ASYMPTOTICS FOR SEMILINEAR ELLIPTIC SYSTEMS

EZZAT S. NOUSSAIR AND CHARLES A. SWANSON

ABSTRACT. A class of weakly coupled systems of semilinear elliptic partial differential equations is considered in an exterior domain in \mathbb{R}^N , $N \ge 3$. Necessary and sufficient conditions are given for the existence of a positive solution (componentwise) with the asymptotic decay $u(x) = O(|x|^{2-N})$ as $|x| \to \infty$. Additional results concern the existence and structure of positive solutions u with finite energy in a neighbourhood of infinity.

Our objective is to establish necessary and sufficient conditions for the existence of two types of positive solutions (componentwise) of the semilinear elliptic system

(1)
$$-\Delta u_i = f_i(x, \mathbf{u}), \quad x \in \Omega, \quad i = 1, \dots, M$$

in an exterior domain $\Omega \subset \mathbb{R}^N$, $N \ge 3$, where $x = (x_1, \dots, x_N)$, $\mathbf{u} = (u_1, \dots, u_M)$. It is not required that (1) be either a potential system or radially symmetric. The two types of positive solutions are:

- (I) Minimal positive solutions **u**, i.e., $|x|^{N-2}u_i(x)$ is bounded above and below by positive constants in some exterior domain Ω , i = 1, ..., M.
- (II) Solutions **u** with finite energy in a neighbourhood of infinity, i.e., $\psi u_i \in D_0^{1,2}(\mathbb{R}^N)$, i = 1, ..., M, for some nonnegative radial function $\psi \in C^1(\mathbb{R}^N)$ with $\psi(x) \equiv 1$ for sufficiently large |x|.

As usual, $D_0^{1,2}(\mathbb{R}^N)$ denotes the completion of $C_0^{\infty}(\mathbb{R}^N)$ in the norm $\|\phi\| = \|\nabla\phi\|_{L^2(\mathbb{R}^N)}$. We also use the notation $\|\|_{q,B}$ for the norm in $L^q(B)$, where $B \subset \mathbb{R}^N$. Vector inequalities are to be interpreted componentwise; in particular $\mathbf{u} > 0$ means that each $u_i > 0$. For a multi-index $\gamma = (\gamma_1, \dots, \gamma_M) > 0$ we use the notation

$$|\gamma| = \sum_{i=1}^{M} \gamma_i, \quad \mathbf{u}^{\gamma} = \prod_{i=1}^{M} (u_i)^{\gamma_i} \text{ for } \mathbf{u} \ge 0.$$

Assumptions for (1).

- (A₁) There exists an exterior domain Ω_0 and $\theta \in (0, 1)$ such that $f_i \in C^{\theta}_{loc}(\Omega_0 \times \mathbb{R}^M_+, \mathbb{R}_+), i = 1, \dots, M$, where $\mathbb{R}_+ = [0, \infty)$.
- (A₂) $f_i(x, \mathbf{u})$ is continuously differentiable with respect to the components of \mathbf{u} at each $x \in \Omega_0$, $\mathbf{u} \in \mathbb{R}^M_+$.

The work of the first author was supported by the Australian Research Council.

The work of the second author was supported by NSERC (Canada) under Grant 5-83105.

Received by the editors December 9, 1989; revised: August 27, 1990.

AMS subject classification: Primary: 35J60; secondary: 35B05.

[©] Canadian Mathematical Society 1991.

(A₃) There exist positive constants A, R_0 , a positive interval $I_0 = (0, \delta_0)$, multi-indices $\gamma_i = (\gamma_{i1}, \dots, \gamma_{iM}) > 0$ with $\gamma_{ii} > 1$, and locally Hölder continuous functions $g_i: [R_0, \infty) \to (0, \infty)$ such that

(2)
$$g_i(|\mathbf{x}|)\mathbf{u}^{\gamma_i} \leq f_i(\mathbf{x},\mathbf{u}) \leq Ag_i(|\mathbf{x}|)\mathbf{u}^{\gamma_i}, \quad i=1,\ldots,M$$

for all $|x| \geq R_0$, $\mathbf{u} \in I_0^M$.

THEOREM 1. The system (1) has a minimal positive solution in some exterior subdomain of Ω_0 if and only if

(3)
$$\int_{0}^{\infty} g_{i}(r) r^{N-1-|\gamma_{i}|(N-2)} dr < \infty \quad \text{for each } i = 1, \dots, M.$$

PROOF. If $\mathbf{u}(x)$ is a minimal positive solution of (1) in an exterior domain, there exist positive constants C and R such that $u_i(x) \ge C|x|^{2-N}$ for all $|x| \ge R$, i = 1, ..., M. Then (1) and (2) show that u_i satisfies the inequality

(4)
$$-\Delta u_i(x) \ge C^{M-1} p_i(|x|) [u_i(x)]^{\gamma_{ii}}, \quad |x| \ge R, \quad i = 1, \dots, M,$$

where

$$p_i(r) = g_i(r)r^{-(|\gamma_i| - \gamma_{ii})(N-2)}.$$

However, it is known [6, Theorem 12; 10, Theorem 1] that a necessary condition for a scalar inequality of type (4) to have a positive solution in an exterior domain in \mathbb{R}^{N} is

$$\int^{\infty} p_i(r) r^{N-1-\gamma_{ii}(N-2)} dr < \infty, \quad i = 1, \dots, M,$$

which is equivalent to (3). (The proof in [6] for $-\Delta u = f$ applies verbatim to $-\Delta u \ge f$).

Conversely, if (3) holds the scalar equation $-\Delta \phi_i = g_i(r)\phi_i^{|\gamma_i|}$ has a minimal positive solution $\phi_i(r)$ in some interval $[R, \infty)$ [9,10], and hence $\phi_j(r)/\phi_i(r)$ is bounded above and below in $[R, \infty)$ by positive constants, i, j = 1, ..., M. For a sufficiently small positive constant λ , it follows from (2) that the vector **v** with components $v_i = \lambda \phi_i$ satisfies

$$f_{i}(x, \mathbf{v}) \leq A\lambda^{|\gamma_{i}|}g_{i}(|x|)\phi_{1}^{\gamma_{i1}}\cdots\phi_{M}^{\gamma_{iM}}.$$

$$\leq (\text{Constant})\lambda^{|\gamma_{i}|}g_{i}(|x|)\phi_{i}^{|\gamma_{i}|}$$

$$\leq \lambda g_{i}(|x|)\phi_{i}^{|\gamma_{i}|} = -\Delta v_{i}, \quad |x| \geq R.$$

Therefore **v** is a positive supersolution and $\mathbf{w} = 0$ is a subsolution of the boundary value problem

(5)
$$\begin{aligned} -\Delta u_i &= f_i(x, \mathbf{u}) \quad \text{for } |x| > R\\ u_i &= v_i \quad \text{on } |x| = R, \quad i = 1, \dots, M. \end{aligned}$$

The method described by Kawano [3] and Kawano and Kusano [4] for systems in \mathbb{R}^N , and described in [7, p. 843] for exterior boundary value problems, shows that (5) has a

nontrivial solution **u** such that $0 \le u_i(x) \le v_i(x) = \lambda \phi_i(x)$, i = 1, ..., M. The proof by Sattinger's monotone iteration procedure is almost exactly as in [3, pp. 146–150] since (A_2) shows, for every bounded domain $B \subset \Omega_0$ and every T > 0, there exists a constant $K_i = K_i(B,T) > 0$ such that $f_i(x, \mathbf{u}) + K_i u_i$ is nondecreasing in $u_i \in [0,T]$ for all $x \in \overline{B}$, $\mathbf{u} \in T^M$, i = 1, ..., M.

The strong maximum principle for $-\Delta u_i \ge 0$ implies that $u_i(x) > 0$ for $|x| \ge R$. Let $z(x) = A|x|^{2-N}$, where A is a positive constant satisfying $A < R^{N-2} \min_{|x|=R} u_i(x)$. Then

$$\begin{cases} -\Delta(u_i - z)(x) \ge 0 & \text{for } |x| > R\\ u_i(x) - z(x) > 0 & \text{on } |x| = R\\ u_i(x) - z(x) \to 0 & \text{as } |x| \to \infty, \end{cases}$$

and consequently $u_i(x) \ge z(x) = A|x|^{2-N}$ for all $|x| \ge R$ by the maximum principle. Hence **u** is the required minimal positive solution of (1).

COROLLARY 2. Suppose that $g_i(r)$ in (2) is specialized to $g_i(r) = 0(r^{-b_i})$ as $r \to \infty$ for a constant b_i satisfying $N - b_i < (N - 2)|\gamma_i|$, i = 1, ..., M. Then (1) has a positive solution with finite energy in a neighbourhood of infinity.

PROOF. Since (3) holds, Theorem 1 shows that (1) has a positive solution $\mathbf{u}(x) = 0(|x|^{2-N})$ as $|x| \to \infty$. By (2), each u_i can be regarded as a solution of Poisson's equation $-\Delta u_i = F_i$, where

$$F_i(x) = f_i(x, \mathbf{u}(x)) \le C|x|^{-b_i - (N-2)|\gamma_i|} \le C|x|^{-N}$$

for some positive constant C, $|x| \ge R \ge 1$. Then an *a priori* estimate [2, Theorem 3.9] for Poisson's equation in a ball $B_{r/2}(x)$ of centre x and radius r/2, $r = |x| \ge 2R$, yields

$$|(\nabla u_i)(x)| \leq C_1 \Big[\frac{2}{r} \sup_{B_{r/2}} |u_i| + \frac{r}{2} \sup_{B_{r/2}} |F_i| \Big] \leq C_2 r^{1-N}$$

for some constants C_1 and C_2 , implying the conclusion of Corollary 2.

COROLLARY 3. If $g_i(r)$ is bounded and $|\gamma_i| > N/(N-2)$, then (1) has a positive solution with finite energy in a neighbourhood of infinity.

This follows by taking each $b_i = 0$ in Corollary 2.

THEOREM 4. Suppose that each $g_i(r)$ is bounded in $[R_0, \infty)$ and that $|\gamma_i| < (N+2)/(N-2)$, i = 1, ..., M. Then (3) is a necessary condition for (1) to have a positive solution with finite energy in a neighbourhood of infinity.

PROOF. The function v defined by $v(x) = \sum_{i=1}^{M} u_i(x)$ solves a linear elliptic equation $-\Delta v = Hv$ in an exterior domain Ω , where by (2)

(6)
$$H(x) \le C \sum_{i=1}^{M} [v(x)]^{|\gamma_i|-1}$$

for some positive constant C. Since $|\gamma_i| - 1 < 4/(N-2)$, Hölder's inequality with exponents

$$p_i = \frac{4}{(N-2)(|\gamma_i|-1)}$$
 $q_i = \frac{4}{4-(N-2)(|\gamma_i|-1)}$

applied in a ball $B_r(x)$ of centre x and small radius r shows that there exists a constant $C_1 > 0$, independent of r and x, such that

$$\|H\|_{N/2,B_r(x)} \leq C_1 \sum_{i=1}^M r^{2/q_i} \|v\|_{2N/(N-2),B_r(x)}^{|\gamma_i|-1}.$$

Since $v \in L^{2N/(N-2)}(\mathbb{R}^N)$ from the Sobolev embedding $D_0^{1,2}(\Omega) \hookrightarrow L^{2N/(N-2)}(\Omega)$, it follows that $||H||_{N/2,B_r(x)} \to 0$ as $r \to 0$ uniformly in Ω . From results of Brezis and Kato [1, Remark 2.1 and Theorem 2.3], this implies that $v \in L^q(\Omega)$ for all $q \ge 2N/(N-2)$, from which the norms

(7)
$$||v||_{q,B_2(x)}$$
 and $||Hv||_{s,B_2(x)'}$

for sufficiently large q and s, are bounded functions of x and have limits zero as $|x| \to \infty$. Then v(x) is bounded in Ω as a consequence of standard *a priori* estimates for the equation $-\Delta v = Hv$ [2, Theorem 8.17]. It follows that $||v||_{2,B_2(x)}$, as well as the norms (7), has limit zero as $|x| \to \infty$. Interior Hölder estimates [2, Theorem 8.24] imply that $v(x) \to 0$, and so also each $u_i(x) \to 0$ as $|x| \to \infty$. Consequently the maximum principle for $-\Delta u_i \ge 0$ yields $u_i(x) \ge C|x|^{2-N}$ for $|x| \ge R$, where C and R denote positive constants. The proof of Theorem 1 can then be repeated to obtain (3).

THEOREM 5. Suppose that g_i in (2) is specialized to $g_i(r) = 0(r^{-b_i})$ as $r \to \infty$ and that

(8)
$$\begin{cases} 1 < |\gamma_i| < \frac{N+2}{N-2} & \text{if } b_i \ge 2\\ \frac{N+2-2b_i}{N-2} < |\gamma_i| < \frac{N+2}{N-2} & \text{if } 0 < b_i < 2, \end{cases}$$

i = 1, ..., M. Then a positive finite energy solution of (1) in a neighbourhood of infinity is necessarily minimal.

PROOF. Kelvin's transformation

$$y = \frac{x}{|x|^2}, \quad v_i(y) = |x|^{N-2}u_i(x), \quad i = 1, \dots, M$$

maps (1) into

(9)
$$-\Delta v_i = H_i(y)v_i, \quad y \in \Omega'$$

where Ω' is a deleted neighbourhood of the origin and

$$H_{i}(y) = |y|^{-N-2} [v_{i}(y)]^{-1} f_{i} \Big(\frac{y}{|y|^{2}}, |y|^{N-2} v(y) \Big).$$

Let $V(y) = \sum_{i=1}^{M} v_i(y)$, and use (2) to obtain

(10)
$$H_i(y) \le C|y|^{\rho_i}[V(y)]^{|\gamma_i|-1}, \quad y \in \Omega',$$

for some constant C > 0, where

$$\rho_i = |\gamma_i| (N-2) - N - 2 + b_i.$$

A proof that $H_i \in L^s(\Omega')$ for some s > N/2, i = 1, ..., M, will be sketched below. Then a theorem of Serrin [8, p. 220] applied to (9) near y = 0 shows that either $v_i(y)$ or $|y|^{N-2}v_i(y)$ is bounded above and below by positive constants in a deleted neighbourhood of y = 0. However, $u_i(x)$ cannot be bounded below by a positive constant in an exterior domain by the finite energy hypothesis, and hence it must be that $|x|^{N-2}u_i(x)$ is bounded above and below by positive constants for sufficiently large |x|.

To show that $H_i \in L^s(\Omega')$ for s > N/2, we fix *s* satisfying

(11)
$$8 - 2b_i - \frac{2N}{s} < (N-2)(|\gamma_i| - 1) < \frac{2N}{s},$$

which is possible by assumption (8). Define

$$p_i = \frac{2N}{s(N-2)(|\gamma_i|-1)}, \qquad q_i = \frac{2N}{2N-s(N-2)(|\gamma_i|-1)}$$

and apply Hölder's inequality to (10), giving

(12)
$$\|H_i\|_s^s \le \||y|^{s\rho_i}\|_{q_i} \|V\|_{2N/(N-2)}^{s(|\gamma_i|-1)}$$

where $\| \|_s$ denotes the norm in $L^s(\Omega')$. The assumption $u_i \in D_0^{1,2}(\Omega)$ implies that $V \in D_0^{1,2}(\Omega')$, whence $V \in L^{2N/(N-2)}(\Omega')$ by Sobolev embedding. The left inequality (11) is equivalent to $s\rho_i q_i > -N$, and therefore (12) yields $H_i \in L^s(\Omega')$.

We remark, if $|\gamma_i| < (N - b_i)/(N - 2)$ for some *i*, then a positive solution of (1) (of any type whatsoever) in any external domain cannot be minimal. Theorem 1 shows this since condition (3) fails in this case.

ACKNOWLEDGEMENT. We are grateful to the referee for his suggestions.

REFERENCES

- 1. H. Brezis and T. Kato, *Remarks on the Schrödinger operator with singular complex potential*, J. Math Pures App. **58**(1979), 137–151.
- D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order*. 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
- **3.** N. Kawano, On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J. **14**(1984), 125–158.
- 4. N. Kawano and T. Kusano, On positive entire solutions of a class of second order semilinear elliptic systems, Math. Z. 186(1984), 287–297.
- 5. C. Miranda, Partial differential equations of elliptic type. Springer-Verlag, New York-Heidelberg-Berlin, 1970.

518

- 6. E. S. Noussair and C. A. Swanson, Oscillation theory for semilinear Schrödinger equations and inequalities, Proc. Roy. Soc. Edinburgh A75(1975/76), 67–81.
- 7. _____, Global positive solutions of semilinear elliptic equations, Canad. J. Math. 35(1983), 839–861.
- 8. J. Serrin, Isolated singularities of solutions of quasi-linear equations, Acta Math. 113(1965), 219-240.
- 9. C. A. Swanson, *Extremal positive solutions of semilinear Schrödinger equations*, Canad. Math Bull. 26 (1983), 171–178.
- **10.** _____, *Positive solutions of* $-\Delta u = f(x, u)$, Nonlinear Anal. **9**(1985), 1319–1323.

School of Mathematics University of New South Wales Kensington, N.S.W. Australia 2033

Department of Mathematics University of British Columbia Vancouver, B.C. V6T 1Y4