of equations to ill posedness. We advocate for an a priori test of whether
the system of equations is well posed or ill posed, especially when dealing with
mixed-size sediment cases. If at some time a location in the model becomes ill
posed, the model results should be carefully evaluated. The fact that some domain
area has always been well posed does not guarantee a unique solution, as oscillations
caused by upstream or downstream ill-posed areas propagate through the domain.
Similarly, the fact that the entire domain is well posed at some time is no guarantee
of a unique solution, as past oscillations due to ill posedness affect the present
solution.
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7. Conclusions
We have studied a two-dimensional system of equations used to model mixed-size

river morphodynamics as regards to its well posedness. The model is based on the
depth-averaged shallow water equations in combination with the Exner (1920) and
active layer (Hirano 1971) equations to model bed elevation and surface texture
changes, respectively. In particular we have focused on modelling of the secondary
flow induced by flow curvature and the effect of the bed slope on the sediment
transport direction, which causes particles to deviate from the direction of the bed
shear stress.

By means of a linear stability analysis of the system of equations we find that:

• The parametrisation accounting for secondary flow yields an ill-posed model if
diffusion is not accounted for.

• The theoretical amount of diffusion due to depth averaging the vertical profile of
the primary flow (Elder 1959) yields a well-posed model but it predicts growth
of perturbations that are incompatible with the shallow water assumption.

• The effect of the bed slope on the direction of the sediment transport is
a necessary mechanism for the model being well posed. Yet, a different
modelling strategy accounting for conservation of the sediment in transport and
an entrainment–deposition formulation may yield a well-posed model without
accounting for the effect of the bed slope.

• Not all closure relations accounting for the bed slope effect are valid under
mixed-size sediment conditions. There needs to be a balance between the
effect of the bed slope and the effect of the streamwise variation of grain size
distribution on the sediment transport rate.

Numerical simulations of idealised cases confirm the above results of the linear
stability analysis.
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Appendix A. Eddy viscosity
In general terms, given the anisotropy of the flow field, the diffusion tensor has

non-diagonal terms and the diagonal terms are not equal (i.e. the diffusion coefficient
in the streamwise direction νs is different than in the transverse direction νn). The non-
diagonal terms become significant close to corners (Fischer 1973) but far from corners
the diagonal terms dominate. Elder (1959) derived an eddy viscosity coefficient in the
streamwise and lateral directions assuming a logarithmic profile for the primary flow:

νs =

(
0.4041
κ3
+

1
6
κ

)
hu∗, (A 1)

νn =
1
6κhu∗. (A 2)
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Elder neglected the effect of the viscous sublayer, which causes his analytical
expression to be a lower limit of the diffusion coefficient (Fischer 1967).

Several researchers (e.g. Simons & Albertson 1963; Erdogan & Chatwin 1967;
Fischer 1969; Holley 1971; Fischer 1973; Kyong & Il 2016) propose values for the
diffusion coefficient that are significantly larger than the one derived by Elder (1959).
These values are used, for instance, by Parker (1978), Ikeda & Nishimura (1985)
and Van Prooijen & Uijttewaal (2002). These values of the diffusion coefficient are
derived from experimental measurements and implicitly account for the enhanced
momentum redistribution due to secondary flow that we account for by means of the
dispersive stresses.

In numerical simulations resolving the secondary flow, the diffusion coefficients
derived by Elder (1959) are valid if the grid is of the order of magnitude of the
flow depth (assuming that the relevant turbulent processes scale with the flow depth).
Otherwise the numerical grid filters out significant two-dimensional turbulent motions
that need to be accounted for in the closure model (Talstra 2011). In our numerical
runs the grid cell size is always smaller than the flow depth.

Appendix B. Magnitude of the sediment transport rate

The module of the specific sediment transport rate of size fraction k, qbk (m2 s−1),
has a direction given by the angle ϕsk (rad):

(qbxk, qbyk)= qbk(cos ϕsk, sin ϕsk). (B 1)

The magnitude of the sediment transport rate is equal to:

qbk = Fak

√
gRd3

k(1− p)q∗bk, (B 2)

where p is the porosity and q∗bk (−) is a non-dimensional sediment transport rate
(Einstein 1950) dependent on the Shields (1936) stress:

θk =
Cf
(Q

h

)2

gRdk
. (B 3)

The parameter R = ρs/ρw − 1 (−) is the submerged sediment density, ρs =

2650 kg m−3 is the sediment density and ρw = 1000 kg m−3 is the water density.
To compute the non-dimensional sediment transport rate we use a fractional form
(Blom et al. 2016, 2017) of the relation proposed by Engelund & Hansen (1967)
neglecting form drag:

q∗bk =
0.05
Cf

θ
5/2
k , (B 4)

and the relation including a non-dimensional critical shear stress θc (−) proposed by
Ashida & Michiue (1971):

q∗bk = 17(θk − ξkθc)(
√
θk −

√
ξkθc). (B 5)

The parameter ξk (−) is the hiding factor that accounts for the fact that fine sediment
in a mixture hides behind larger grains and coarse sediment in a mixture is more
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exposed than in unisize conditions coarse sediment (Einstein 1950). Ashida & Michiue
(1971) propose θc = 0.05 and the relation:

ξk =



0.843
(

dk

Dm

)−1

for
dk

Dm
6 0.4 log10(19)

log10

(
19

dk

Dm

)


2

for
dk

Dm
> 0.4

, (B 6)

where Dm is a characteristic mean grain size of the sediment mixture.

Appendix C. Proof of ill posedness due to secondary flow without diffusion
In this section we prove that the model based on the shallow water equations

accounting for secondary flow without diffusion is ill posed.
The system of equations is composed of the first four rows and columns of the full

system of equations in (2.24). Neglecting diffusive processes matrices Dx0 and Dy0 are
equal to 0. As we are interested in the short-wave domain, friction can be neglected.
The resulting matrix M0 of the linearised eigenvalue problem (2.33) is:

M0 = Ax0kwx + Ay0kwy. (C 1)

We compute the fourth-order characteristic polynomial of matrix M0. The roots of
the characteristic polynomial are the eigenvalues (i.e. the angular frequencies ω in
(2.31)). The discriminant of a fourth-order polynomial p(ω)= p4ω

4
+ p3ω

3
+ p2ω

2
+

p1ω+ p0 = 0 is equal to (Beeler, Gosper & Schroeppel 1972):

∆4 = (p2
1p2

2p2
3 − 4p3

1p3
3 − 4p2

1p3
2p4 + 18p3

1p2p3p4 − 27p4
1p2

4 + 256p3
0p3

4)

+ p0(−4p3
2p2

3 + 18p1p2p3
3 + 16p4

2p4 − 80p1p2
2p3p4 − 6p2

1p2
3p4 + 144p2

1p2p2
4)

+ p2
0(−27p4

3 + 144p2p2
3p4 − 128p2

2p2
4 − 192p1p3p2

4). (C 2)

We find that the discriminant of the characteristic polynomial is:

∆4 =
16gh2T2βu

LI
k2

wx(k
2
wx − k2

wy), (C 3)

where βu = β
∗q2

x/h
2 and:

T = LIg[LIg(k2
wx + k2

wy)
2
+ βu(6k2

wxk
2
wy − 2k4

wx)] + β
2
u k4

wx. (C 4)

As the coefficients of the characteristic polynomial p(ω) are all real, a positive
discriminant indicates that either all the roots are real or all the roots are complex.
A negative discriminant indicates that there are two real and two complex roots.
The complex roots come in pairs of complex conjugates. For this reason, if
the discriminant is negative there exists an eigenvalue with a positive imaginary
component. As the discriminant is negative for kwx < kwy independently of the
wavenumber, there exists always a region of growth. This implies that the model
is ill posed.
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Appendix D. Proof of ill posedness due to lack of bed slope effect under unisize
conditions

In this section we prove that the model based on the shallow water equations
without accounting for the effect of secondary flow in combination with the Exner
(1920) equation to model bed elevation changes is ill posed if the effect of the bed
slope on the direction of the sediment transport is not taken into consideration.

The system of equations is composed of the first three and the fifth rows and
columns of the system of equations in (2.24). Neglecting diffusive processes in the
momentum equations and the effect of the bed slope, matrices Dx0 and Dy0 are equal
to 0. The system of equations has four unknowns (h, qx, qy and η). The unknowns are
coupled, meaning that a change in bed elevation influences the flow and vice versa.
The celerity of the perturbations associated with the flow variables (i.e. h, qx and qy)
is orders of magnitude larger than the celerity of perturbations in bed elevation if the
Froude number is sufficiently small (Fr / 0.7 (De Vries 1965, 1973; Lyn & Altinakar
2002)). Under this condition we can decouple the system and consider steady flow
to study the propagation of perturbations in bed elevation (i.e. quasi-steady flow
assumption (De Vries 1965; Cao & Carling 2002; Colombini & Stocchino 2005)). In
this manner we reduce the number of unknowns to one (η), which means that there
is only one eigenvalue (ω). We obtain ω equating to 0 the determinant of matrix:

R =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ω

−M0. (D 1)

The growth rate (the imaginary part of ω) is:

ωi =
qbCf k2

wx

k2
wxw

2
2 +w2

1
(w3 + (n− 1)k4

wy), (D 2)

where w1, w2 and w3 are second degree polynomials on kwy:

w1 =Cf [(1− 4Fr2)k2
wx + 2k2

wy], (D 3)

w2 = b1 + (1− Fr2)k2
wx + k2

wy, (D 4)

w3 =−3Fr2nk4
wx − b1nk2

wx + [n(2− Fr2)− (2+ Fr2)]k2
wxk

2
wy + b1(n− 3)k2

wy, (D 5)

where b1 is:

b1 =
3C2

f Fr2

h2
. (D 6)

Parameter n is the degree of nonlinearity of the sediment transport relation
(Mosselman, Sloff & Van Vuren 2008):

n=
Q
qb

∂qb

∂Q
, (D 7)

which is larger than 1. For instance, n= 5 in the relation developed by Engelund &
Hansen (1967) and n> 3 in the one by Meyer-Peter & Müller (1948). In general n> 3
for the sediment transport relation to be physically realistic (Mosselman 2005).

For kwy tending to infinity, parameter w3 becomes negligible with respect to
(n − 1)k4

wy. As all other terms in (D 2) are positive, for a large wavenumber the
growth rate is positive which implies that the model is ill posed.
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Appendix E. Well-posed domain under mixed-size sediment conditions

In this section we show that the shallow water equations in combination with
the active layer model (Hirano 1971) used to account for mixed-size sediment
morphodynamics may yield an ill-posed model depending on the closure relation
used to account for the effect of the bed slope on the sediment transport direction.

We consider a model with two sediment size fractions. The system of equations is
composed of the first three, the fifth and the sixth rows and columns of the full system
of equations in (2.24). We neglect diffusive processes in the momentum equations. The
system of equations has five unknowns (h, qx, qy, η and Ma1). We consider that the
Froude number is sufficiently small such that the quasi-steady approximation is valid
(appendix D) and we assume that the celerity associated with changes in the grain size
distribution of the bed surface is of the same order of magnitude as the celerity of the
bed elevation changes (Ribberink 1987; Sieben 1997; Stecca, Siviglia & Blom 2016).
Under these conditions it is valid to decouple the system and consider steady flow
to study the propagation of perturbations in bed elevation and bed surface grain size
distribution. In this manner we reduce the number of unknowns to two (η and Ma1),
which means that there are two angular frequencies to find. We obtain ω equating to
0 the determinant of matrix:

R =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 ω 0
0 0 0 0 ω

−M0. (E 1)

We define a set of physically meaningful parameters useful to simplify the
expression of the growth rate. Subscripts k and l refer to the grain size fraction
while the subscript j refers to the direction (i.e. x and y). The parameters are a
generalisation of the parameters used by Stecca et al. (2014) and Chavarrías et al.
(2018) to the x and y directions.

Parameter ψj (−) represents the sediment transport intensity (e.g. De Vries 1965;
Lyn & Altinakar 2002; Stecca et al. 2014) and ranges between 0 (no sediment
transport) and O(10−2) (high sediment discharge):

ψj =
∂qbj

∂qj
. (E 2)

Parameter cjk ∈ [0, 1] (−) represents the sediment transport intensity of fraction k
relative to the total sediment transport intensity:

cjk =
1
ψj

∂qbjk

∂qj
. (E 3)

Parameter γjk (−) represents the sediment transport intensity of fraction k relative to
the fraction content of sediment of fraction k at the interface between the active layer
and the substrate:

γjk = cjk − f I
k , (E 4)
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Parameter χjk (−) represents the non-dimensional rate of change of the total sediment
transport rate with respect to the change of volume of sediment of size fraction k in
the active layer:

χjk =
1
uj

∂qbj

∂Mak
. (E 5)

Parameter djk,l (−) represents the non-dimensional rate of change of the sediment
transport rate of size fraction l with respect to the volume of sediment of size fraction
k in the active layer:

djk,l =
1

ujχjk

∂qbjl

∂Mak
. (E 6)

Parameter µjk,l (−) represents the rate of change of the sediment transport rate with
respect to the volume of sediment in the active layer relative to the fraction content
of sediment of fraction k at the interface between the active layer and the substrate:

µjk,l = djk,l − f I
k . (E 7)

Parameter Rj < 0 (m2 s−1) represents the effect of the bed slope on the direction of
the sediment transport rate:

Rj =
∂qbj

∂sj
, (E 8)

where sj = ∂η/∂j. Parameter rjk (−) represents the effect of the bed slope on the
direction of the sediment transport rate of fraction k relative to the total effect:

rjk =
1
Rj

∂qbjk

∂sj
. (E 9)

Parameter ljk (−) represents the effect of the bed slope on the direction of the
sediment transport rate of fraction k relative to the fraction content of sediment at
the interface between the active layer and the substrate:

ljk = rjk − f I
k . (E 10)

The largest of the two growth rates (i.e. the largest imaginary part of the two
eigenvalues ω of the system) is:

ωi =
1
2

(√
2

2

√
f1 −

√
f2

)
, (E 11)

where:

f1 =

√
m2

1 +m2 −m1, (E 12)

and:

f2 = R2
yk4

wy. (E 13)
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When parameter f1 is larger than 2f2, ωi > 0 and perturbations grow. Parameter f1
becomes large with respect to f2 when parameter m2 becomes large with respect to
m1 where:

m1 = k2
wxu

2a3 − f2, (E 14)

and:

m2 = 4k2
wxu

2f2o2. (E 15)

Focusing on the bed slope effect, for a given value of f2 (i.e. a given value of Ry),
parameter m2 becomes large with respect to m1 when parameter o becomes large,
where:

o= a1 + 2χx1(ry1 − dx1,1). (E 16)

Thus, the growth rate of perturbations is prone to be positive when the absolute value
of ry1 − dx1,1 increases. The parameters am for m= 1, 2, 3 are:

a1 = ex + ey + χx1µx1,1, (E 17)
a2 = γx1ex + γy1ey −µx1,1ex −µx1,1ey, (E 18)

a3 = a2
1 + 4χx1a2. (E 19)

The parameters ej for j= x, y are:

ex =ψx
k2

wx

(1− Fr2)k2
wx + k2

wy

, (E 20)

ey =ψy
k2

wy

(1− Fr2)k2
wx + k2

wy

. (E 21)

We compute the limit of the growth rate (E 11) for kwx and kwy tending to infinity:

ωlim
i = α1(ry1 − dx1,1)

2
+ α2(ry1 − dx1,1)+ α3, (E 22)

where:

α1 =
−u2χx1

Ry
χx1, α2 =

−u2χx1

Ry
alim

1 , α3 =
u2χx1

Ry
alim

2 , (E 23a−c)

where the superscript lim indicates that these are the limit values and:

elim
x =

ψx

2− Fr2
, (E 24)

elim
y =

ψy

2− Fr2
. (E 25)

As Ry < 0 and χx1 > 0, the mathematical character of the system of equations is given
by the sign of the second degree polynomial with variable (ry1 − dx1,1). The fact that
α1 > 0 (the factor of the squared term) indicates that the model is well posed when
r−y1 < ry1 < r+y1 where:

r±y1 =
1

2χx1

(
−alim

1 ±

√
alim2

1 + 4χx1alim
2

)
+ dx1,1. (E 26)
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