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ON DURBIN’S SERIES FOR THE DENSITY
OF FIRST PASSAGE TIMES
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Abstract

Durbin (1992) derived a convergent series for the density of the first passage time of a
Weiner process to a curved boundary. We show that the successive partial sums of this
series can be expressed as the iterates of the standard substitution method for solving
an integral equation. The calculation is thus simpler than it first appears. We also show
that, under a certain condition, the series converges uniformly. This strengthens Durbin’s
result of pointwise convergence. Finally, we present a modified procedure, based on
scaling, which sometimes works better. These approaches cover some cases that Durbin
did not.
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1. Introduction

The first passage time of a real-valued stochastic process W = {W(t) : t ≥ 0} to a boundary
b = b(t) is

τ = inf{t > 0 : W(t) ≥ b(t)}.
We aim to find the density f of τ , given b. We focus on the case where W is a standard Wiener
process starting at W(0) = 0. Assume that b is continuously differentiable for t > 0, with
b(0+) ≡ limt→0{b(t)} > 0. (Additional conditions on b are discussed below.)

This problem has numerous applications in the physical and social sciences. The exact
solution is known only in a few special cases. Of these, the simplest is where b is a straight
line. In this case, f is an inverse Gaussian density. Consequently, there is great interest in
approximations and numerical methods. The tangent approximation, proposed by Daniels [1]
and Strassen [8], is perhaps the simplest approach. It approximates b locally by a straight
line. It has been studied intensively by Lerche [4], among others. Several refinements
have been suggested, including Lerche’s second-order correction and the hazard rate tangent
approximation of Roberts and Shortland [7].

Durbin [2] derived, under a certain condition, a series representation of f , the first term
of which is the tangent approximation. It thus provided a useful link between exact and
approximate methods. The tangent approximation is exact for linear b, and indeed the series
terminates after the first term in this case. For nonlinear b, the remaining terms can be interpreted
as corrections for curvature. These terms, however, appear to be increasingly difficult to
compute.

We show that the successive partial sums of this series can be expressed as the iterates of
the standard substitution method for solving an integral equation. (This equation too is due
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to Durbin, but he used it for other purposes.) The calculation is thus much simpler than it
first appears. We also show that, under a certain condition, different from Durbin’s, the series
converges uniformly. This strengthens Durbin’s result of pointwise convergence. We then
present a modified procedure, based on scaling, along with a modified convergence condition,
which sometimes works better. These conditions, moreover, cover some interesting cases that
Durbin did not. Finally, this approach is more flexible; it can start with any estimate of the
density, including the refined tangent approximations noted above.

2. Series

For any positive integer j , let t = (ti)
j−1
i=0 denote a vector of positive times, decreasing in i,

and let g(t) denote the joint density of W at times t on the boundary, that is, the density of the
event {W(ti) = b(ti) : 0 ≤ i < j | W(0) = 0}. For j = 1, we can write t = t0 = t , so g(t)

is just the univariate density of W(t), evaluated at b(t). Also, for 0 ≤ s < t , define g(t | s) as
the conditional density of {W(t) = b(t) | W(s) = b(s)}. Define

δ(s, t) = b(t) − b(s)

t − s
− b′(t), δ(t) = b(t)

t
− b′(t).

Now define
q1(t) = q(t) = δ(t)g(t),

and, for j > 1,

qj (t) =
∫ t0

0

∫ t1

0
· · ·

∫ tj−2

0
δ(tj−1)

[j−1∏
i=1

δ(ti , ti−1)

]
g(t) dtj−1 · · · dt2 dt1, (1)

where t0 = t . Also, let

fk(t) =
k∑

j=1

(−1)j−1qj (t).

This is Durbin’s series. The first term q(t) is precisely the tangent approximation of f .
We now aim to simplify this calculation. Let B denote the integral operator defined by

(Bh)(t) =
∫ t

0
h(s)δ(s, t)g(t | s) ds,

and let A = q − B, that is,

(Ah)(t) = q(t) −
∫ t

0
h(s)δ(s, t)g(t | s) ds.

(For now, the domain of both operators is the set C of continuous functions h on [0, ∞].)
Lemma 1. For j > 0, qj+1 = Bqj .

Proof. By the Markov property,

g(t) = g(tj−1)

j−1∏
i=1

g(ti−1 | ti ).
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Consequently,

qj+1(t0) =
∫ t0

0

∫ t1

0
· · ·

∫ tj−1

0
δ(tj )

[ j∏
i=1

δ(ti , ti−1)g(ti−1 | ti )

]
g(tj ) dtj · · · dt2 dt1

=
∫ t0

0
δ(t1, t0)g(t0 | t1)

∫ t1

0
δ(t2, t1)g(t1 | t2) · · ·

∫ tj−1

0
δ(tj )g(tj ) dtj · · · dt2 dt1

=
∫ t0

0
δ(t1, t0)g(t0 | t1)qj (t1) dt1

= (Bqj )(t0).

Proposition 1. For k ≥ 0, fk+1 = Afk , with f0 = 0.

Proof. We have

fk+1 =
k+1∑
j=1

(−1)j−1qj

= q −
k+1∑
j=2

(−1)j qj

= q −
k∑

i=1

(−1)i−1qi+1

= q −
k∑

i=1

(−1)i−1Bqi

= q − B

( k∑
i=1

(−1)i−1qi

)

= q − Bfk

= Afk.

The calculation of qj+1 appears from (1) to require a j -dimensional integral for each t .
Lemma 1 shows, however, that it entails just a one-dimensional integral, using the previous
term qj . Likewise, according to the proposition, the entire partial sum fk+1 can be obtained
from the previous one fk by a one-dimensional integral.

Consider the integral equation
h = Ah. (2)

Durbin showed that the true f solves this equation. (This is his Equation (10), although it looks
different. We have stated it in a form closer to Peskir’s [5] equivalent Equation (5.4).) The
sequence {fk} can thus be viewed as the outcome of the substitution algorithm applied to (2),
starting with f0 = 0.

3. Convergence

Durbin assumed that δ(t) > 0. (It appears, however, that this condition can be dropped. He
used it in a proof of (2), but as he mentioned, there are other proofs that do not require it. We
will revive it, for a different reason, in the next section.)
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Define

rk(t) = f (t) − fk(t), γ (t) = sup{|δ(r, s)| : 0 ≤ r < s ≤ t}.
Assume that γ (t) is finite for all t . Durbin proved that

|rk(t)| ≤ r̄k(t) ≡
√

2π

t

[η(t)]k
�(k/2)

,

where η(t) = γ (t)
√

t/2. For each t , r̄k(t) converges to 0 as k → ∞, and, therefore, fk(t) →
f (t).

This result is remarkable in several ways. First, it is quite general; it places no restrictions
on b, besides those above. Second, the error bound r̄k(t) need not decrease monotonically in
k, because η(t) may be greater than 1. However, r̄k(t) does ultimately decrease for large k, due
to the factor �(k/2). In fact, it decreases faster than geometrically. The form of r̄k(t) is like
that of the terms in the series expansion of ex , and it decays similarly. This point can be seen
even more clearly by examining the even terms:

r̄2k(t) =
√

2π

t

[η2(t)]k
�(k)

.

Third, as Durbin pointed out, |δ(r, s)| can be viewed as a measure of the curvature of b between
r and s. So, γ (t) is a summary measure of its nonlinearity up to t . Specifically, if b is linear
over [0, t] then γ (t) = 0. Thus, the result indicates that the convergence should be fast when
the slope of b changes slowly.

The assumption that γ (t) be finite is of course necessary for this approach. Consider b(t) =
b0 + ctα , where b0, c, and α are constants, with b0 > 0, c 	= 0, and 0 < α < 1. Then,

|δ(r, s)| = |c|
(

sα − rα

s − r
− αsα−1

)
= |c|

(
1 − (r/s)α

1 − r/s
− α

)
sα−1.

For any fixed s, |δ(r, s)| is maximized at r = 0, and

|δ(0, s)| = |c|(1 − α)sα−1.

As s → 0, |δ(0, s)| → ∞. Thus, γ (t) = ∞ for all t > 0. The convergence argument thus
does not work here. We will see below that, nevertheless, the algorithm does converge for this
b, at least for most values of α. (For α > 1, γ (t) = |c|(α − 1)tα−1, which is indeed finite.)

Even for finite γ (t), the convergence here is pointwise, not uniform over t . The quantity
γ (t) is increasing in t , and, therefore, η(t) increases at least as fast as

√
t/2. So, according to

this analysis, the calculation may take a while to ‘settle down’ for large t . We now show that,
when b is nearly linear, in a sense different from that measured by γ (t), the convergence is
indeed uniform.

Consider the subspace B of C comprising bounded, continuous functions h = h(t), that is,
such that

‖h‖ ≡ sup{|h(t)| : t > 0} < ∞.

Assume that q ∈ B. We aim to show that, under a certain condition, A is a contraction on B.
That is, for some constant 0 ≤ ρ < 1, and any two functions h1 and h2 ∈ B,

‖A(h2 − h1)‖ ≤ ρ‖h2 − h1‖.
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(Peskir [5] verified this property for a different integral equation, under an entirely different
condition.) This property guarantees uniform, geometric convergence to f . Furthermore, f is
the unique solution in B to the integral equation (2). See, e.g. [3, Chapter 5].

Define

β(t) =
∫ t

0
|δ(s, t)|g(t | s) ds, β = sup{β(t) : t > 0}.

Evidently, β is an alternative summary measure of nonlinearity.

Proposition 2. If β < 1 then A is a contraction with ρ = β.

Proof. We have

|(A(h2 − h1))(t)| =
∣∣∣∣
∫ t

0
[h2(s) − h1(s)]δ(s, t)g(t | s) ds

∣∣∣∣
≤

∫ t

0
|h2(s) − h1(s)||δ(s, t)|g(t | s) ds

≤ β(t)‖h2 − h1‖
≤ β‖h2 − h1‖.

It appears difficult in general to compute β, but it can be simplified in some cases. Reconsider
the example above: b(t) = b0 + ctα with 0 < α < 1. It is not difficult to check that indeed
q ∈ B. Let φ denote the standard normal density. Then

β(t) =
∫ t

0
|c|

(
tα − sα

t − s
− αtα−1

)
1√

t − s
φ

(
|c| t

α − sα

√
t − s

)
ds

=
∫ t

0
|c| t

α

t

(
1 − (s/t)α

1 − s/t
− α

)
1

t1/2

1√
1 − s/t

φ

(
|c| tα

t1/2

1 − (s/t)α√
1 − s/t

)
ds

=
∫ 1

0

(
1 − xα

1 − x
− α

)
1√

1 − x
|c|tα−1/2φ

(
|c|tα−1/2 1 − xα

√
1 − x

)
dx.

Evidently, this depends on t and c only through the parameter θ = |c|tα−1/2. Let us write

β̄(θ) =
∫ 1

0

(
1 − xα

1 − x
− α

)
1√

1 − x
θφ

(
θ

1 − xα

√
1 − x

)
dx, (3)

β̄ = sup{β̄(θ) : θ > 0}.
For α 	= 1

2 , clearly, β = β̄, and this is the same for all c. For α = 1
2 , θ = |c|, and β(t) is

independent of t , so β̄ gives the worst case of β over all values of c. In both cases, for fixed α,
if β̄ < 1 then A is a contraction for all c, with ρ ≤ β̄.

Also, we can show that β̄ is decreasing as a function of α. (For any fixed x and θ , the
integrand in (3) is decreasing in α.) So, if we can verify that β̄ < 1 for some particular α then
the same is true for all larger α < 1. (It would be nice to determine the limit as α → 0, but we
have not yet been able to do so.)

It appears that the integral in (3) cannot be further simplified. It is not difficult to compute
it numerically, however, and we have done so; β̄(θ) appears to be unimodal in all cases. (This
is not a surprise. It is clearly true of the integrand for each fixed v.) For α = 1

32 , the mode
occurs at about θ∗ ≈ 22.5, with β̄ ≈ 0.10. This is well below 1, and so A is a contraction for
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Table 1: Contraction test: b(t) = b0 + ctα .

α θ∗ β̄

2 1.00 0.16
4 0.83 0.54
6 0.76 0.93
8 0.72 1.33

any c and all α ≥ 1
32 . (We also computed β̄ for a couple of larger values of α, to check for

consistency. For α = 1
8 , θ∗ ≈ 6.0 and β̄ ≈ 0.09. For α = 1

2 , θ∗ ≈ 1.9 and β̄ ≈ 0.06.)
It is worth noting that the results will be even better, in some cases, when b has nonzero

asymptotic slope. Consider the more general function b(t) = b0 + c(b1t + tα), where b1 ≥ 0.
What is the effect of b1 on β(t)? Observe that δ(s, t) is independent of b1, and the φ term in
g(t | s) becomes

φ

(
|c| t

α − sα + b1(t − s)√
t − s

)
.

This is decreasing in b1 for all s < t . Consequently, the same is true of β(t) itself and of β.
So, if β < 1 for b1 = 0 (as we have already shown for 1

32 ≤ α < 1) then the same is true for
all b1 ≥ 0. This logic applies to any function of the form b(t) = b0 + c[b1t + b̃(t)], where b̃(t)

is nondecreasing with b̃(0+) = 0.
Returning to b1 = 0, for α > 1, the derivation and interpretation of (3) remain valid, with a

change of sign to account for the fact that δ(s, t) < 0. Table 1 records some results. Evidently,
β̄ < 1 for some cases, but not all.

4. Scaling

These mixed results lead us to explore a modification of the approach above. Suppose that we
know or suspect that f behaves badly, in a way that may cause numerical difficulties. Suppose
that we know that a function v = v(t), positive for t > 0, behaves in this same way. One
possible remedy is to work with a scaled version of f , namely f ˜ = f/v. This is a standard
technique of analysis.

In terms of scaled functions, the integral equation (2) now reads

h˜(t) = h(t)

v(t)

= q(t)

v(t)
− 1

v(t)

∫ t

0
h(s)δ(s, t)g(t | s) ds

= q(t)

v(t)
− 1

v(t)

∫ t

0
v(s)h˜(s)δ(s, t)g(t | s) ds.

Defining

q˜(t) = q(t)

v(t)
, δ˜(s, t) = v(s)δ(s, t)

v(t)
, (B˜h˜)(t) =

∫ t

0
h˜(s)δ˜(s, t)g(t | s) ds,

and A˜ = q˜ − B˜,

the equation can be written as
h˜ = A˜h˜.

The substitution algorithm now becomes f0̃ = 0, fk̃+1 = A˜fk̃ .
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This is a different calculation. We can verify that it works, in the sense above, by showing
that q˜ ∈ B and A˜ is a contraction. Define

β˜(t) =
∫ t

0
|δ˜(s, t)|g(t | s) ds, β˜ = sup{β˜(t) : t > 0}.

Then, by a minor adjustment to its proof, Proposition 2 holds with β˜ replacing β and A˜
replacing A. Again, the key condition is β˜ < 1.

All this holds for any positive function v. We do know one that behaves something like f ,
namely, the tangent approximation q itself. Strassen [8] demonstrated that q(t) ∼ f (t) for
small t . (See also [6].) For larger t , the situation is less clear; Lerche [4] included some partial
results. Of course, to set v = q requires q(t) > 0 for t > 0 (that is, δ(t) > 0, as Durbin
assumed). This is true in many cases. For example, it holds when b is concave.

When we can and do set v = q, we immediately get q˜ = 1 ∈ B. Also, suppose that the
sign of δ(s, t) does not fluctuate for s < t near 0. (This holds when b(t) is either consistently
concave or consistently convex for small t .) We have limt→0{f ˜(t)} = limt→0{q˜(t)} = 1,
and so

0 = lim
t→0

{|f ˜(t) − (A˜f ˜)(t)|}

= lim
t→0

{∣∣∣∣
∫ t

0
f ˜(s)δ˜(s, t)g(t | s) ds

∣∣∣∣
}

= lim
t→0

{∫ t

0
f ˜(s)|δ˜(s, t)|g(t | s) ds

}

≥ lim
t→0

{
inf{f ˜(s) : 0 < s < t}

∫ t

0
|δ˜(s, t)|g(t | s) ds

}

= lim
t→0

{inf{f ˜(s) : 0 < s < t}} lim
t→0

{∫ t

0
|δ˜(s, t)|g(t | s) ds

}

= 1 · lim
t→0

{β˜(t)}.

Since β˜(t) ≥ 0, we conclude that limt→0{β˜(t)} = 0. So, β˜(t) at least starts small.
It is not always true, however, that q > 0. In particular, it is not true for the example above,

b(t) = b0 + ctα , when c > 0 and α > 1. Here,

δ(t) = b0

t
− c(α − 1)tα−1,

which is positive for small t , but crosses 0 at a certain positive value of t and remains negative
thereafter. For such cases, we propose that v(t) = |δ(0, t)|g(t | 0). This is like |q(t)| but
without the terms involving b0. Finally, we make one small adjustment, explained below.
Redefine v(t) = √

t |δ(0, t)|g(t | 0). (For the example, it is still true that q˜ ∈ B, due to the
term b0/

√
t in the exponent of g(t).)

For the example, β˜(t) is the same as β(t), except that the integral includes the additional
factor

v(s)

v(t)
= sα−1/2φ(|c|sα−1/2)/

√
s

tα−1/2φ(|c|tα−1/2)/
√

t
.

Letting x = s/t , this becomes

v(tx)

v(t)
= (tx)α−1φ(|c|(tx)α−1/2)

tα−1φ(|c|tα−1/2)
= xα−1φ(|c|tα−1/2xα−1/2)

φ(|c|tα−1/2)
.

https://doi.org/10.1239/jap/1316796909 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1316796909


720 P. ZIPKIN

Table 2: Contraction test with scaling: b(t) = b0 + ctα .

α θ∗ β̄˜

2 2.4 0.15
4 1.16 0.14
6 0.86 0.14
8 0.72 0.14

Again, this depends on t and c only through θ = |c|tα−1/2, and

v(tx)

v(t)
= xα−1φ(θxα−1/2)

φ(θ)
.

Thus, we can define

β̄˜(θ) =
∫ 1

0

xα−1φ(θxα−1/2)

φ(θ)

∣∣∣∣1 − xα

1 − x
− α

∣∣∣∣ 1√
1 − x

θφ

(
θ

1 − xα

√
1 − x

)
dx,

β̄˜ = sup{β̄˜(θ) : θ > 0},
and use them as above.

This formula suggests why the scaling approach might work. The largest values of the
second factor in the integrand (derived from δ(tx, t)) are those for small x. The term xα−1 in
the new factor helps to suppress those values. (This is why we guessed that the

√
t adjustment

above might help. Otherwise, the new term would be xα−3/2, which would have a weaker
effect. It would even magnify the large values for 1 < α < 3

2 . Anyway, we tried the calculation
with and without the adjustment, and it does help a bit.)

We present the results in Table 2. As can be seen, we obtain significant improvements,
especially for larger α.

This approach also allows us to relax the assumption that b(0+) > 0 made at the outset.
This assumption does simplify the discussion. But, as a glance at the literature reveals, there
are interesting cases with b(0+) = 0. A broader condition is that b be an upper function,
namely, that τ has a nondegenerate distribution, specifically, Pr{τ > 0} = 1. It is sufficient
that b(0+) > 0, but it is also possible that b(0+) = 0, provided that b(t) grows very fast for
small t . (The precise condition is rather technical. See [6].) Examples include b(t) = ctα

for c > 0 and 0 < α < 1
2 , and b(t) = c

√−t ln(t) for c > 0. (Of course, the latter formula
is valid only for t ≤ 1. We mean a function that behaves in this way for small t . One such
function is given below.) In some of these cases, q ∈ B. This is so for the first example for all
c > 0, and also the second provided that c >

√
2. When this condition holds, the analysis of

the previous section remains valid. Specifically, the calculation of β̄ there for power functions
does not depend at all on b0. Those results therefore apply even to the case of b0 = 0.

In other cases, q is not bounded, specifically limt→0{q(t)} = ∞. This is so for b(t) =
c
√−t ln(t) when 0 < c ≤ √

2. As indicated above, this implies that limt→0{f (t)} = ∞.
A scaling approach is essential in such cases.

Consider specifically

b(t) = c

⎧⎪⎨
⎪⎩

√−t ln(t), 0 ≤ t ≤ 1/e,√
1

e
, t > 1/e,
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Table 3: Contraction test with scaling: b(t) = c
√−t ln(t).

c t∗ β˜

(
√

2)−4 = 1
4 0.000 000 09 0.75

(
√

2)−3 0.004 0.74
(
√

2)−2 = 1
2 1/e 0.74

(
√

2)−1 1/e 0.58
(
√

2)0 = 1 1/e 0.32
(
√

2)1 1/e 0.15

with 0 < c ≤ √
2. We have

b′(t) = c

⎧⎨
⎩

− ln(t) + 1

2
√−t ln(t)

, 0 < t ≤ 1/e,

0, t > 1/e.

Note that b′(1/e−) = 0. So, b is continuously differentiable. Also,

δ(s, t) = c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√−t ln(t) − √−s ln(s)

t − s
+ ln(t) + 1

2
√−t ln(t)

, 0 < t ≤ 1/e,
√

1/e − √−s ln(s)

t − s
, 0 ≤ s ≤ 1/e < t,

0, s > 1/e.

For 0 < t ≤ 1/e, δ(s, t) is maximized at s = 0. Some algebra reveals that

δ(0, t) = − ln(t) + 1

2
√−t ln(t)

> 0,

and limt→0{δ(0, t)} = ∞. Therefore, γ (t) = ∞ for all t > 0, as in the example in the previous
section. Again, the pointwise convergence argument for the unscaled calculation breaks down.

Also, b is concave, so we can and do set v = q. The integral defining β˜(t) is complex
and not especially interesting, so we omit it. It seems there is no simplifying parameter like
θ above, so we must treat each case separately. Table 3 displays some results. Observe that
β˜ < 1 in all cases.

(The details are rather peculiar. In all but the first two cases, β˜(t) is unimodal, with a mode
at t∗ = 1/e ≈ 0.37. In the second case (c = 1/2

√
2) β˜(t) is bimodal, with one mode at 1/e

and the other at the much smaller value 0.004. In the first case (c = 1
4 ) again there is only

one mode, this time at the tiny value shown in the table. Also, it appears that β˜ is decreasing
in c, but this is not true of β˜(t) for each t . For instance, for c = 1

4 , β˜(1/e) ≈ 0.60 , which
is smaller than the corresponding value for c = 1

2 . We are unable to discern any meaningful
pattern here.)

5. Concluding remark

The contraction property implies that the substitution algorithm can start with any f0 ∈ B (or
f0˜ ∈ B, if we use scaling), not just 0. As mentioned in the introduction, several authors have
suggested refinements of the tangent approximation. Any of these can be taken as the starting
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point. Durbin’s series is sometimes regarded as an exclusive alternative to these methods, but
in fact they can be combined in this manner.
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