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A. Introduction.

In a previous paper (Shenton, 1953) we have given an expansion

f A (x) B (x)
for integrals of the form I ——^—— w (x) dx. This expansion may

J C (x)
be expressed as a determinantal quotient or Schweinsian series. In
the present paper we state more general terms under which the ex-
pansion holds and consider the case when the limits of integration
are infinite and the weight function of the form A (x) e ~ x or A(x) e~***.

r °° e - ax xt - i

In particular we giye expansions for — — dx, the Psi function,
JQ C (a;)

Q

and TrrT ^x> wn^re G (x) is a positive polynomial.
J _ B C (X)

We take this opportunity to remark that the method in this and
the previous paper is closely related to the expansion of certain
definite integrals as continued fractions. Indeed Tchebycheff (1859)
uses an interpolation formula to give an expansion of a function in
terms of orthogonal functions, these functions appearing as the
denominators of the convergents of a continued fraction. As
examples he gives

I f 1 du
77 J _ 1 (x — u) vTl — M) x — 2x - 2x —

e-""2du 1 1 2 3
V 2 T 7 J _ 0 0 X — U XX — AX — \X — XX —

•"e-^du 1 _ I2 22

kx — I — kx — 3 — kx — 5 — "
Cxe-ludu =

Jo 'x -u
The general method of expressing a definite integral as a continued
fraction (i.e. a determinantal quotient of continuants) has been to
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convert the integral into an infinite series, convergent or divergent,
and to express this series aa a continued fraction. With this
procedure orthogonal polynomials appear in certain cases (Wall,
1945, pp. 192-202).

Romanovsky (1927) has treated Tchebycheff's method of inter-
polation and suggested that the interpolatory function might be used
for points outside the range and for the case when the function is
defined at an infinite number of points. The method we use is an
extension of this and leads to a generalised type of continued fraction.
Questions of convergence can be settled by an appeal to Parseval's
theorem in the theory of orthogonal functions.

B. Paraeval's Theorem.

We shall consider the formal expansion

* A (x) B (x) w (x) , f, | a0, yOi,y12 y , - i , . | • i ft, You YK> • • • Y I - U A
(X) (1)

— lim
CO

0

ft
ft

" 0

yoo

Yio

y«o

a i

Yoi

Yu

Yn

Yo>

Yu

Y>»

(2)

where M>>-<<£*•
YT, S=Y ; r = 9, (x) 9r (x) C (x) w {x) dx,

(3)

(4)

and ps (x) =

Yoo

Yio

= | y 0 0 . Yn> • • •> Y»s I »

*) ^{X) . . .

Yoi '••

Yn •••

0,(x)

Yo*

Yu

y« - I, o

- \ /(A,_x

with 6 , (x) an arbitrary polynomial of precise degree a. The set of
polynomials {p, (a;)} is an orthonormal System with respect to the
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weight function C (x) w (x). In (2) we have introduced the notation

\J0 v% u2 | «1> C2

Co C l

and so on for other orders. If A(x), B(x) and C(x) are polynomials
of degrees I, m and n respectively, then there is the formal expansion

r» A(x)B(x)w(x)
I a G(x)

dx =

),..pr+n-i (*») . 1 2 6 x ^ ( 0 ; ! ) , p r + 1 ( a ; 2 ) , . . j p r + B _ i ( a ; n ) / « .
x = o __ l x = o \ i

where {ps{xj} is an orthonormal set with respect to w(x) on (a, 6),
fc, being the highest coefficient in pt{x), C{x) has the roots Xj,j=\, 2,. .,n

I m

(assumed dis t inct) , and A (x) = 2 aA ̂  (#), £ (x) = 2 bxp*(x).
x = o A = o

r

In the expression 2 ax px (x) it is to be understood that aK = 0 if A > I,
r

and similarlv in 2 b^px (x), bx = 0 if A > ra.
A = 0

We now consider the expansions (1), (2) and (6) in relation to
Parseval's theorem, which may be stated as follows :

P. 1. Finite Range.1 Let
(i) w (x) be a non-negative and measurable weight function such that

r b r b

w(x)dx>0and xnw(x) dx exists for n = 0, 1,. . . ,
• 'a "" a

(ii) f(x)\/w (x} be of the class L% (a, b),

(iii) {ps (x)} -y/ w (x) be an orthonormal system withps (x) a polynomial
in x of precise degree s.

Then \ \ f (x) | 2 w (x) dx = 2

where

= 0
rb

II f(x)pr{x)w(x)dx=fr.
J a

Similarly f {x) g (\) w (x) dx = 2 fr gr
•J a r = 0

provided g (x) ̂  w (x) also belongs to L2 (a, 6).

1 Szego, G., Orthogonal Polynomials (1939), p. 39.
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P. 2. Range 0 to oo . The theorem holds if the conditions of P. 1 are
satisfied with the weight function iv(x) = e~xx° w (x), a > — 1, where
(a) w (x) is a non-negative bounded measurable function, or (b) iv (x) is
a non-negative polynomial of given degree.

P. 3. Range - c o to co . The theorem holds if the conditions of P. 1
are satisfied with w (x) = e~ j ! w (x), where w (x) satisfies (a) or (b) of P. 2.

The statements in P. 2 and P. 3 when w (x) = 1 have been given
by Szego (loc. cit., pp. 104-106) who extended a method due to
J. v. Neumann for a weight function of the form e~x(see Courant,
R. and Hilbert, D., Methoden der Mathematischen Physik, Vol. 1
(Berlin 1931), pp. 81-2). Following v. Neumann and Szego, we can
deduce P. 2 from P. 1 provided it can be shown that if m is a non-
negative integer there exists for every e > 0 a polynomial ^n - i (x)
such that

S2 = \ e~
x xaw(x)Ie-mx- pn_1 (x)\ dx < e. (7)

P. 2 (a) follows withw (x) = 1, and P. 3 (a) maybe deduced from this.
P. 2 (b) may be proved by an extension of the Neumann-Szego
method. We require the following properties of the Laguerre
polynomials:

n! La
n (x) = e*x~°- (^.J e~*xa + n, n = 0, 1, . . . . (8)

e-*x«L°-n (x) La
m(x) dx = ( - ^ , a ) - ! S n . m , n, m = 0, 1, . . . , (9)

00

( l - w ) a + 1 S OJ'L"r (x) = esp {-cox/(l - co)}, | OJ | < 1, (10)

Qja
ntUx) - ... . (11)

Suppose now that
io (x) = a+bx + ex2, a 4= 0

^ ( I « I + j b\ + | c | ) (1 + x2)

Then

S2^k{' e ~x[xa + x° + *\(e-m* - pn_1(x)\dx.

n - l

Take 2>n _ ! (a) = (1 — co)a + 1 S w3 If (x), a> = mj{m + 1) (12)
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82 L. R. SHENTON

so that

£«^*P*e-'*•[(! - «)» +x So** If (x)Jdx

Jo L
+ (1 -co)a + 3 S a ) ' ^ + 2 (*)J dx (13)

after using (10) and (11), the rearrangement of terms being justified
since (10) is absolutely convergent. Hence

O I * - I M \2a+2 ?Jn+a+2)\j F(l,n + a+ l ; n + l ; a , » )
S ^ 4 (1 ) 2 a + 2 2 n

n (n - 1) (n + a+2)(n + a + l)

+ — ( 2 ~ w )

(n — 1) (n + a + :
with the usual notation for the hypergeometric series. Term-by-term

integration is justified since1 | L° (x) \ < ex(n + a)\/n\, x^>0,

so that S <uT +' L" (X) L", (X) converges uniformly for x in (0, A),

A > 0 fixed, and by Schwarz's inequality

converges.2 Since tu < l i t is seen that, for e > 0, n S; n(e,a) exists
so that S2 < e. A similar proof applies to w (x) of any given degree.
P. 3 (b) follows from this (see Szego, loc. cit., p. 105 (3)).

C. Illustrative Examples.

C. 1. Let I {p,q) = C 9 -—•'-- _—2 ,

where x* -f- 2 px + q > 0 for — 1 ̂  x ^ 1.
The conditions of P. 1 are satisfied with
w (x) = (xa + 2 px+ q) I V (1 — a;2) and f(x) = l/(a;2+2^a; + q). Hence
using (2) with
A{x) = B(x) = l, C (x) = x* + 2px + q, w (x) = 1/ V (1 - a1),
we have 3 with

0 f ( x ) = -y/ (2/7T) COS 5 ^ , COS^ = X, S = 1, 2 , . . .

1 Uspensky, J. V., Ann. Math. (2), 28, 608.
2 Bromwich, T. J . I'A., Introduction to the theory of infinite series (London, 1926),

p. 500, B.
* See Szego, Joe. cit., pp. 30-32.
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the values
«. n _1 1 n A O Q . . « _l 3

y«,« — q T $» 8 — v, z, a..., yXj — q -\-1
, _ I o = 1) </ 2

s = 1 2 V = 1 / 2 A / 2

y»,r = °» r > 5 + 2

a,= ft = 0, 54=0

a o = j30 = 2 V (2/77)

so that after slight simplification
0

1

0 v a + $ v \ .. > ( u )
0
0

the expansion providing an increasing sequence.

Similarly, if q — p2 =\= 0, then from

2
77

1

\q +

p

i
0

0

i P

q +
p

i

i

0

1
p

+ \

0

0

i

*••

I1-, dx
V ( i — *

we have

= (<7-2>V +

p

L p)2da;
2px

~(q-p2) 1 ip, q) =
7T

0 ••

1

0

0

p

q + i

0 . .

1 ••
I
0 V

(15)

and this gives a decreasing sequence for I {p, q) if q > p2.
An alternative expansion follows from (6) with

xz+2px+ q^lx—coadj (z—cos 02), where 0X and 02 are complex, 0,

" 2TT (COS S 8X — cos 5 dg)
2

\P> q) — ^ _ i I cos(s — 1) t/u cos sti2 I . I cos stfj, cos (5+ 1) 0j I.(16)
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84 L. li. SHENTON

The expansions (14)-(16) represent simple generalisations of the
continued fraction development

If dx = 1 i k i
— X2) ' Z— Z — Z — Z

— S sec (s — 1) 0sec s8 with

| 2 1 > 1

COS 0 = Z.
e = 1

Similar results hold for P ^Sl tl*Z ( i 11 ?(
J _ i X" + 2px + q J _ i xl -\- 2px -\- q v 1 + a;

and for C (a;) a polynomial of higher degree than the second.
C. 2. We next consider

6 > l , (17)

^ ^ ) ( ,6>0. (18)

With w (x) — (i — e~x)jx, which is non-negative, measurable and
bounded (^ 1), w {x) = e " « j ; » - 1 ( l - r > ) , and / (a:) = x\ (1 -e~')
so that/(a;) V w {x) belongs to L2 (0, cc ), the conditions of P. 2. (a) are
satisfied. In (2) we take w (x) = e - axxb~ 2, 0 (as) = (1 - e-*)/*,
4 (*) == B (x) == 1, 0r (x) = a;r, so that ar - /3r = T (r + 6 - 1) a1 - * - \

r ( r + s + 6 — 2 ) A a 2 ~ r - 8 - b , where A a" = (a + 1)" — an.

Thus

o r ( 6 ) a -

. 1 - 6

r (6)a -b r ( 6 - l ) A a 1 - "

In the special case 6 = 2, F (b — 2) A a2 - b must be replaced by

- log (1 + I/a).
Similarly

0

T (6)« -
-6-2 a >0,

(20)

where y ar = aT + (a + l)r.
Again, using 6»(6,a) = a-b~6(b,a + 1), we find that

(19)
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0(6,a) =
r(6)v(a + l)r (b) (a + 1) -»

r(6 + l)(a + l

The expansions (19) and (20) are positive non-decreasing sequences
while (21) is a positive non-increasing sequence. As a numerical
illustration we take 6 = 2, a = 1 in (20) and (21) for which

00

2 0(2, 1) = £n~ 2 . For the first three approximations we have

,a > 0

6 > 0 .

(21)

(20)

8/5 = 1-6

152/93 = 1-634

33168/20187 = 1-64304

(21)

43/26 = 1-654

8774/5332 = 1-6455

11534061/7011798 = 1-644950.

Thus 1-64304 < Zn~2 < 1-644950, the correct value being 1-644934.
Similarly from (19) we find for Sn~ 2

\\w = 1-44 (M.-= In 2) "

(4 M; - l ) / ( 3 w - 1) = 1-6421

(104 M;— 42)/ (74 M ; - 33) = 1-64475

(16272 M;—7790)/( I 1178M;- 5627) = 1-644928,

so that the fourth approximation is in error by 0-000,006. We note
00

in passing t h a t cont inued fractions for S (a + s)~ h in the par t icu la r
«= o

cases 6 = 2 and 6 = 3 have been given by Stieltjes (1890) and
rediscovered, a l though by a different method, by Rogers (1905). F o r
example ,

v < + \ - 2 _ I ai q2 __ y*
« = o ~ a — -|- + a — ^ + a — % + '" p ~ 4 (4p* — 1) '

With a = 1 in this, the eleventh and twelfth convergents to Sra ~2 are
1-65245 and 1-63856, indicating a slower rate of convergence than

C. 3. The Psi function and related integrals.
We have

= lnt- F
Jo x— 1 x

t>0.
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86 L. R. SHENTON

Take to (x) = e ~tx w (x), where w (x) = (] - e ~x) (x - 1 + e~x) /x3 is
a non-negative bounded measurable function (its value for x = 0 being
taken as £). Put / (a;) = a;/ (1 — e ~ *), so that f (z)-^ w (x) belongs to
L2 (0, oo). Then the conditions of P.2 (a) are satisfied. In (2), with
A(x)=B (x) = 1,

C(x) =* (1-e ~x)jx, w(x) = (x— x)e -txlxa, we have, taking Br=xr,

txxr-2 (x- 1 + e-x)dx,

— 0

Thus

( ao= - 1 + ( ]

a1 = t~1 -In

•rf\'
It

Similarly

i = yio = yi = - (1 + «) In t + (3

. = 7 n = ŷ o = y2 = ln< - 21n (1

In (1 + t)-(2+t) ln(2 +«)

+ ^ (2 + t) + 1/t (1 + t)

Hence Y(«)= ^ In T (*)

= In t ao a- 0

' ao
If

a o

yo

y'o

n
y 0

y 0

rt

y 0
a*

y 0

y o

y"'o

(22)

in which superscripts denote derivatives. This is a non-increasing
sequence. A non-decreasing sequence is found from

o - Xt \

x, t>0. (23)— e
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In(2) we take A (x) =B(x) = 1, G (x) = (1 -e~x)/x;
w(x) = (e V — e~2x — xe~tz) jx2, t 3; 1-5, the restriction on t being
necessary to ensure w (x) Si 0. With 6 T = xT we find

= ft. = J (e"* - e - 2j: - se ~tx) xr - 2 dx,

and in particular

an = 1 — 2 In 2 + In i, ax = In 2

Similarly

— xe ~x>yr,« = y*.r=yu= f"(e-*-2e-2x + (
•> 0

where u = r + s = 0, 1

and in particular

yoo = yo = i + 4 In 2 - ĵ -ln 3 + (1 + 0 In (1 + t) - t In t

yio = yoi = yi = - 4 In 2 + 3 In 3 + In t - In (1 + t)

y2o = yii = yo2 = 2 In 2 - In 3 - 1/t (1 + <).

As a numerical example put t = 1 in (22), so that

0 -386294 -306853 -500000

-3 dx

•386294 , -284872

.306853 •169899

•500000 ' -212318

•169899

•212318

•416667

•212318

•416667

1-133889

from which we have the first three approximations to Euler's constant
C= 0-577216, namely, -52383, -57651, .57718. Similarly, from the
expansion corresponding to (23) we have

•306853

•193147

•250000

•306853

•238376

•117783

•121015

•193147

•117783

•121015

•194444

•^50000 . .

•121015 . .

•194444 . .

•435185 . .
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88 L. R. SHENTON

so that using the recurrence relation T ( l + t) = Y (t) + t - 1 we have
C < -60500, -57754, -57723. Hence -57718 < C < -57723. •

A similar type of integral appears for

J (t) = In T (t) - (t — £) In t — $ In 2-n

1 \ e- "
ex - 1

-dx, t>0,

for which Stieltjes (1894) has given a continued fraction. With
w (x) = e ~tx w (x), where lv (x) = {x — 2 + (x + 2) e ~ x) (1 — e - x)jx*'
and f (x) = xj ( 1— e ~*), BO that w (x) is non-negative, bounded and
measurable, and f{x)^/w(x) belongs to L'̂ O, « ), the conditions of
P. 2 (a) are satisfied. It may be verified that

0
2.7 (*) =

u°

v°

V1

V2

I'2

V*

where ur = ( — \ H- 4 —

t>0, (24)

C. 4. Integrals of the form

As an illustration we consider in particular

Q (a, h) = -j^-s f ^ r ^ - r , b > a*.

The conditions of P. 3 (b) are satisfied with w (x) =

C (x) > 0.

(25)

- I * 2 w(x)

where w (x) = x2 + 2ax + b, f(x) = g(x) = Ijw, so that f(x) yj w(x)
belongs to L2 ( - « , <»). In (2\ take 4̂ (a;) = 5 (x) = 1, C(x) = w(x),

w(x) = J- e-**" and flf (x) = # r {*) = e*** ( - -^- Ve"**'. Then
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= 0,

= (b + 2r -f
= 2ar!
= r!
= 0

and so

G (a, b) = -

r = 0
r = l, 2, . . .

+ 2 a H' <*> +
r =s
r = a-f 1
r = s -)-2
r > s + 2

H'

6 + 1

(2a)1!

2!

(2a)1! 2! 0

(6 + 3)1! (2a) 2! 3!

(2c) 2! (6 + 5)2! (2a)3! .

3! (2a) 3! (6+7)3!.

which gives a non-decreasing sequence. Similarly, using

(x+ afe-^dx
(6 — az) « (a, o) = 1 .... . —„

we derive the non-increasing sequence

2ax

2!

3! (2a)3! (6+7)3! .

. (26)

(27)

(2a)1!

(6+3)1!

(2a) 2!

2!

(2a)

(b +

2!

5) 2! (2a)

0 . .

3! . .

3! . .
(28)

The series expansions derived from (6) corresponding to (26) and (28)
are respectively

8r0 | H.\a), H.-+ \~ Z
and

b-a a

(29J

b-a- b-a2 , = , F,
(30;
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90 L. R. SHENTON

where a, j3 are the roots of a;2 + 2 ax + b = 0. The values of Ett

Fg and G, are readily calculated from the recurrence relation
H, + i(x) = x Hs (x) — s H , _ ! (a;). Since

G2 + (b — a*) E2= — 4{b — a*) H g + 1 (a) Hs+1 (j8), (31)
9 8 '

it will be seen that the difference between the (s + 1 )tA approxima-
tions arising from (29) and (30) is s! Fo/ (6— a2) Ft. This may be used
to assess the rate of convergence and also as a computational check.

I t is interesting to observe that, when a = 0, (26) and (28) reduce
to simple continuant quotients and give the even and odd part of the
continued fraction

„ , „ ,, 1 1 2 3 4G(O,b)=j-j r - r . . , b>0.

By an equivalence transformation we have the Laplace (1805)
continued fraction for the incomplete normal integral, namely

t> 0.

s

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

TERM OF
(29)

•500000
•071429
•075630
.042596
•015594
•023337
•003307
•012806
•000568
•007125
•000038
.004019
.000010
•002293 ~
•000063
•001318

•000104
•000762
•000120
•000441
•000119

y

•5000
•5714
•6471
•6897
•7052
•7286
.7319
•7447
• 7453
•7524
•.7524
•7564
•7565
•7588
•7588
•7601
•7602
•7610
•7611
•7616
.7617

TEKSI OP
(30)

1-166667
•214286
.070028
.035062
•034370
•007269
•017955
•001422
•009729
•000181
•005401
•000000
.003051
•000036
•001743
•000087
•001004
•000115
•000580
•000122
•000335

V

11667
•9524
•8824
•8473
•8129
•8057
•7877
•7863
•7765
•7764
•7710
•7710
•7679
•7679
•7661
•7660
•7650
•7649
•7643
•7642
.7639
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As a numerical illustration we take la = b = 1, and by comparison
with the incomplete normal integral continued fraction development
(Burgess, 1895) we expect rather slow convergence. Evaluating
s\ Foj(b — a2) F, for s = 20 we find that it is approximately 0-0027, so
that we have only two-figure accuracy. In the table we give the terms
and partial sums for the series (29) and (30), the identity (31) being
used as a check.

We conclude then that -7617 < O (0-5, 10) < -7639, the correct
value being -7628, 2634. The oscillatory nature of the terms is note-
worthy, and this would be an awkward feature if we could not
construct an enveloping sequence.

We intend to discuss later various forms for the numerators and
denominators of the expansions considered here, including recurrence
relations, noting the relation to the theory of continued fractions.

I am greatly indebted to the referees for a number of useful
comments and criticisms, and to I)r W. Ledermann for some
criticisms of Part 1.
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