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Abstract

Computing predictions of future sea level that include well-defined uncertainty bounds requires
models that are capable of robustly simulating the evolution of ice sheets and glaciers. Ice flow
behaviour is known to be sensitive to the location and geometry of dynamic ice boundaries
such as the grounding line (GRL), terminus position and ice surface elevation, so that any such
model should track these interfaces with a high degree of accuracy. To address this challenge,
we implement a numerical approach that uses the level-set method (LSM) that accurately models
the evolution of the ice–air and ice–water interface as well as capturing topological changes in ice-
sheet geometry. This approach is evaluated by comparing simulations of grounded and marine-
terminating ice sheets to various analytical and numerical benchmark solutions. A particular
advantage of the LSM is its ability to explicitly track the moving margin and GRL while using a
fixed grid finite-difference scheme. Our results demonstrate that the LSM is an accurate and robust
approach for tracking the ice surface interface and terminus for advancing and retreating ice sheets,
including the transient marine ice-sheet interface and GRL positions.

1. Introduction

The Greenland and Antarctic ice sheets have been losing mass at an accelerated rate (Bevis and
others, 2019; Rignot and others, 2019) and ice-sheet margins have recently undergone
dramatic changes (Bunce and others, 2018; Konrad and others, 2018). These ice sheets are
expected to experience further significant changes in the future (e.g. Edwards and others,
2019). These rapid dynamic changes are occurring not through the slow internal deformation
of ice under the force of gravity but rather because of interactions between ice bodies and
their boundaries. Whether that be ice–bed, such as hydrologically-accelerated basal sliding
(e.g. Schoof, 2010); ice–ocean, such as submarine melt induced by subglacial discharge and/
or fjord temperature (e.g. Jenkins, 2011; Straneo and Heimbach, 2013); or ice–air, through
mass-balance feedbacks (e.g. Vizcaino and others, 2015). Ice flow dynamics are known to
be very sensitive to the interface locations; for example, the stability of marine ice sheets
depends fundamentally on the grounding line (GRL) position (Schoof, 2007). Consequently,
careful attention must be paid to these interfaces when modelling ice-sheet flow. In particular,
any choice of numerical algorithm must be guided by the need to accurately capture dynam-
ically evolving boundaries, and hence to ensure reliable predictions of ice volume and extent
and to minimize uncertainty in sea-level rise estimates.

To address these challenges, we aim to demonstrate that the level-set method (LSM) is an
effective approach for accurately tracking the evolution of the ice–air and ice–water interfaces,
as well as the terminus position for ice sheets and the GRL position of marine ice sheets. The
level-set approach is versatile and can be incorporated into any ice-sheet model (shallow ice to
full Stokes) regardless of numerical discretization of the governing equations (finite difference
or finite element, fixed grid or adaptive mesh). In this paper, we present an LSM implemented
in shallow ice models using a finite-difference discretization on a fixed rectangular grid.

The evolution of an ice-sheet free surface is typically modelled by solving the kinematic
boundary condition

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
− w = Mj, (1)

where η = h(x, y, t) for the surface elevation of the ice–air interface or η = b(x, y, t) for the
elevation of the bottom ice–water interface, (u, v, w) are the ice velocity components, and
Mj(x, y, t) denotes the (surface Mh or bottom Mb) mass-balance function. We note that
the geometry of an evolving ice–air or ice–water interface may experience overriding, breaking,
merging, separation, discontinuities, vertical fronts and overhangs, and such events cannot be
resolved in the standard setup. Furthermore, because of discretization, elevations are only eval-
uated at the grid points, and as such, the exact location of the terminus and GRL will fall
between grid points and is not tracked explicitly. To improve accuracy, a fine-grid resolution
is required, which can become prohibitively expensive. This is particularly apparent for marine
ice sheets where fixed-grid methods have been shown to be inadequate in capturing GRL
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migration (Vieli and Payne, 2005; Pattyn and others, 2012;
Seroussi and others, 2014). Consequently, ice-sheet modellers
have incorporated various approaches to more accurately track
the GRL. These include grid refinement near the GRL (e.g.
Durand and others, 2009b; Cornford and others, 2013), requiring
adaptive remeshing with each displacement of the GRL. The use
of sub-element parameterizations together with mesh refinement
has been shown to be beneficial (Seroussi and others, 2014),
although even here the exact GRL position is not being tracked.
Explicit tracking methods include coordinate stretching to trans-
form the moving boundary onto a fixed domain using a prognos-
tic equation for GRL migration (e.g. Hindmarsh, 1996). However,
this approach cannot be generalized to 2-D because of complica-
tions in handling the complex evolving geometry of the GRL.
Other alternatives include the location-based moving mesh
approach of Goldberg and others (2009) where the challenge is
to define a suitable monitor function to position nodes, or the
velocity-based moving-point approach proposed by Bonan and
others (2016) to track the ice-sheet margin, but not yet applied
to addressing the GRL problem.

These difficulties addressed above can be readily handled by
the use of the LSM which can capture complex evolving geo-
metries without requiring adaptive mesh refinement, and with
the further advantage of being relatively straightforward to imple-
ment. The LSM is an increasingly popular tool within computa-
tional fluid dynamics for tracking the motion of dynamic fluid
interfaces and is finding widespread use in many applications
(Sethian, 1999b; Gibou and others, 2018). LSMs were first applied
in glaciology by Pralong and Funk (2004), who proposed the
LSM with the ice–air flow problem as a means of evaluating
the steady-state geometry of a glacier. Further consideration of
the applicability of LSM to ice flow, compared among other
numerical algorithms for free surface flows, can be found in
Caboussat and others (2011). More recently, Bondzio and others
(2016) used a LSM to simulate the migration of the calving front
in a 2-D plan-view modelling study (see also Bondzio and others
(2018)). They demonstrate the benefit of the LSM for simulating
calving front dynamics in Jakobshavn Isbræ, west Greenland.

In this study, we build on the pioneering exploratory study of
Pralong and Funk (2004) by providing an extensive series of
simulations testing the accuracy of the LSM for tracking evolving
land- and marine-terminating ice-sheet boundaries. We use flow-
line and radial ice flow models together with the LSM to simul-
taneously model ice elevations, continental margins, GRLs and
shelf fronts. We highlight implementation details not previously
addressed such as the use of the signed distance function, calcu-
lation of extended velocities and the fast marching method
(FMM) for reinitialization. In Pralong and Funk (2004) and
Bondzio and others (2016), the LSM is implemented using the
finite-element method on unstructured meshes. Instead, our
implementation uses the finite-difference method on a regular
fixed grid, which further highlights the strength and versatility
of the LSM by demonstrating that moving ice boundaries can
be tracked accurately without requiring local mesh refinement.

2. Level set method

In LSMs, the interface is represented implicitly using a level-set
function w(x, t) which is a differentiable function on a space-time
domain Ω ×ℝ+, where x∈Ω is the spatial domain in 2-D or 3-D.
The surface itself is represented as the zero isosurface or level set
w(x, t) = 0, which propagates at a speed directed normal to the
surface ∂Ω.

When tracking the ice–air or ice–water interface for an ice
sheet or glacier, we can define a level-set function w with the

following properties:

w(x, t) , 0 for x [ Vi,

w(x, t) . 0 for x [ Vc,

w(x, t) = 0 for x [ ∂V,

(2)

where Ωi represents the region inside the ice body, Ωc is the
region outside the ice body (consisting of either air or water),
and ∂Ω is the ice–air or ice–water interface (see Fig. 1). Any level-
set function fitting this description (Eqn 2) can be used as an ini-
tial condition for the level-set evolution equation to track an
interface (see Section 2.1). However, we will use a special choice
corresponding to the signed distance function (cf. Pralong and
Funk, 2004) that is numerically advantageous (Vogl, 2016) and
improves mass conservation, compared to other choices (Gibou
and others, 2018):

w(x, t) = −d(x, ∂V), if x [ Vi,
d(x, ∂V), if x [ Vc.

{
(3)

The value of the level-set function corresponds to the Euclidean
distance d(x, ∂Ω) between any given spatial location x and the
corresponding closest point on the interface ∂Ω, with the sign
chosen as negative for inside the ice and positive for outside.

2.1. Level-set evolution

The value of the level-set function at any point on an interface
with location x(t)∈Ω must satisfy

w(x(t), t) = 0.

Differentiating this equation in time and applying the chain rule,
we obtain

∂w

∂t
+∇w(x(t), t) · x′(t) = 0.

Supposing that F is the speed in the outward normal direction,
then

x′(t) · n = F where n = ∇w/‖∇w‖.
Therefore, the evolution equation for the level-set function w can
be written as

∂w

∂t
+ F ‖ ∇w ‖= 0. (4)

The normal speed F should depend on the ice velocity field as
well as any accumulation and ablation (Pralong and Funk,
2004). To this end, let M(x, t) denote the mass-balance function
and u(x, t) the ice velocity field, so that the speed function can be
written as

F = (u(x, t)+M(x, t)ẑ) · ∇w
‖ ∇w ‖ , (5)

where ẑ is the unit vector in the vertical direction and we have
assumed vertical accumulation and ablation (Pralong and Funk,
2004). M(x, t) is determined by the surface and basal mass-
balance functions, Mh and Mb, respectively. M(x, t) and u(x, t)
can be derived from the specific ice-sheet model or fit to observa-
tional data. The level-set equation is solved throughout the com-
putational domain which requires speed function values, F, at all
grid points both inside and outside the ice. This necessitates the
computing of so-called extended speed, the full details of which
are provided in Appendix A1. The numerical implementation
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of the level-set equation is described in Appendix A2 and we
include an explanation of a re-initialization procedure that uses
the FMM in Appendix A3.

2.2. Coupling between ice-sheet model and LSM

For the computational experiments performed in this study, the
LSM described above requires a 2-D ice velocity field u = (u, w)
that comes from an ice flow model, which we obtain using either
the shallow ice approximation (SIA) or the shallow shelf approxi-
mation (SSA), see Appendix B1 and B2, respectively. The ice vel-
ocities u and w, the speed function F and the level-set function w
are defined on a 2-D grid, with the ice thickness H and the height
of the upper surface h defined on a 1-D grid. The overall solution
procedure and details regarding the coupling between ice-sheet
model and the LSM are as follows:

(1) Computing the velocities, uk and wk: At any time tk, the ice
thickness Hk and the height of the upper surface hk are
known. Hk, hk and the horizontal derivatives of hk (determined
using the central difference approximation) are used to calcu-
late the horizontal and vertical velocities at tk, uk and wk,
respectively. In the radially symmetric SIA experiments, uk is
computed using Eqn (B3) and wk using Eqn (B4). Whereas
for the marine ice sheet and ice-shelf experiments, we apply
the Picard iteration of the SSA, Eqn (B11), to compute uk.
The derivatives of uk and the bedrock are then determined
using the central difference approximation and wk is computed
using Eqn (B9), for ice stream, and Eqn (B10), for ice shelf.

(2) Computing the speed, Fk: The velocities, uk and wk, together
with the given surface mass balance function, are used to
determine Fk for grid points interior the ice sheet using
Eqn (5). For grid points exterior to the ice sheet Fk is deter-
mined using the procedure described in Appendix A1.

(3) Computing wk+1: The discretized level-set evolution Eqn (A5)
and the numerical procedure described in Appendix A2 are
used to determine the level set at time tk+1, wk+1.

(4) Extract Hk+1: The zero level set is determined with subgrid
scale precision from the zero contour line of wk+1. The zero
level set identifies the ice surface and is used to determine
Hk+1 and hk+1. The terminus or GRL position is identified
as the location where the zero level set intersects the bottom
domain boundary. Although we note that our ice velocity
solver does not use any subgrid method; for example, the
exact GRL position is not used in the SSA computation.

(5) Re-initialization: The FMM algorithm (Appendix A3) can be
used to rebuild the level-set function w. This step is only
necessary every 50–100 time steps depending on the com-
plexity of the problem and the required accuracy.

3. Numerical results

Our aim in this section is to validate the LSM as an effective
method for capturing ice-sheet evolution, including GRL

migration, by comparing results from numerical simulations
against various analytical and benchmark solutions. We first
compare the LSM result for an idealized glacier test case with a
prescribed velocity field and mass balance, after which we exam-
ine the behaviour and performance of the LSM for tracking both
grounded and marine ice-sheet boundaries.

3.1. An idealized test case

Following Pralong and Funk (2004), we first consider an idealized
glacier test case in order to focus in on the coupling between the
level-set calculation and the ice flow problem. This test case fixes
the ice flow solution with the given velocity field u(x, z) = x2 + z2

and w(x, z) = 0 and glacier surface height h(x, t) = x− x2 + xt. The
corresponding extended mass-balance function is chosen as
M(x, z, t) = x + (x2 + z2)(1− 2x + t), so that Eqn (1) is satis-
fied identically in 2-D (Picasso and others, 2004). The evolution
of this ‘glacier surface’ is then simulated using the level-set Eqn
(4) with the imposed flow field u, w and mass-balance function
M(x, z, t) so that the evolved surface height may be compared
with the analytical solution h(x, t).

The numerical results, from the initial position (at t = 0) to the
final position (at t = 2), show excellent agreement with the analyt-
ical solution (Fig. 2a). We calculate the discrete ℓ1-norm of the
absolute error for h at t = 2 on uniform spaced grids of 60 × 60,
75 × 75, 90 × 90 and 105 × 105 using a time step Δt = 0.005

Fig. 1. Basic geometry and definition of the level-set function w(x, t) for a generic ice
sheet.

Fig. 2. (a) Evolution of the interface due to an imposed velocity field and surface
mass balance. The interface position is shown at equally-spaced times between
t = 0 and 2. The points (‘°’) represent the analytical solution and the solid lines cor-
respond to the numerical approximation of the LSM. The simulation uses a spatial
grid 60 × 60 and time step Δt = 0.005. (b) Verification of the rate of convergence
O(Dx1.3) using the ℓ1-norm error.
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without re-initialization (Fig. 2b). From these results, we estimate
the rate of convergence of the ℓ1 error norm to be O(Dx1.3) (and
O(Dx1.9) for the ℓ2 error).

3.2. Halfar similarity solution

We next apply the LSM to a well-known time-dependent solution
of the SIA model called the Halfar similarity solution. To find this
exact solution, we first write the no slip SIA equation (Schoof and
Hewitt, 2013)

∂H
∂t

= ∇.(GHn+2|∇h|n−1∇h)+M(x, t), (6)

where Γ = (2A/(n + 2))(ρg)n and H denotes the ice thickness (refer
to Appendix B1 for details). Halfar (1981) derived a similarity solu-
tion for this problem in the case of a flat bed (b(x) = 0) and no
surface mass balance (M(x, t) = 0). Supposing that H(0, t0) =H0

for t0 > 0 and the distance from the origin r = (x2 + y2)1/2, the 2-D
Halfar solution to the SIA is

H(r, t) = H0
t0
t

( )a
1− t0

t

( )b r
R0

( )(n+1)/n[ ]n/(2n+1)
, (7)

where t0 = (b/G)(7/4)3R4
0 H

−7
0 is a characteristic time (Bueler

and others, 2005). Note that the values of the parameters α = 1/9
and β = 1/18 are such that the factors t−α and t−β change very slowly
for large times t. Other parameters used in this computation are the
Glen’s flow law exponent n = 3 and ice softness A = 10−16 Pa−3 a−1,
ice density ρ = 910 kgm−3, gravitational acceleration g = 9.81 m s−2,
H0 = 3600 m and R0 = 750 km.

We choose initial time t = 100 in Eqn (7) so that H(r, t = 100)
is the initial ice thickness. To compute the surface elevation
of the Halfar similarity solution using the LSM, we evolve the
level-set Eqn (4) with the SIA horizontal and vertical velocities
(Eqns (B3) and (B4), respectively) to compute the new surface
at time t, identified with w(r, z, t) = 0. The level-set function is
computed on the domain [0,1000] km × [0,5000] m with 200 ×
100 grid size (Δr = 5 km along the radial axis and Δz = 50 m
along the vertical axis).

We compute an extended velocity field outside the ice, which
is then used to generate a signed distance function (Eqn (3))
depicted in Figure 3a based on the initial level-set function
w(r, z, t = 100). This initial surface is then evolved in time and
Figure 3b compares the surface elevation of the ice sheet at
t = 1000 and 10000 years (where w(r, z, 1000) = 0 and w(r, z,
10000) = 0) with the Halfar solution (Eqn (7)). The absolute
error between the elevations from the exact Halfar solution and
the LSM approximation at t = 10000 years is small, limited to at
most 30 m at the ice divide (Fig. 3c). The error increases towards
the margin due to steeper surface gradients near the terminus
(Fig. 3c). In spite of this, the position of the margin is obtained
to within a relative error of 0.29% (comparing 894.14 km
(Halfar) with 896.71 km (LSM)). These results are in close agree-
ment with the exact solution. We repeated the experiment with
uniformly spaced grids of 160 × 80, 200 × 100, 250 × 125 and
300 × 150 and found the rate of convergence of the absolute
error in the position of the margin to be O(Dr1.1).

3.3. Radially symmetric ice-sheet experiments

In this section, we perform a moving-margin experiment
described in the European Ice Sheet Modelling INiTiative
(EISMINT) intercomparison project (Huybrechts and Payne,

1996). The aim of this experiment is to find a steady-state ice-
sheet surface solution for a given mass-balance function.

Before addressing the EISMINT experiment, we first introduce
the steady-state solution for an ice sheet with flat bedrock which
occurs when the net mass of ice remains constant over some per-
iod of time. In other words, the rate of change of the ice thickness
(∂H/∂t) = 0, so that the SIA mass balance (Eqn (6)) reduces at
steady state to

M(r)− 1
r
∂(rH�u)
∂r

= 0, (8)

where r is the radial coordinate and �u is the vertically averaged ice
velocity. Assuming that the surface mass balance M(r) is inde-
pendent of time and the bedrock is flat, the solution for the steady
ice thickness profile is

H(r) = 2(n+ 1)
nrg

( )n n+ 2
2A

( )1/2(n+1)

×
∫R
r

1
j

∫j
0
M(h)h dh

( )1/n

dj

⎛
⎝

⎞
⎠

n/2(n+1)

,

(9)

where R denotes the margin position at steady state (Bonan and
others, 2016). The EISMINT intercomparison project imposes
the surface mass-balance function

M(r) = min (0.5, 10−2 · (450− r)) ma−1, (10)

for which the bisection method (a simple numerical root-finding
algorithm) can be applied to

�R
0 M(h)h dh = 0 to find the

Fig. 3. (a) A contour plot of the initial level-set function w at t = 100 with the red line
denoting the zero level set, w = 0, of the ice surface; (b) surface elevations of the
evolving ice sheet; (c) the absolute error between the Halfar exact solution and
the computed LSM solution at t = 10000 years.
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steady-state margin position of R = 579.81 km. We note that the
integral

�j
0 M(h)h dh in Eqn (9) can be evaluated numerically

using (Eqn (10)), and so the steady H profile can be estimated
accurately using Simpsons 1/3 rule (see Bonan and others,
2016). Parameters used in the EISMINT benchmarks are the
Glen’s flow law exponent n = 3 and ice softness A = 10−16 Pa−3 a−1,
ice densityρ = 910 kgm−3 andgravitational acceleration g = 9.81ms−2.

We perform two experiments on a flat bedrock with no sliding.
The first is the EISMINT moving margin experiment, designed
with no initial ice mass (Huybrechts and Payne, 1996). The
second is similar but initialized with the following ice mass profile
(Bonan and others, 2016):

H0(r) = 1000 1− r
450

( )2( )
m. (11)

Figures 4a, b depict the evolution of the ice-sheet geometry for
these two initial conditions and both are run for 20 000 years to
reach the steady state. The steady-state ice divide thickness was
found to be 2986.91 and 2987.81 m for the two experiments,
which both lie within the range 2982.3 ± 26.4m given by the
EISMINT intercomparison, and are extremely close to the numer-
ically integrated value obtained from Eqn (9) (Table 1). Similarly,
the margin position of both experiments is very close to the numer-
ically integrated reference value in Table 1. The absolute error
between the simulated result and the reference ice thickness across

the profile is mostly <1m and never rises above 4.1 m (Fig. 4c). The
relative ℓ1-norm errors of the surface elevation with and without
initial ice mass experiments are 0.038 and 0.036%, respectively.
After repeating the experiment, without initial ice mass, for grid
sizes 192 × 60, 216 × 60, 240 × 60 and 264 × 60, we determined
the rate of convergence of the absolute error in the position of
the margin to be O(Dr1.5). Both Table 1 and Figure 4 show that
our LSM method is able to achieve an excellent equivalent estima-
tion of the EISMINT intercomparison result without using coord-
inate stretching or grid refinement near the terminus.

We now investigate two further experiments, following Bonan
and others (2016), which use the EISMINT surface mass balance
with no initial ice mass and a non-flat (fixed) bedrock elevation

b(r) = 2000− 2000
r

300

( )2
+1000

r
300

( )4
−150

r
300

( )6
m. (12)

The first experiment considers no sliding, and the second includes
sliding with a bed friction parameter C = 7.624 × 106 Pa s1/3 m−1/3.

Fig. 4. Ice surface solutions for the EISMINT moving-margin experiment with (a) zero
initial ice mass and (b) initial ice mass given by Eqn (11). The LSM simulated profiles
are shown every 1000 years (blue lines) until steady state at t = 20000 years (red line)
and the steady-state reference solution is represented by circles. (c) The absolute
error at the steady state between the LSM (without and with an initial ice mass)
and the numerical reference value.

Table 1. Steady-state results from the EISMINT moving-margin experiment.
A comparison between the benchmark solutions (see Table 5 in Huybrechts
and Payne, 1996), the reference solution from numerical integration using
Eqn (9), and the LSM solutions with grid size 240 × 60 (Δr = 2.7 km and Δz =
60 m) obtained without an initial ice mass and with an initial ice mass from
Eqn (11)

Ice thickness at r = 0
(in m)

Position of the margin
(in km)

EISMINT/2 d 2982.3 ± 26.4 593.3 ± 9.0
Reference 2986.91 579.81
LSM (without initial ice mass) 2987.96 579.96
LSM (with initial ice mass) 2987.81 579.94

Fig. 5. Ice surface solutions for the EISMINT moving-margin experiment with non-flat
bedrock (a) without basal sliding and (b) with basal sliding. The LSM simulated
profiles are shown every 1000 years (blue lines) until steady state at t = 10000
years (red line). The grid size is 240 × 60 (Δr = 2.5 km and Δz = 50m).
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Ice-sheet profiles for these non-flat bedrock experiments reach a
steady state by roughly t = 10000 years (see Fig. 5). The ice divide
thickness at steady state was found to be 4026.25 m for the non-
sliding case and 3801.72m for the sliding case. The margin pos-
ition of the non-sliding and sliding experiments is 571.81 and
578.47 km, respectively. We have found that the LSM produces
smooth changes along the ice interface in contrast to the moving-
point approach of Bonan and others (2016) which show linear gra-
dients of the ice-sheet surface near the margin as a result of the
mesh size (refer to Figs 2, 4 from Bonan and others (2016)).
This is because our ice interface is determined with sub-gridscale
accuracy as we interpolate between the 2-D level-set values to deter-
mine the zero level set, whereas the ice interface in Bonan and
others (2016) is linearly interpolated between the 1-D grid points
of the ice thickness evolution equation.

3.4. Marine ice-sheet experiments

For the remainder, we shift our focus to simulating marine ice
sheets using the governing equations for the SSA described in
Appendix B2.

3.4.1. Steady ice shelf
The velocity and thickness of a steady 1-D marine ice shelf can be
computed analytically due to the relative simplicity of the SSA
Eqn (B7) (Van der Veen, 1983). The exact solution depends on
the velocity and ice thickness at the GRL, which we take to be
ug = 50 m a−1 and Hg = 500 m, respectively. We propose two
experiments, one where the surface mass balance M = 0 and a
second with M = 0.3 m a−1. In both cases, the initial condition
is an ice-shelf block having dimensions [0, 50] km × [(ρ/ρw)Hg,
((ρ/ρw)− 1)Hg] m, which satisfies the flotation criteria. The bot-
tom boundary is considered a free surface in the water without
any basal melting. The horizontal velocity is computed using
the Picard iteration (B11) and then the vertical velocity is deter-
mined using Eqn (B10). The grid spacings for the LSM solver
are Δx = 0.5 km and Δz = 5m with the same grid spacing Δxv =
0.5 km used for the velocity solver. The ice surface is evolved in
time using the LSM (Eqn (4)) and Figures 6a, b depict the surface
profiles at various times for the two experiments with and without
accumulation. The steady-state ice thickness at x = 50 km for
the case without accumulation is found to be 223.14 m and
with accumulation (M = 0.3 m a−1) is 290.73 m. The absolute
error is slightly higher near the GRL as expected due to the stee-
per ice thickness gradient at this location (Fig. 6c). The relative
ℓ1-norm errors in the ice–air shelf interface with and without
accumulation are 0.24 and 0.34%, respectively, and the rates
of convergence using the ℓ1-norm error are O(Dx1.1) and
O(Dx1.3), respectively. These numerical results show very good
agreement with the exact steady-state solution for these ice-shelf
test cases.

3.4.2. Marine ice-sheet benchmark experiment
Our final experiment is a study of the full marine ice sheet that
includes a grounded ice stream attached to a floating ice shelf.
The goal here is to examine the ability of the LSM to accurately
track GRL migration. We will study the hysteresis effect for a
2-D symmetrical marine ice sheet and compare results with the

Table 2. Parameter values of the marine ice-sheet experiments

Parameter Value

Ice density, ρ 900 kg m−3

Water density, ρw 1000 kg m−3

Gravitational acceleration, g 9.8 m s−2

Exponent in Glen’s law, n 3
Surface mass balance, M 0.3 m a−1

Bed friction exponent, m 1/3
Bed friction parameter, C 7.624 × 106 Pa s1/3 m−1/3

Table 3. Values of the Glen’s flow law rate constant A and time intervals used
for each step of the MISMIP EXP 3 benchmark, corresponding to the simulations
displayed in Figure 7 (Pattyn and others, 2012)

Step no. A (s−1Pa−3) Time interval (years)

1 3 × 10−25 3 × 104

2 2.5 × 10−25 1.5 × 104

3 2 × 10−25 1.5 × 104

4 1.5 × 10−25 1.5 × 104

5 1 × 10−25 1.5 × 104

6 5 × 10−26 3 × 104

7 2.5 × 10−26 3 × 104

8 5 × 10−26 1.5 × 104

9 1 × 10−25 1.5 × 104

10 1.5 × 10−25 3 × 104

11 2 × 10−25 3 × 104

12 2.5 × 10−25 3 × 104

13 3 × 10−25 1.5 × 104

Fig. 6. Evolution of the ice shelf interface using the shallow shelf approximation for
cases (a) zero accumulation and (b) accumulationM = 0.3 m a−1. The initial shelf is
a rectangular block of ice and the interface is displayed every 50 years, with the
steady state highlighted in red. The points (‘°’) show the exact ice shelf solution
for comparison. (c) Absolute error of the steady state (t = 1000 years) for both
experiments.
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benchmark Experiment 3 (EXP 3) from the Marine Ice Sheet
Intercomparison Project (MISMIP) (Pattyn and others, 2012).
The setup uses an overdeepened bed with polynomial shape

b(x) = 729− 2184.8
x
750

( )2
+1031.72

x
750

( )4
−151.72

x
750

( )6
m,

(13)

and model parameter values given in Table 2. The experiment
consists of a sequence of 13 steps (or time intervals) of a given
length, in each of which the ice sheet has a different value of
the Glen’s flow rate constant A (the data are summarized in
Table 3). Horizontal and vertical grid spacings for the level-set
discretization are Δx = 7.5 km and Δz = 60 m. To ensure a suffi-
ciently accurate horizontal velocity, for this experiment, we use
a finer grid for the velocity solver with spacing Δxv = 1.875 km,
although only velocities coincident with the level-set grid are
used by the level-set solver. We use a time step of Δt = 5 years
and every 500 years the level-set function is re-computed using
the FMM (see Appendix A3). The solution is initialized with a
50 m thick grounded ice layer that extends to the location
where it becomes afloat at position x = 479.1 km.

The model simulation proceeds as follows. Starting from the
initial values, the solution is computed using the value of A listed
for step 1 in Table 3 and over the corresponding time interval.
The code is then restarted with the new value of A listed in
step 2 and using the result from the first step as the initial state.
This procedure continues until the end of the final step and the
results are shown in Figure 7.

The corresponding GRL position is plotted as a function of
1/A in Figure 8 in order to demonstrate the hysteresis phenom-
enon and compare with the MISMIP results in Figure 5 of
Pattyn and others (2012). In Figure 8, the black S-shaped curve
represents the path according to the boundary layer theory of
Schoof (2007) with our modelled steady-state GRL positions cor-
rectly located on the upper and lower branches of this approxi-
mate analytic solution. The SSA fixed grid models used in
MISMIP EXP 3 (EBU1 (Δx = 6 km), DPO4 (Δx = 0.1 km) and
FPA5 (Δx = 0.3 km)) are either unable to reproduce hysteresis
or reproduce it qualitatively with solutions lying several tens of
kilometres from the boundary layer theory (see red plots in
Fig. 8). In contrast, our lower resolution fixed-grid (Δx = 7.5 km)
level-set approach produces modelled positions that closely
match those only achieved with the highly resolved (Δx≤ 1.2 km)
moving grid methods or the finest adaptive grid (Δx = 0.15 km)
SSA models in the MISMIP (see Fig. 5 and Table 2 in Pattyn
and others (2012)). Our results in Figure 8 are also plotted with
SSA-H FPA4 (Δx = 1.2 km), a MISMIP participating SSA model
with the Pollard and DeConto heuristic (a GRL parameterization
that uses the matched asymptotics of Schoof (2007)), and show
excellent agreement (Pattyn and others, 2012).

Another test of the numerical results is to compare the differ-
ence in GRL position between steps 2 and 12, where any differ-
ences are expected to be a result of numerical approximation
(Durand and others, 2009a). For our LSM configuration, we calcu-
late this gap to be 3.17 km (2.13 km between steps 1 and 13) using
our relatively coarse uniform grid (Δx = 7.5 km for the LSM and
Δxv = 1.875 km for the velocity solver). We note that in Figure 6
of Durand and others (2009a), the grid size has to be as low as
40m to achieve a similar degree of accuracy and a mesh size of
25− 200m close to the GRL was used by Gagliardini and others
(2016); however, these are full-Stokes models and so use a different
physical approximation needing higher resolution.

To investigate further, we examine the sensitivity of the GRL
position (xg) of the steady-state ice-sheet profiles between steps

Fig. 7. Simulated steady-state profiles of the MISMIP EXP 3 results. Steps 1–13 cor-
respond to the parameter changes listed in Table 3.

Fig. 8. Hysteresis in the grounding line position as a function of forcing viscosity (A−1)
for MISMIP EXP 3. The black line is from the boundary layer theory of Schoof (2007);
‘○’ points represent results from our LSM simulations; the red points ‘●’, ‘×’ and ‘◇’
depict results from the fixed grid MISMIP participating models SSA FPA5, SSA EBU1
and SSA DPO4, respectively; and ‘□’ points are from the MISMIP participating model
SSH-H FPA4 which uses the Pollard and DeConto heuristic (see Fig. 5 in Pattyn and
others (2012)).

Fig. 9. Evolution of the steady xg as a function of (a) the horizontal mesh size Δx of
the LSM for fixed mesh size Δxv = 1.875 km of the velocity solver and (b) the mesh size
Δxv of the velocity solver for fixed mesh size Δx = 3.75 km of the LSM. Blue circles (red
squares) represent results obtained for simulations starting from the steady state
obtained at step 2 (step 12). The dashed line depicts results obtained using
Schoof’s boundary layer (BL) theory reported in Durand and others (2009a).

772 M. Alamgir Hossain and others

https://doi.org/10.1017/jog.2020.45 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2020.45


2 and 12 for different mesh resolution. For this reason, we com-
pare results using a grid size of (Δx, Δz) = (10 km, 80 m), (7.5 km,
60 m), (5 km, 40 m) and (3.75 km, 30 m) for the LSM with a fixed
grid size Δxv = 15/8 km for the velocity solver. Similarly, we
also consider different velocity grid sizes with Δxv = 15/8, 15/16,
15/32 and 15/64 km and a fixed grid size (Δx, Δz) = (3.75 km,
30 m) for the LSM. Results are presented in Figures 9a, b where
steady xg are plotted as a function of the horizontal grid size Δx
of the LSM and the grid size Δxv of the velocity solver, respect-
ively. In Figure 9a, the GRL position gap between steps 2 and
12 reduces as the grid size is reduced and reaches 1.89 km at
the LSM grid Δx = 3.75 km. Numerical results also depend on
the accuracy of velocities that we use for the LSM. When steady
xg are presented as a function of the grid size of the velocity
solver (for a fixed LSM grid size Δx = 1.875 km) the gap reduces
to 150 m and we find that the GRL converges to a value near
730 km at the lowest resolution (Fig. 9b).

We have shown that by using the LSM on a relatively coarse
fixed grid, we can determine the evolving GRL position with
fine-scale accuracy. The zero level set determines the ice interface
and is found by interpolating level-set values computed on
the fixed grid. The GRL position is identified as the location
where the zero level set meets the bottom of the domain.
In spite of our coarse grid, this method allows us to determine
the GRL position with subgrid scale precision. The LSM requires
an additional dimension and therefore greater computational
time is needed compared to solving the kinematic boundary con-
dition (Eqn (1)). This additional computational time cost is espe-
cially apparent when solving the relatively fast SIA and SSA, but
would not be so significant if the LSM were coupled to the more
computationally demanding full-Stokes equations. Regardless,
simulating GRL migration has required ice-sheet models using
irregular and adaptive mesh refinements, which come with con-
siderable computational cost and complexity, whereas we have
shown that a regular fixed-grid model, using the LSM, can accur-
ately track advancing and retreating GRL positions. Furthermore,
the coarser grid also results in computational savings from the
longer time steps allowed by the CFL condition. The other alter-
native is to use a subgrid parameterization, such as using a heur-
istic rule based on boundary layer theory valid for steady states.
The level-set approach used here does not rely on a parameteriza-
tion or employ any other special treatment at the GRL. The
method described has not been tried for two horizontal dimen-
sions, but the 3D LSM could be implemented by extending the
array structures and gradient operators for tracking the propagat-
ing surfaces in two horizontal dimensions (Sethian, 1999b;
Bondzio and others, 2016).

4. Conclusions

We have devised a new level-set algorithm for tracking an evolv-
ing ice-sheet surface and GRL position, based on an underlying
fixed-grid finite-difference discretization. Other fixed-grid meth-
ods tend to be less competitive relative to moving grid methods
for dynamic interface problems like ice-sheet models, and they
can only obtain comparable accuracy with moving-grid methods
by using highly resolved grids near the GRL. Our level-set
approach is able to track the ice-sheet margin and GRL location
dynamically for both grounded and marine ice sheets without
the need for grid refinement and any subgrid parameterization
or heuristic rule. The method is tested by comparing numerical
simulations with analytical and benchmark solutions. In particu-
lar, we compared model solutions for grounded ice sheets with
the EISMINT benchmark (Huybrechts and Payne, 1996) and
for marine ice sheets with the MISMIP intercomparison bench-
mark (Pattyn and others, 2012). These experiments demonstrate

that the LSM is an accurate approach for capturing the ice-sheet
marginal position, while exploiting the efficiency in using an
underlying fixed grid that is coarse relative to other methods
that employ a uniformly or locally adapted fine mesh. We have
therefore shown that the LSM is an accurate and efficient
approach for tracking the ice surface interface, terminus positions
and GRLs for grounded and marine ice sheets.
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Appendix A. Numerical implementation of the LSM

A.1. Extended speed

The level-set Eqn (4) requires that the speed F (Eqn (5)) is defined for all level
sets throughout the computational domain Ω, not just the zero level set or on
one side of the interface. Firstly, the mass-balance source term is prescribed on
the interface only and must be smoothly extended within the ice for numerical
stability. As such M is determined by linearly interpolating vertically between
Mh on the ice–air interface and Mb on the ice–water (or ice–bedrock) inter-
face. Note that this is an artificial measure that helps to smooth the derivatives
in the level-set method solver and not a real change in ice mass. In our case,
the ice velocity components are obtained from an ice-sheet model and thus
defined inside the ice region (Ωi). Hence, these velocities, added to M, must
now be extended outside the ice domain (Ωc) (Adalsteinsson and Sethian,
1999). Given a level-set function w, our goal is then to construct the extended
speed Fext such that

∂w

∂t
+ Fext ‖ ∇w ‖ =0, (A1)

where we require that Fext matches the given speed F on the zero level set,

Fext = F on w(x(t), t) = 0.

This new speed field Fext is known as the ‘extended speed’ (see Fig. 10).
A desirable feature of Fext is that it should move the neighbouring level sets

in such a way that the signed distance function is preserved. Following Zhao
and others (1996), w(x(t), t) remains a signed distance function if and only if

∇Fext · ∇w = 0, (A2)

which in 2-D becomes

∂w

∂x
∂Fext

∂x
+ ∂w

∂z
∂Fext

∂z
= 0. (A3)

Since the interface may experience topological changes, a few different cases
must be considered when determining Fext (Sethian, 1999b). As an example,
suppose (i− 1, j) and (i, j− 1) are the points where F is known (inside the
ice), then using finite differences we can approximate the extended speed
Fext at the position (i, j) (outside the ice) by

Fext
i,j = Fi−1,j(wi,j − wi−1,j)+ (Dx/Dz)2Fi,j−1(wi,j − wi,j−1)

(wi,j − wi−1,j)+ (Dx/Dz)2(wi,j − wi,j−1)
, (A4)

where Δx and Δz are the horizontal and vertical grid spacings, respectively.
This approach results in Eqn (A2) being satisfied for all points outside the ice.

Fig. 10. Constructing extended speeds. The solid line inside the domain represents
the ice–air interface or zero level set. Suppose F is known at ‘○’ points inside the
ice then Fext must be extended to ‘*’ points outside the ice.
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A.2. Numerical scheme

The LSM is a versatile numerical technique that can be implemented in con-
cert with a variety of discretizations including finite differences, finite ele-
ments, moving meshes, etc. For the sake of simplicity, we have chosen to
use a fixed, rectangular, Euclidean mesh in which all grid cells are of equal
size although the grid spacing in each direction may be different. After defin-
ing discrete values of w and F at every gridpoint in the computational domain,
we use a discrete form of the governing equations to evolve w forward in time,
and hence transport the interface across the underlying grid.

We use an explicit Runge–Kutta (RK) type scheme to determine w(x, t + Δt)
based on known previous values of w(x, t), the speed in the outward normal
direction F, and the gradient ∇w. For a given time, tk, let wk = w(tk) and after
some time increment Δt, we denote new values as wk+1 = w(tk + Δt). We
implement the Total Variation Diminishing Runge–Kutta (TVD-RK) scheme
of second order, also known as Heun’s method or the modified Euler
method (Osher and Fedkiw, 2006)

wk+1
ij = wk

ij +
Fk
ijDt

2
(‖ ∇wk

ij ‖ + ‖ ∇w̃k+1
ij ‖), (A5)

where

w̃k+1
ij = wk

ij + Fk
ijDt ‖ ∇wk

ij ‖,

and ‖∇wij ‖ =
���������������������
((wx)ij)

2 + ((wz)ij)
2

√
. Here (wx)ij and (wz)ij denote the spatial

derivatives of w at the position (xi, zj). As is usual for explicit time-stepping
schemes, the allowable time step Δt is restricted in practice by a Courant–
Friedrichs–Lewy (CFL) condition that depends on the spatial grid size Δx
and the flow speed.

Moving on to the spatial discretization, traditional finite-difference meth-
ods based on fixed stencil interpolations work well for globally smooth pro-
blems, but at second or higher order spatial accuracy, these schemes are
necessarily oscillatory near a discontinuity. We therefore approximate spatial
derivatives (wx)ij and (wz)ij in Eqn (A5) using the Essentially
Non-Oscillatory (ENO) scheme (Osher and Fedkiw, 2006). In this approach,
a higher order non-oscillatory interpolant for piecewise smooth functions is
used to approximate w, and is then differentiated piecewise to obtain a corre-
sponding discrete approximation for ∇w. In essence, the ENO approach
extends first-order accurate upwind differencing to second-order spatial accur-
acy in a way that suppresses oscillations.

We next discuss suitable choices for initial and boundary values of w.
The level-set function can be initialized simply using Eqn (3) with ∂Ω as
the initial surface for the ice sheet. Then, using the extended velocity discussed
in Section A.1, the level set in every subsequent time step is guaranteed to
remain a signed distance function.

Every node at the edge of the computational domain must be assigned a
suitable boundary condition. We choose to use a special form of linear
extrapolation described by Mitchell (2004) that adds an appropriate number
of ‘ghost nodes’ beyond the edge of the grid when working on nodes near
the edge. The values of w at ghost nodes are determined by linear extrapolation
from the computational boundary with a slope direction that matches the
sign of the level set at the boundary node. Suppose (xi, zj) for i = 1, 2, …, p
and j = 1, 2, …, q are nodes in the domain and (x0, zj), (xp+1, zj), (xi, z0)
and (xi, zq+1) are ghost nodes, then the values at the ghost nodes left of the
domain are given by

w(x0, zj) = w(x1, zj)+ sign(w(x1, zj))|w(x1, zj)− w(x2, zj)|,

for j = 1, 2, …, q, and we similarly define the values at the other ghost nodes
(xp+1, zj), (xi, z0) and (xi, zq+1). This is not a traditional PDE boundary condi-
tion, however, it is quite useful in level-set computations for domains with
inflow boundaries that have no physically appropriate boundary conditions,
as it remains stable whereas regular linear extrapolation may cause stability
issues (Mitchell, 2004).

A.3. Re-initialization using the Fast Marching Method

The level sets that are located near the zero level set move with speeds that can
considerably distort and stretch the level-set function w. Under such circum-
stances, w can develop noisy features and steep gradients that are detrimental

to finite-difference approximations and so can fail to preserve the signed dis-
tance function. As a result, it may be necessary to periodically re-initialize the
level-set function, which involves stopping the calculation at some point in
time and rebuilding the level-set function according to the signed distance
function (Sethian, 1999b), thereby ensuring that w remains smooth enough
to allow its spatial derivatives to be computed with sufficient accuracy.

Although there are several ways this re-initialization could be carried out in
practice, we implement the Fast Marching Method (FMM), which is known to
be very effective for this purpose. The FMM offers a fast approach for rebuild-
ing w having computational cost of O(N logN), where N is the total number of
grid points (Adalsteinsson and Sethian, 1999). To re-initialize the signed dis-
tance function w, the FMM solves the eikonal equation ‖∇w ‖ =1 on either
side of the interface ∂Ω (Sethian, 1999a; Vogl, 2016). The FMM algorithm
considers three categories of grid points: CLOSE, FAR and ACCEPTED.
The ACCEPTED points are initially assigned to grid nodes that immediately
surround the zero level set, CLOSE points are then one gridpoint further
away, and the remaining nodes in the domain are labelled FAR (see
Fig. 11). The shortest path from each ACCEPTED grid node to the contour
of the zero level set (ice–air or ice–water interface) is determined using a non-
linear optimization solver and used to assign the signed-distance value to each
ACCEPTED point. The procedure continues with the following steps that effi-
ciently and systematically marches CLOSE and FAR points to ACCEPTED in
order to assign the signed-distance value at all grid points in the domain.

(1) The signed-distance value of CLOSE points is calculated based on the
known signed-distance at neighbouring ACCEPTED points and the grid
size.

(2) Let TRIAL be the CLOSE point with the smallest value of w.
(3) Any FAR points that directly neighbour TRIAL are relabelled CLOSE.
(4) Relabel TRIAL points to ACCEPTED.
(5) Repeat steps 1–4 until all points become ACCEPTED.

The accuracy of this approach means re-initialization is required less often.
For our simulations, we used the FMM to rebuild the level-set function every
50–100 time steps.

Fig. 11. Initialization of the Fast Marching Method, where ‘○’ denote the initial
ACCEPTED points, ‘x’ the CLOSE points and ‘*’ indicating the FAR points.

Fig. 12. Geometry of the shallow ice-sheet flow problem.

Journal of Glaciology 775

https://doi.org/10.1017/jog.2020.45 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2020.45


Appendix B. Ice-sheet equations

B.1. Shallow ice approximation (SIA)

The SIA treats the ice sheet as a shallow film that flows and spreads under its
own weight (Hutter, 1983). We denote the sheet thickness at position (x, y)
and time t by H(x, y, t). Then, in terms of z measured vertically upward
from sea level, the height of the upper surface in contact with the atmosphere
is represented by z = h(x, y, t) and the lower bedrock surface by z = b(x, y)
(which has zero normal velocity, assuming negligible melt there). Referring
to Figure 12, these three height variables are related by

h(x, y, t) = b(x, y)+H(x, y, t). (B1)

The ice deformation is determined by the incompressible Stokes equations,
coupled with Glen’s flow law (Glen, 1958) under the shallow ice assumption.
In the isothermal case, the horizontal velocity components U = (u, v) as

U = − 2A(rg)n

n+ 1
[Hn+1 − (h− z)n+1]|∇h|n−1∇h, (B2)

in the case where there is no sliding relative to the underlying bedrock. The
other variables and parameters in the equations are the gravitational acceleration
g = (0, 0,− g), ice density ρ, creep parameter A and Glen’s law exponent n≈ 3.

For a grounded ice sheet that is radially symmetric about the ice divide,
denoted r = 0. The radial symmetry implies that the sheet geometry depends
only on r so that h = h(r, t), H =H(r, t) and b = b(r). For the case of non-
sliding ice, the radial velocity is U = ur̂ where r̂ denotes the unit vector in
the radial direction. At the ice divide (r = 0), a symmetry condition is imposed

u = 0 and
∂h
∂r

= 0.

Tohandle the casewhen theremay be some slip at the ice-sheet base, we consider
a friction law that relates basal stress τb to the sliding velocity ub at the bed by
means of the relationship tb = f (ub) = Cumb , where the bed friction parameter
C depends on the local bed roughness and a bed friction exponent, m = (1/n)
(Schoof andHewitt, 2013). Using the stress balance andGlen’s flow law, the slid-
ing velocity is ub =−((ρgH/C)(∂h/∂r))1/m, so that the radial velocity can be writ-
ten in a more general form that captures both the sliding and non-sliding cases:

u(r, z, t) =− 2A(rg)n

n+ 1
[Hn+1 − (h− z)n+1]

∂h
∂r

∣∣∣∣
∣∣∣∣n−1

∂h
∂r

+
0, non-sliding,

− rgH
C

∂h
∂r

( )1/m

, sliding.

⎧⎨
⎩

(B3)

The vertical velocity w(r, z, t) may then be obtained from u(r, z, t) using the
incompressibility condition, which in cylindrical coordinates is

∂w
∂z

+ 1
r
∂(ru)
∂r

= 0.

Integrating this equation in z and applying the vertical no-flow boundary condi-
tion at the bed z = b(r) yields the corresponding expression for

w(r, z, t) =− 2A
n+ 1

(rg)n[
1
r

∂h
∂r

( )n

+ n
∂h
∂r

( )n−1
∂2h
∂r2

( )

· 1
n+ 2

(Hn+2 − (h− z)n+2)−Hn+1(z − b)

( )

+ ∂h
∂r

( )n+1

(Hn+1 − (h− z)n+1)

− (n+ 1)
∂H
∂r

∂h
∂r

( )n

Hn(z − b)]

+

0, non-sliding,

(z − b)
rg
C

( )1/m
[
1
r

H
∂h
∂r

( )1/m

+ 1
m

H
∂h
∂r

( )(1/m)−1

H
∂2h
∂r2

+ ∂H
∂r

∂h
∂r

( )
], sliding.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(B4)

B.2. Shallow shelf approximation (SSA)

The SSA is used to consider a 2-D symmetrical marine ice sheet. Denoting the
horizontal coordinate in the flow direction by x, symmetry implies that

u = 0 and
∂h
∂x

= 0 at x = 0. (B5)

The ice stream or grounded portion of the marine ice sheet occupies the region
0≤ x < xg, where xg denotes the grounding line position. The momentum con-
servation equation of SSA for the grounded ice sheet (0≤ x < xg) was derived
by MacAyeal (1989) as

∂

∂x
2A−1/nH

∂u
∂x

∣∣∣∣
∣∣∣∣1/n−1

∂u
∂x

( )
− C|u|m−1u = rgH

∂h
∂x

, (B6)

where h = b +H as in the SIA model, C is the bed friction parameter and
H≥−(ρw/ρ)b where ρw is the sea water density. The SSA Eqn (B6) represents
a balance between longitudinal strain rates that are determined by the inte-
grated ice hardness (the coefficient A−1/nH), the slipperiness of the bed (the
coefficient C and exponentm), and the geometry of the ice sheet (the thickness
H and surface slope ∂h/∂x).

For the unbuttressed freely floating ice shelf that occupies the region
xg < x < xc, where x = xc denotes the calving front, we have H <−(ρw/ρ)b and
h = (1− ρ/ρw)H. There is no basal friction and so the term C|u|m−1u vanishes
and the sole driving stress for ice shelves is ρ(1− ρ/ρw)gH(∂H/∂x), giving the
momentum conservation equation for the shelf (xg < x < xc) as

∂

∂x
2A−1/nH

∂u
∂x

∣∣∣∣
∣∣∣∣1/n−1

∂u
∂x

( )
= r(1− r/rw)gH

∂H
∂x

. (B7)

At the calving front, there is an imbalance between hydrostatic pressures in ice
and water due to the buoyancy of ice, hence

2A−1/nH
∂u
∂x

∣∣∣∣
∣∣∣∣1/n−1

∂u
∂x

= 1
2
r(1− r/rw)gH

2 at x = xc. (B8)

At the grounding line, where ice stream couples to ice shelf, we have
H =−(ρw/ρ)b, as well as the boundary condition Eqn (B8) applied at x = xg.

Assuming ice to be an incompressible material, the vertical velocity for
the ice stream with rigid bedrock ((∂b/∂t) = 0) and no melting at the bottom
surface is determined by

w(x, z, t) = u(x, t)
∂b
∂x

− (z − b(x))
∂u
∂x

, 0 ≤ x ≤ xg. (B9)

For the ice shelf, the vertical velocity is given by

w(x, z, t) = wsl − (z − zsl)
∂u
∂x

, xg , x ≤ xc, (B10)

where wsl is the vertical velocity at sea level that can be determined from the
known surface and basal mass balances, Mh and Mb, respectively (Greve
and Blatter, 2009).

For a given ice thicknessH(x) (determined by the LSM in our case) the velocity
u(x) is determined by solving thenon-linear partial differential Eqns (B6) and (B7).
Our solution approach implements an iterative numerical method, often called a
Picard iteration. Denote the current velocity iterate as u(k) and the previous iterate
as u(k−1), then the Picard iteration for Eqn (B6) (and similarly for Eqn (B7)) is:

∂

∂x
W(k−1)∂u

∂x

(k)( )
− C|u(k−1)|m−1u(k) = rgH

∂h
∂x

, (B11)

whereW(k−1) = 2A−1/nH|∂u/∂x(k−1)|1/n−1. For grounded ice, 0 < x < xg, we assume
the ice is heldbybasal resistance only toobtain the initial velocityestimate,u(0)(x) =
(−C−1ρgH(∂h/∂x))1/m and the boundary conditions from Eqns (B5) and (B8) are
u(0) = 0, and (∂u/∂x)(xg) =A((1/4)ρ(1− ρ/ρw)gH)

n. For floating ice, xg < x < xc, an
initial guess for velocity comes fromassuming a uniform strain rate provided by the
calving front condition:

u(0)(x) = A
1
4
r(1− r/rw)gH

( )n

(x − xg)+ ug,

whereug denotes the icevelocityat thegrounding line, and the boundary conditions
are u(xg) = ug and (∂u/∂x)(xc) =A((1/4)ρ(1− ρ/ρw)gH)

n.
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