ON THE GAUSS MAP OF RULED SURFACES
 by CHRISTOS BAIKOUSSIS \dagger and DAVID E. BLAIR

(Received 25 June, 1991)
Let M^{2} be a (connected) surface in Euclidean 3-space E^{3}, and let $G: M^{2} \rightarrow S^{2}(1) \subset E^{3}$ be its Gauss map. Then, according to a theorem of E. A. Ruh and J. Vilms [3], M^{2} is a surface of constant mean curvature if and only if, as a map from M^{2} to $S^{2}(1), G$ is harmonic, or equivalently, if and only if

$$
\begin{equation*}
\Delta G=\|d G\|^{2} G \tag{1.1}
\end{equation*}
$$

where Δ is the Laplace operator on M^{2} corresponding to the induced metric on M^{2} from E^{3} and where G is seen as a map from M^{2} to E^{3}. A special case of (1.1) is given by

$$
\begin{equation*}
\Delta G=\lambda G, \quad(\lambda \in \mathbb{R}) \tag{1.2}
\end{equation*}
$$

i.e., the case where the Gauss map $G: M^{2} \rightarrow E^{3}$ is an eigenfunction of the Laplacian Δ on M^{2}.

On the other hand, F. Dillen, J. Pas and L. Verstraelen [2] recently proved that among the surfaces of revolution in E^{3}, the only ones whose Gauss map satisfies the condition

$$
\begin{equation*}
\Delta G=\Lambda G, \quad\left(\Lambda \in \mathbb{R}^{3 \times 3}\right) \tag{1.3}
\end{equation*}
$$

are the planes, the spheres and the circular cylinders.
We observe that from the surfaces of revolution in E^{3} which satisfy (1.3) the planes and the circular cylinders are ruled surfaces. On the other hand, for the helicoid $X(s, t)=(t \cos s, t \sin s, \alpha s), \alpha \neq 0$ the Guass map is given by

$$
G=\frac{1}{\sqrt{t^{2}+\alpha^{2}}}(-\alpha \sin s, \alpha \cos s,-t) .
$$

Then it is easy to show that the Laplacian ΔG of the Gauss map G can be expressed as follows

$$
\Delta G=\frac{2 \alpha^{2}}{\left(t^{2}-\alpha^{2}\right)^{5 / 2}}(-\alpha \sin s, \alpha \cos s,-t)
$$

which clearly doesn't satisfy condition (1.3).
A question which arises now is: What are the ruled surfaces satisfying condition (1.3)?
In particular, we will prove the following:
Theorem. Among the ruled surfaces in E^{3}, the only ones whose Gauss map satisfies (1.3) are the planes and the circular cylinders.

We first study cylindrical surfaces M^{2}. Let $X(s, t)=\alpha(s)+t \beta$ be the position vector of M^{2} in E^{3} where $\alpha(s)$ is the plane curve $\alpha=\left(\alpha_{1}, \alpha_{2}, 0\right)$ parameterized by arc-length and β is the constant vector $\beta=(0,0,1)$. We have the following lemma.

Lemma. The only cylindrical surfaces whose Gauss map satisfies (1.3) are the planes and the circular cylinders.
\dagger This work was done while the first author was a visiting scholar at Michigan State University.
Glasgow Math. J. 34 (1992) 355-359.

Proof. The Gauss map of M^{2} is $G=\alpha^{\prime} \times \beta=\left(\alpha_{2}^{\prime},-\alpha_{1}^{\prime}, 0\right)$ and the Laplacian of G is $\Delta G=\left(-\alpha_{2}^{\prime \prime \prime}, \alpha_{1}^{\prime \prime \prime}, 0\right)$. Thus from the condition (1.3) we have
(i) $-\alpha_{2}^{\prime \prime \prime}=\lambda_{11} \alpha_{2}^{\prime}-\lambda_{12} \alpha_{1}^{\prime}$
(ii) $\alpha_{1}^{\prime \prime \prime}=\lambda_{21} \alpha_{2}^{\prime}-\lambda_{22} \alpha_{1}^{\prime}$
(iii) $0=\lambda_{31} \alpha_{2}^{\prime}-\lambda_{32} \alpha_{1}^{\prime}$
where $\Lambda=\left[\lambda_{i j}\right]$ is a constant matrix. Since $\left|\alpha^{\prime}\right|=1$ we can put

$$
\begin{equation*}
\alpha_{1}^{\prime}=\cos \theta, \quad \alpha_{2}^{\prime}=\sin \theta \tag{2.2}
\end{equation*}
$$

where $\theta=\theta(s)$. Then from (2.1)(i), (ii) we obtain

$$
\begin{aligned}
& \theta^{\prime \prime} \cos \theta-\theta^{\prime 2} \sin \theta=-\lambda_{11} \sin \theta+\lambda_{12} \cos \theta \\
& \theta^{\prime \prime} \sin \theta+\theta^{\prime 2} \cos \theta=-\lambda_{21} \sin \theta+\lambda_{22} \cos \theta
\end{aligned}
$$

which give

$$
\begin{align*}
\theta^{\prime 2} & =-\left(\lambda_{12}+\lambda_{21}\right) \sin \theta \cos \theta+\lambda_{11} \sin ^{2} \theta+\lambda_{22} \cos ^{2} \theta \tag{2.3}\\
\theta^{\prime \prime} & =\left(\lambda_{22}-\lambda_{11}\right) \sin \theta \cos \theta+\lambda_{12} \cos ^{2} \theta-\lambda_{21} \sin ^{2} \theta \tag{2.4}
\end{align*}
$$

Taking the derivative of (2.3) and using (2.4) we obtain

$$
\theta^{\prime}\left[4\left(\lambda_{22}-\lambda_{11}\right) \sin \theta \cos \theta+\left(3 \lambda_{12}+\lambda_{21}\right) \cos ^{2} \theta-\left(\lambda_{12}+3 \lambda_{21}\right) \sin ^{2} \theta\right]=0
$$

If $\theta^{\prime}=0$, the Gauss map G is constant and hence M^{2} is a plane. So, suppose $\theta^{\prime} \neq 0$. Since $\sin ^{2} \theta, \cos ^{2} \theta$ and $\sin \theta \cos \theta$ are linearly independent functions of $\theta=\theta(s)$, we obtain from (2.5).

$$
\lambda_{11}=\lambda_{22}, 3 \lambda_{12}+\lambda_{21}=0, \lambda_{12}+3 \lambda_{21}=0 .
$$

Thus $\lambda_{12}=\lambda_{21}=0$. Substitution into (2.3) then gives $\theta^{\prime 2}=\frac{1}{r^{2}}$, where $\frac{1}{r^{2}}=\lambda_{11}=\lambda_{22}=$ const. Now from (2.1)(i) and (ii) we conclude that the curve α is the circle

$$
\begin{equation*}
\alpha=\left(r \sin (r s+c)+d_{1},-r \cos (r s+c)+d_{2}, 0\right) \tag{2.6}
\end{equation*}
$$

where c, d_{1}, and d_{2} are constants. Also from (2.1)(iii) we obtain $\lambda_{31}=\lambda_{32}=0$.
Remark. The matrix $\Lambda=\left[\lambda_{i j}\right]$ in the condition (1.3) when M^{2} is the circular cylinder on the circle (2.6) is given by

$$
\Lambda=\left[\begin{array}{ccc}
\frac{1}{r^{2}} & 0 & \lambda_{13} \\
0 & \frac{1}{r^{2}} & \lambda_{23} \\
0 & 0 & \lambda_{33}
\end{array}\right]
$$

where $\lambda_{i 3}, i=1,2,3$ are arbitrary constants.
Proof of the theorem. We suppose that M^{2} is a non-cylindrical ruled surface in E^{3}. The surface M^{2} can be expressed in terms of a directrix curve $\alpha(s)$ and a unit vector field $\beta(s)$ pointing along the rulings as

$$
X(s, t)=\alpha(s)+t \beta(s)
$$

Moreover, we can choose the parameter s to be arc length along the spherical curve $\beta(s)$. Thus for the curves α, β we have

$$
\begin{equation*}
\langle\beta, \beta\rangle=1,\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=1,\left\langle\alpha^{\prime}, \beta\right\rangle=0 \tag{2.7}
\end{equation*}
$$

If we define a function q by

$$
\begin{equation*}
q=\left\|\alpha^{\prime}+t \beta^{\prime}\right\|^{2}=t^{2}+2 u t+v \tag{2.8}
\end{equation*}
$$

where $u=\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle$ and $v=\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle$, then the Gauss map of the surface is given by

$$
G=q^{-1 / 2}\left(\left(\alpha^{\prime}+t \beta^{\prime}\right) \times \beta\right)
$$

It is easy to shwo that the Laplacian Δ of M can be expressed as (see [1])

$$
\begin{equation*}
\Delta=-\frac{\partial^{2}}{\partial t^{2}}-\frac{1}{q} \frac{\partial^{2}}{\partial s^{2}}+\frac{1}{2} \frac{\partial q}{\partial s} \frac{1}{q^{2}} \frac{\partial}{\partial s}-\frac{1}{2} \frac{\partial q}{\partial t} \frac{1}{q} \frac{\partial}{\partial t} . \tag{2.10}
\end{equation*}
$$

For convenience we put

$$
\begin{equation*}
G=\left(G_{1}, G_{2}, G_{3}\right)=q^{-1 / 2}\left(A_{1}+t B_{1}, A_{2}+t B_{2}, A_{2}+t B_{3}\right) \tag{2.11}
\end{equation*}
$$

where

$$
\begin{align*}
& \left(A_{1}, A_{2}, A_{3}\right)=\alpha^{\prime} \times \beta \tag{2.12}\\
& \left(B_{1}, B_{2}, B_{3}\right)=\beta^{\prime} \times \beta .
\end{align*}
$$

We now compute the Laplacian of the functions G_{i}. We have

$$
\begin{aligned}
\frac{\partial G_{i}}{\partial t}= & q^{-3 / 2}\left[B_{i} q-\left(A_{i}+t B_{i}\right)(t+u)\right]=q^{-3 / 2} C_{i} \\
\frac{\partial^{2} G_{i}}{\partial t^{2}}= & q^{-5 / 2}\left[\left(B_{i} u-A_{i}\right) q-3\left(B_{i} q-\left(A_{i}+t B_{i}\right)(t+u)\right)(t+u)\right]=q^{-5 / 2} D_{i} \\
\frac{\partial G_{i}}{\partial s}= & \frac{1}{2} q^{-3 / 2}\left[2\left(A_{i}^{\prime}+t B_{i}^{\prime}\right) q-\left(A_{i}+t B_{i}\right)\left(2 u^{\prime} t+v^{\prime}\right)\right]=\frac{1}{2} q^{-3 / 2} E_{i} \\
\frac{\partial^{2} G_{i}}{\partial s^{2}}= & \frac{1}{2} q^{-5 / 2}\left\{\left[2\left(A_{i}^{\prime \prime}+t B_{i}^{\prime}\right) q+\left(A_{i}^{\prime}+t B_{i}^{\prime}\right)\left(2 u^{\prime} t+v^{\prime}\right)-\left(A_{i}+t B_{i}\right)\left(2 u^{\prime \prime} t+v^{\prime \prime}\right)\right] q\right. \\
& \left.-\frac{3}{2}\left[2\left(A_{i}^{\prime}+t B_{i}^{\prime}\right) q-\left(A_{i}+t B_{i}\right)\left(2 u^{\prime} t+v^{\prime}\right)\right]\left(2 u^{\prime} t+v^{\prime}\right)\right\} \\
= & \frac{1}{2} q^{-5 / 2} F_{i} .
\end{aligned}
$$

Thus, from the above relations and (2.10),

$$
\Delta G_{i}=-q^{-5 / 2} D_{i}-\frac{1}{2} q^{-7 / 2} F_{i}+\frac{1}{4} q^{-7 / 2}\left(2 u^{\prime} t+v^{\prime}\right) E_{i}-q^{-5 / 2}(t+u) C_{i}
$$

Now if we put $\Lambda=\left[\lambda_{i j}\right]$ from (1.3) and (2.11) we have

$$
\begin{equation*}
-4 q D_{i}-2 F_{i}+\left(2 u^{\prime} t+v^{\prime}\right) E_{i}-4 q(t+u) C_{i}=4 \sum_{j=1}^{3} \lambda_{i j}\left(A_{j}+t B_{j}\right) q^{3}, \quad i=1,2,3 \tag{2.13}
\end{equation*}
$$

We consider the powers of t in equation (2.13). From the coefficient of t^{7} we have

$$
\begin{equation*}
\sum_{j=1}^{3} \lambda_{i j} B_{j}=0, \quad i=1,2,3 \tag{2.14}
\end{equation*}
$$

Considering the coefficients of the other powers of t and using (2.14) we obtain for any $i=1,2,3$

$$
\begin{gather*}
\sum_{j=1}^{3} \lambda_{i j} A_{j}=0 \tag{2.15}\\
B_{i}^{\prime \prime}=0 \tag{2.16}\\
-8 A_{i} u+4 B_{i} u^{2}+4 B_{i} v-8 A_{i}^{\prime \prime} u+6 A_{i}^{\prime} u^{\prime}+12 B_{i}^{\prime} u u^{\prime}+3 B_{i}^{\prime} v^{\prime} \tag{2.17}\\
+2 A_{i} u^{\prime \prime}+B_{i} v^{\prime \prime}+4 B_{i} u u^{\prime \prime}-8 B_{i} u^{\prime 2}=0
\end{gather*}
$$

$$
\begin{align*}
& 12 B_{i} u v-12 A_{i} u^{2}-4 A_{i}^{\prime \prime} v+3 A_{i}^{\prime} v^{\prime}+A_{i} v^{\prime \prime}-8 A_{i}^{\prime \prime} u^{2}+12 A_{i}^{\prime} u u^{\prime} \\
& \\
& +6 B_{i}^{\prime} u^{\prime} v+6 B_{i}^{\prime} u v^{\prime}+4 A_{i} u u^{\prime \prime}+2 B_{i} u v^{\prime \prime}+2 B_{i} u^{\prime \prime} v \tag{2.19}\\
& \\
& \quad-8 A_{i} u^{\prime 2}-8 B_{i} u^{\prime} v^{\prime}=0
\end{align*}
$$

$$
\begin{align*}
& 4 B_{i} u^{2} v+4 B_{i} v^{2}-8 A_{i} u^{3}-8 A_{i}^{\prime \prime} u v+6 A_{i}^{\prime} u v^{\prime}+2 A_{i} u v^{\prime \prime}+6 A_{i}^{\prime} u^{\prime} v \\
&+3 B_{i}^{\prime} v v^{\prime}+2 A_{i} u^{\prime \prime} v+B_{i} v v^{\prime \prime}-8 A_{i} u^{\prime} v^{\prime}-2 B_{i} v^{\prime 2}=0 \tag{2.20}\\
& 2 B_{i} u v^{2}+2 A_{i} v^{2}-4 A_{i} u^{2} v-2 A_{i}^{\prime \prime} v^{2}+3 A_{i}^{\prime} v v^{\prime}+A_{i} v v^{\prime \prime}-2 A_{i} v^{\prime 2}=0 \tag{2.21}
\end{align*}
$$

We remark that $\operatorname{det} \Lambda=0$, for if we assume $\operatorname{det} \Lambda \neq 0$, then from (2.14), $B_{i}=0$, $i=1,2,3$. Thus, from (2.12) we have $\beta^{\prime} \times \beta=0$, contradicting (2.7).

From (2.16) and (2.12) we have $\beta^{\prime} \times \beta=c s+d$, where c and d are constant vectors. So $1=\left\|\beta^{\prime} \times \beta\right\|^{2}=\langle c, c\rangle s^{2}+2\langle c, d\rangle s+\langle d, d\rangle$, from which we conclude that $\langle c, c\rangle=0$, $\langle d, d\rangle=1$, or equivalently $\beta^{\prime} \times \beta=d$, where d is a constant unit vector. Since β is a spherical curve, this implies that β is a great circle. Let $\beta=$ $(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$, where $\theta=\theta(s)$ and $\varphi=$ const. From $\beta^{\prime} \times \beta=d$ we conclude that $\theta^{\prime 2}=1$ and so

$$
\beta^{\prime} \times \beta=\left(B_{1}, B_{2}, B_{3}\right)=(\sin \varphi,-\cos \varphi, 0) .
$$

Now, from (2.17) we have $A_{i}-B_{i} u+\left(A_{i}-B_{i} u\right)^{\prime \prime}=0$. If we put $A_{i}-B_{i} u=w_{i}, i=1,2,3$, then $w_{i}+w_{i}^{\prime \prime}=0$ and $\left(\alpha^{\prime}-u \beta^{\prime}\right) \times \beta=w$ where $w=\left(w_{1}, w_{2}, w_{3}\right)$. So $\left\|\alpha^{\prime}-u \beta^{\prime}\right\|^{2}=$ $\langle w, w\rangle$, or

$$
\begin{equation*}
v=u^{2}+w^{2} \tag{2.22}
\end{equation*}
$$

where $w^{2}=\langle w, w\rangle$.
Since $A_{3}=w_{3}$ and $w_{3}^{\prime \prime}=-w_{3}$, we have from (2.18)

$$
\begin{equation*}
3 w_{3}^{\prime} u^{\prime}+w_{3} u^{\prime \prime}=0 . \tag{2.23}
\end{equation*}
$$

By using (2.23), from (2.19) we find that

$$
\begin{equation*}
-4 w_{3} u^{2}+4 w_{3} v+3 w_{3}^{\prime} v^{\prime}+w_{3} v^{\prime \prime}-8 w_{3} u^{\prime 2}=0 . \tag{2.24}
\end{equation*}
$$

Using (2.22), (2.23) and (2.24), equations (2.20) and (2.21) can be written as

$$
\begin{gather*}
w_{3}\left(w^{2}\right)^{\prime} u^{\prime}=0 \tag{2.25}\\
4 w_{3} u^{\prime 2} v-w_{3} v^{\prime 2}=0 . \tag{2.26}
\end{gather*}
$$

Now, using the equations (2.22)-(2.26) we will prove that $w=0$. Suppose, for the moment, that $w_{3} \neq 0$. From (2.25) we have $\left(w^{2}\right)^{\prime} u^{\prime}=0$. If $u^{\prime}=0$, from (2.26) we have $v^{\prime}=0$ and hence from (2.24) $u^{2}=v$. Thus (2.22) implies $w=0$, a contradiction. Thus $u^{\prime} \neq 0$ and so $\left(w^{2}\right)^{\prime}=0$. From (2.22) $v^{\prime}=2 u u^{\prime}$ and from (2.26) $v=u^{2}$. Again (2.22) implies $w=0$, a contradiction. So, we have $w_{3}=0$. This means that the vector w lies in the $x y$ plane. But $w=\alpha^{\prime} \times \beta-u \beta^{\prime} \times \beta$ and the vector $\beta^{\prime} \times \beta$ lies in the $x y$ plane. So $\alpha^{\prime} \times \beta$ lies in the $x y$ plane. This means that the vectors $\alpha^{\prime} \times \beta$ and $\beta^{\prime} \times \beta$ are parallel. If we put $\alpha^{\prime} \times \beta=\mu \beta^{\prime} \times \beta$, then $\left(\alpha^{\prime}-\mu \beta^{\prime}\right) \times \beta=0$ or $\alpha^{\prime}=\mu \beta^{\prime}$. So $\mu=\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle=u$ and $\alpha^{\prime}=u \beta^{\prime}$, namely $w=0$.

Now we conclude that $q=(t+u)^{2}$ and the Gauss map is constant, which means that M^{2} is a plane.

REFERENCES

1. B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Ruled surfaces of finite type, Bull. Austral. Math. Soc. 42 (1990), 447-453.
2. F. Dillen, J. Pas and L. Verstraelen, On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sinica, 18 (1990), 239-246.
3. E. A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569-573.

Department of Mathematics
University of Ioannina
Ioannina 45110
Greece

Department of Mathematics
Michigan State University
East Lansing, MI 48824
U.S.A.

