ASYMPTOTICS FOR SEMILINEAR ELLIPTIC SYSTEMS

EZZAT S. NOUSSAIR AND CHARLES A. SWANSON

Abstract

A class of weakly coupled systems of semilinear elliptic partial differential equations is considered in an exterior domain in $\mathbb{R}^{N}, N \geq 3$. Necessary and sufficient conditions are given for the existence of a positive solution (componentwise) with the asymptotic decay $u(x)=O\left(|x|^{2-N}\right)$ as $|x| \rightarrow \infty$. Additional results concern the existence and structure of positive solutions u with finite energy in a neighbourhood of infinity.

Our objective is to establish necessary and sufficient conditions for the existence of two types of positive solutions (componentwise) of the semilinear elliptic system

$$
\begin{equation*}
-\Delta u_{i}=f_{i}(x, \mathbf{u}), \quad x \in \Omega, \quad i=1, \ldots, M \tag{1}
\end{equation*}
$$

in an exterior domain $\Omega \subset \mathbb{R}^{N}, N \geq 3$, where $x=\left(x_{1}, \ldots, x_{N}\right), \mathbf{u}=\left(u_{1}, \ldots, u_{M}\right)$. It is not required that (1) be either a potential system or radially symmetric. The two types of positive solutions are:
(I) Minimal positive solutions \mathbf{u}, i.e., $|x|^{N-2} \boldsymbol{u}_{i}(x)$ is bounded above and below by positive constants in some exterior domain $\Omega, i=1, \ldots, M$.
(II) Solutionsu with finite energy in a neighbourhood of infinity, i.e., $\psi u_{i} \in D_{0}^{1,2}\left(\mathbb{R}^{N}\right)$, $i=1, \ldots, M$, for some nonnegative radial function $\psi \in C^{1}\left(\mathbb{R}^{N}\right)$ with $\psi(x) \equiv 1$ for sufficiently large $|x|$.
As usual, $D_{0}^{1,2}\left(\mathbb{R}^{N}\right)$ denotes the completion of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ in the norm $\|\phi\|=$ $\|\nabla \phi\|_{L^{2}\left(\mathbf{R}^{N}\right)}$. We also use the notation $\left\|\|_{q, B}\right.$ for the norm in $L^{q}(B)$, where $B \subset \mathbb{R}^{N}$. Vector inequalities are to be interpreted componentwise; in particular $\mathbf{u}>0$ means that each $u_{i}>0$. For a multi-index $\gamma=\left(\gamma_{1}, \ldots, \gamma_{M}\right)>0$ we use the notation

$$
|\gamma|=\sum_{i=1}^{M} \gamma_{i}, \quad \mathbf{u}^{\gamma}=\prod_{i=1}^{M}\left(u_{i}\right)^{\gamma_{i}} \text { for } \mathbf{u} \geq 0 .
$$

Assumptions for (1).

$\left(A_{1}\right)$ There exists an exterior domain Ω_{0} and $\theta \in(0,1)$ such that $f_{i} \in C_{\mathrm{loc}}^{\theta}\left(\Omega_{0} \times\right.$ $\left.\mathbb{R}_{+}^{M}, \mathbb{R}_{+}\right), i=1, \ldots, M$, where $\mathbb{R}_{+}=[0, \infty)$.
$\left(A_{2}\right) f_{i}(x, \mathbf{u})$ is continuously differentiable with respect to the components of \mathbf{u} at each $x \in \Omega_{0}, \mathbf{u} \in \mathbb{R}_{+}^{M}$.

[^0]$\left(A_{3}\right)$ There exist positive constants A, R_{0}, a positive interval $I_{0}=\left(0, \delta_{0}\right)$, multi-indices $\gamma_{i}=\left(\gamma_{i 1}, \ldots, \gamma_{i M}\right)>0$ with $\gamma_{i i}>1$, and locally Hölder continuous functions $g_{i}:\left[R_{0}, \infty\right) \rightarrow(0, \infty)$ such that
\[

$$
\begin{equation*}
g_{i}(|x|) \mathbf{u}^{\gamma_{i}} \leq f_{i}(x, \mathbf{u}) \leq A g_{i}(|x|) \mathbf{u}^{\gamma_{i}}, \quad i=1, \ldots, M \tag{2}
\end{equation*}
$$

\]

for all $|x| \geq R_{0}, \mathbf{u} \in I_{0}^{M}$.
THEOREM 1. The system (1) has a minimal positive solution in some exterior subdomain of Ω_{0} if and only if

$$
\begin{equation*}
\int^{\infty} g_{i}(r) r^{N-1-\left|\gamma_{i}\right|(N-2)} d r<\infty \quad \text { for each } i=1, \ldots, M \tag{3}
\end{equation*}
$$

PROOF. If $\mathbf{u}(x)$ is a minimal positive solution of (1) in an exterior domain, there exist positive constants C and R such that $u_{i}(x) \geq C|x|^{2-N}$ for all $|x| \geq R, i=1, \ldots, M$. Then (1) and (2) show that u_{i} satisfies the inequality

$$
\begin{equation*}
-\Delta u_{i}(x) \geq C^{M-1} p_{i}(|x|)\left[u_{i}(x)\right]^{\gamma_{i i}}, \quad|x| \geq R, \quad i=1, \ldots, M, \tag{4}
\end{equation*}
$$

where

$$
p_{i}(r)=g_{i}(r) r^{-\left(\left|\gamma_{i}\right|-\gamma_{i i}\right)(N-2)} .
$$

However, it is known [6, Theorem 12; 10, Theorem 1] that a necessary condition for a scalar inequality of type (4) to have a positive solution in an exterior domain in \mathbb{R}^{N} is

$$
\int^{\infty} p_{i}(r) r^{N-1-\gamma_{i i}(N-2)} d r<\infty, \quad i=1, \ldots, M
$$

which is equivalent to (3). (The proof in [6] for $-\Delta u=f$ applies verbatim to $-\Delta u \geq f$).
Conversely, if (3) holds the scalar equation $-\Delta \phi_{i}=g_{i}(r) \phi_{i}^{\left|\gamma_{i}\right|}$ has a minimal positive solution $\phi_{i}(r)$ in some interval $[R, \infty)[9,10]$, and hence $\phi_{j}(r) / \phi_{i}(r)$ is bounded above and below in $[R, \infty)$ by positive constants, $i, j=1, \ldots, M$. For a sufficiently small positive constant λ, it follows from (2) that the vector \mathbf{v} with components $v_{i}=\lambda \phi_{i}$ satisfies

$$
\begin{aligned}
f_{i}(x, \mathbf{v}) & \leq A \lambda^{\left|\gamma_{i}\right|} g_{i}(|x|) \phi_{1}^{\gamma_{i 1}} \cdots \phi_{M}^{\gamma_{i M}} . \\
& \leq(\text { Constant }) \lambda^{\left|\gamma_{i}\right|} g_{i}(|x|) \phi_{i}^{\left|\gamma_{i}\right|} \\
& \leq \lambda g_{i}(|x|) \phi_{i}^{\left|\gamma_{i}\right|}=-\Delta v_{i}, \quad|x| \geq R .
\end{aligned}
$$

Therefore \mathbf{v} is a positive supersolution and $\mathbf{w}=0$ is a subsolution of the boundary value problem

$$
\begin{array}{cl}
-\Delta u_{i}=f_{i}(x, \mathbf{u}) & \text { for }|x|>R \tag{5}\\
u_{i}=v_{i} & \text { on }|x|=R, \quad i=1, \ldots, M .
\end{array}
$$

The method described by Kawano [3] and Kawano and Kusano [4] for systems in \mathbb{R}^{N}, and described in [7, p. 843] for exterior boundary value problems, shows that (5) has a
nontrivial solution \mathbf{u} such that $0 \leq u_{i}(x) \leq v_{i}(x)=\lambda \phi_{i}(x), i=1, \ldots, M$. The proof by Sattinger's monotone iteration procedure is almost exactly as in [3, pp. 146-150] since (A_{2}) shows, for every bounded domain $B \subset \Omega_{0}$ and every $T>0$, there exists a constant $K_{i}=K_{i}(B, T)>0$ such that $f_{i}(x, \mathbf{u})+K_{i} u_{i}$ is nondecreasing in $u_{i} \in[0, T]$ for all $x \in \bar{B}$, $\mathbf{u} \in T^{M}, i=1, \ldots, M$.

The strong maximum principle for $-\Delta u_{i} \geq 0$ implies that $u_{i}(x)>0$ for $|x| \geq R$. Let $z(x)=A|x|^{2-N}$, where A is a positive constant satisfying $A<R^{N-2} \min _{|x|=R} u_{i}(x)$. Then

$$
\begin{cases}-\Delta\left(u_{i}-z\right)(x) \geq 0 & \text { for }|x|>R \\ u_{i}(x)-z(x)>0 & \text { on }|x|=R \\ u_{i}(x)-z(x) \rightarrow 0 & \text { as }|x| \rightarrow \infty\end{cases}
$$

and consequently $u_{i}(x) \geq z(x)=A|x|^{2-N}$ for all $|x| \geq R$ by the maximum principle. Hence \mathbf{u} is the required minimal positive solution of (1).

COROLLARY 2. Suppose that $g_{i}(r)$ in (2) is specialized to $g_{i}(r)=0\left(r^{-b_{i}}\right)$ as $r \rightarrow \infty$ for a constant b_{i} satisfying $N-b_{i}<(N-2)\left|\gamma_{i}\right|, i=1, \ldots, M$. Then (1) has a positive solution with finite energy in a neighbourhood of infinity.

Proof. Since (3) holds, Theorem 1 shows that (1) has a positive solution $\mathbf{u}(x)=$ $0\left(|x|^{2-N}\right)$ as $|x| \rightarrow \infty$. By (2), each u_{i} can be regarded as a solution of Poisson's equation $-\Delta u_{i}=F_{i}$, where

$$
F_{i}(x)=f_{i}(x, \mathbf{u}(x)) \leq C|x|^{-b_{i}-(N-2)\left|\gamma_{i}\right|} \leq C|x|^{-N}
$$

for some positive constant $C,|x| \geq R \geq 1$. Then an a priori estimate [2, Theorem 3.9] for Poisson's equation in a ball $B_{r / 2}(x)$ of centre x and radius $r / 2, r=|x| \geq 2 R$, yields

$$
\left|\left(\nabla u_{i}\right)(x)\right| \leq C_{1}\left[\frac{2}{r} \sup _{B_{r / 2}}\left|u_{i}\right|+\frac{r}{2} \sup _{B_{r / 2}}\left|F_{i}\right|\right] \leq C_{2} r^{1-N}
$$

for some constants C_{1} and C_{2}, implying the conclusion of Corollary 2.
COROLLARY 3. If $g_{i}(r)$ is bounded and $\left|\gamma_{i}\right|>N /(N-2)$, then (1) has a positive solution with finite energy in a neighbourhood of infinity.

This follows by taking each $b_{i}=0$ in Corollary 2.
Theorem 4. Suppose that each $g_{i}(r)$ is bounded in $\left[R_{0}, \infty\right)$ and that $\left|\gamma_{i}\right|<(N+2) /$ $(N-2), i=1, \ldots, M$. Then (3) is a necessary conditionfor (1) to have a positive solution with finite energy in a neighbourhood of infinity.

Proof. The function v defined by $v(x)=\sum_{i=1}^{M} u_{i}(x)$ solves a linear elliptic equation $-\Delta v=H v$ in an exterior domain Ω, where by (2)

$$
\begin{equation*}
H(x) \leq C \sum_{i=1}^{M}[v(x)]^{\left|\gamma_{i}\right|-1} \tag{6}
\end{equation*}
$$

for some positive constant C. Since $\left|\gamma_{i}\right|-1<4 /(N-2)$, Hölder's inequality with exponents

$$
p_{i}=\frac{4}{(N-2)\left(\left|\gamma_{i}\right|-1\right)} \quad q_{i}=\frac{4}{4-(N-2)\left(\left|\gamma_{i}\right|-1\right)}
$$

applied in a ball $B_{r}(x)$ of centre x and small radius r shows that there exists a constant $C_{1}>0$, independent of r and x, such that

$$
\|H\|_{N / 2, B_{r}(x)} \leq C_{1} \sum_{i=1}^{M} r^{2 / q_{i}}\|v\|_{2 N /(N-2), B_{r}(x)}^{\left|\gamma_{i}\right|-1}
$$

Since $v \in L^{2 N /(N-2)}\left(\mathbb{R}^{N}\right)$ from the Sobolev embedding $D_{0}^{1,2}(\Omega) \hookrightarrow L^{2 N /(N-2)}(\Omega)$, it follows that $\|H\|_{N / 2, B_{r}(x)} \rightarrow 0$ as $r \rightarrow 0$ uniformly in Ω. From results of Brezis and Kato [1, Remark 2.1 and Theorem 2.3], this implies that $v \in L^{q}(\Omega)$ for all $q \geq 2 N /(N-2)$, from which the norms

$$
\begin{equation*}
\|v\|_{q, B_{2}(x)} \text { and }\|H v\|_{s, B_{2}(x)^{\prime}} \tag{7}
\end{equation*}
$$

for sufficiently large q and s, are bounded functions of x and have limits zero as $|x| \rightarrow \infty$. Then $v(x)$ is bounded in Ω as a consequence of standard a priori estimates for the equation $-\Delta v=H v$ [2, Theorem 8.17]. It follows that $\|v\|_{2, B_{2}(x)}$, as well as the norms (7), has limit zero as $|x| \rightarrow \infty$. Interior Hölder estimates [2, Theorem 8.24] imply that $v(x) \rightarrow 0$, and so also each $u_{i}(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Consequently the maximum principle for $-\Delta u_{i} \geq 0$ yields $u_{i}(x) \geq C|x|^{2-N}$ for $|x| \geq R$, where C and R denote positive constants. The proof of Theorem 1 can then be repeated to obtain (3).

THEOREM 5. Suppose that g_{i} in (2) is specialized to $g_{i}(r)=0\left(r^{-b_{i}}\right)$ as $r \rightarrow \infty$ and that

$$
\begin{cases}1<\left|\gamma_{i}\right|<\frac{N+2}{N-2} & \text { if } b_{i} \geq 2 \tag{8}\\ \frac{N+2-2 b_{i}}{N-2}<\left|\gamma_{i}\right|<\frac{N+2}{N-2} & \text { if } 0<b_{i}<2\end{cases}
$$

$i=1, \ldots, M$. Then a positive finite energy solution of (1) in a neighbourhood of infinity is necessarily minimal.

Proof. Kelvin's transformation

$$
y=\frac{x}{|x|^{2}}, \quad v_{i}(y)=|x|^{N-2} u_{i}(x), \quad i=1, \ldots, M
$$

maps (1) into

$$
\begin{equation*}
-\Delta v_{i}=H_{i}(y) v_{i}, \quad y \in \Omega^{\prime} \tag{9}
\end{equation*}
$$

where Ω^{\prime} is a deleted neighbourhood of the origin and

$$
H_{i}(y)=|y|^{-N-2}\left[v_{i}(y)\right]^{-1} f_{i}\left(\frac{y}{|y|^{2}},|y|^{N-2} v(y)\right)
$$

Let $V(y)=\sum_{i=1}^{M} v_{i}(y)$, and use (2) to obtain

$$
\begin{equation*}
H_{i}(y) \leq C|y|^{\rho_{i}}[V(y)]^{\left|\gamma_{i}\right|-1}, \quad y \in \Omega^{\prime}, \tag{10}
\end{equation*}
$$

for some constant $C>0$, where

$$
\rho_{i}=\left|\gamma_{i}\right|(N-2)-N-2+b_{i} .
$$

A proof that $H_{i} \in L^{s}\left(\Omega^{\prime}\right)$ for some $s>N / 2, i=1, \ldots, M$, will be sketched below. Then a theorem of Serrin [8, p. 220] applied to (9) near $y=0$ shows that either $v_{i}(y)$ or $|y|^{N-2} v_{i}(y)$ is bounded above and below by positive constants in a deleted neighbourhood of $y=0$. However, $u_{i}(x)$ cannot be bounded below by a positive constant in an exterior domain by the finite energy hypothesis, and hence it must be that $|x|^{N-2} u_{i}(x)$ is bounded above and below by positive constants for sufficiently large $|x|$.

To show that $H_{i} \in L^{s}\left(\Omega^{\prime}\right)$ for $s>N / 2$, we fix s satisfying

$$
\begin{equation*}
8-2 b_{i}-\frac{2 N}{s}<(N-2)\left(\left|\gamma_{i}\right|-1\right)<\frac{2 N}{s} \tag{11}
\end{equation*}
$$

which is possible by assumption (8). Define

$$
p_{i}=\frac{2 N}{s(N-2)\left(\left|\gamma_{i}\right|-1\right)}, \quad q_{i}=\frac{2 N}{2 N-s(N-2)\left(\left|\gamma_{i}\right|-1\right)}
$$

and apply Hölder's inequality to (10), giving

$$
\begin{equation*}
\left\|H_{i}\right\|_{s}^{s} \leq\left\||y|^{s \rho_{i}}\right\|_{q_{i}}\|V\|_{2 N /(N-2)^{\prime}}^{s\left(\left|\gamma_{i}\right|-1\right)} \tag{12}
\end{equation*}
$$

where $\left\|\|_{s}\right.$ denotes the norm in $L^{s}\left(\Omega^{\prime}\right)$. The assumption $u_{i} \in D_{0}^{1,2}(\Omega)$ implies that $V \in$ $D_{0}^{1,2}\left(\Omega^{\prime}\right)$, whence $V \in L^{2 N /(N-2)}\left(\Omega^{\prime}\right)$ by Sobolev embedding. The left inequality (11) is equivalent to $s \rho_{i} q_{i}>-N$, and therefore (12) yields $H_{i} \in L^{s}\left(\Omega^{\prime}\right)$.

We remark, if $\left|\gamma_{i}\right|<\left(N-b_{i}\right) /(N-2)$ for some i, then a positive solution of (1) (of any type whatsoever) in any external domain cannot be minimal. Theorem 1 shows this since condition (3) fails in this case.

ACKNOWLEDGEMENT. We are grateful to the referee for his suggestions.

References

1. H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potential, J. Math Pures App. 58(1979), 137-151.
2. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. 2nd ed., SpringerVerlag, Berlin-Heidelberg-New York-Tokyo, 1983.
3. N. Kawano, On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J. 14(1984), 125-158.
4. N. Kawano and T. Kusano, On positive entire solutions of a class of second order semilinear elliptic systems, Math. Z. 186(1984), 287-297.
5. C. Miranda, Partial differential equations of elliptic type. Springer-Verlag, New York-Heidelberg-Berlin, 1970.
6. E. S. Noussair and C. A. Swanson, Oscillation theory for semilinear Schrödinger equations and inequalities, Proc. Roy. Soc. Edinburgh A75(1975/76), 67-81.
7. Global positive solutions of semilinear elliptic equations, Canad. J. Math. 35(1983), 839-861.
8. J. Serrin, Isolated singularities of solutions of quasi-linear equations, Acta Math. 113(1965), 219-240.
9. C. A. Swanson, Extremal positive solutions of semilinear Schrödinger equations, Canad. Math Bull. 26 (1983), 171-178.
10. \qquad Positive solutions of $-\Delta u=f(x, u)$, Nonlinear Anal. 9(1985), 1319-1323.

School of Mathematics

University of New South Wales
Kensington, N.S.W.
Australia 2033

Department of Mathematics
University of British Columbia
Vancouver, B.C. V6T 1 Y4

[^0]: The work of the first author was supported by the Australian Research Council.
 The work of the second author was supported by NSERC (Canada) under Grant 5-83105.
 Received by the editors December 9, 1989; revised: August 27, 1990 .
 AMS subject classification: Primary: 35J60; secondary: 35B05.
 (c) Canadian Mathematical Society 1991.

