Network connectivity following a single unprovoked seizure using 7 Tesla resting-state fMRI
doi: 10.1017/cjn.2017.63

Background: Predicting epilepsy following a first seizure is difficult. Network abnormalities are observed in patients with epilepsy using resting-state functional MRI (rs-fMRI), which worsen with duration of epilepsy. We use rs-fMRI to identify network abnormalities in patients after a first seizure that can be used as a biomarker to predict development of epilepsy. Methods: Patients after a single, unprovoked seizure and age/sex matched healthy controls underwent 7 Tesla structural and resting-state functional MRI. Data were analyzed using graph theory measures. Patients were followed for development of epilepsy. Results: Nine patients and nine control subjects were analyzed. There were no differences in baseline characteristics. No patients developed epilepsy (average follow-up 3 months). No differences between groups occurred on a whole-brain network level. At a 20% threshold, significant differences occurred in the default mode network (DMN). Patients demonstrated an increased local efficiency (p=0.02) and clustering coefficient (p=0.04), and decreased path length (p=0.02) and betweenness centrality (p=0.02). Conclusions: No whole-brain network changes occur after a single unprovoked seizure. No patient has developed epilepsy suggesting this group does not have network alterations after a single seizure. In the DMN, the alterations noted indicate increased segregation of network function.

Sensory-motor network functional connectivity in hemiparetic children with perinatal stroke
KE Woodward (Calgary)* H Carlson (Calgary) A Kuczynski (Calgary) J Saunders (Calgary) J Hodge (Calgary) A Kirton (Calgary)
doi: 10.1017/cjn.2017.64

Background: Perinatal stroke is the most common cause of hemiparetic cerebral palsy. Post-stroke plasticity is well studied in adults, but mechanisms in children are poorly understood. To better understand the relationship between functional connectivity and disability, we used rsfMRI to compare connectivity with sensorimotor dysfunction. Methods: Subjects with periventricular venous infarction were compared to controls. Resting-state BOLD signal was acquired on 3T MRI and analyzed using SPM12. Functional connectivity was computed between S1 and M1 of the left/non-lesioned and right/lesioned hemisphere. Primary outcome was connectivity expressed as a Pearson correlation coefficient. Motor function was measured using the Assisting Hand Assessment (AHA), and Melbourne Assessment (MA). Proprioceptive function was measured using a robotic position matching task (VarXY). Results: Subjects included 17 PVI and 21 controls. AHA and MA in patients were negatively correlated with connectivity (increased connectivity=poorer performance). Correlations between AHA and connectivity between non-lesioned M1 to bilateral S1s were significant. VarXY in PVI was inversely correlated with bilateral M1s. Conclusions: We demonstrated significant correlations between connectivity and motor/sensory function in PVI patients. Greater insight into understanding reorganization of brain networks following perinatal stroke may facilitate personalized rehabilitation.

Assessing visual functions in children with an optic pathway glioma using steady-state visual evoked potentials
S Zakaib Rassi (Montreal)* L Ospina (Montreal) Y Samson (Montreal) D Saint-Amour (Montreal) S Perreault (Montreal)
doi: 10.1017/cjn.2017.66

Background: Optic pathway gliomas (OPG) represent 5% of pediatric brain tumours. Visual acuity measures are used to evaluate treatment response. Current clinical tests to assess visual field integrity are subjective and require verbal cooperation. Thus, the objective of this study was to evaluate the clinical effectiveness of Steady State Visual Evoked Potentials (ssVEPs) to measure visual field integrity...