NON-NILPOTENT GROUPS IN WHICH EVERY PRODUCT OF FOUR ELEMENTS CAN BE REORDERED

M. MAJ AND S. E. STONEHEWER

1. Introduction. Let G be a group and $n \geq 2$ an integer. We say that G belongs to the class of groups P_n if every product of n elements can be reordered, i.e. for all n-tuples (x_1, x_2, \ldots, x_n) , $x_i \in G$, there exists a non-trivial element σ in the symmetric group Σ_n such that

$$x_{\sigma(1)}x_{\sigma(2)}\ldots x_{\sigma(n)}=x_1x_2\ldots x_n.$$

Let P denote the union of the classes P_n , $n \ge 2$. Clearly every finite group belongs to P and each class P_n is closed with respect to forming subgroups and factor groups.

Trivially P_2 is the class of abelian groups and in [2] P_3 was shown to be precisely those groups G for which the derived subgroup G' has order ≤ 2 . Also the class P is known to coincide with the class of groups G possessing a subgroup N with |G:N| and N' both finite [3]. The situation with regard to P_4 seems to be more complicated. Graham Higman [4] considered the problem and obtained two striking results. First, a group G with $G' \cong V_4$ (the 4-group) always belongs to P_4 ; and secondly a finite group G of odd order belongs to P_4 if and only if (i) G is abelian or (ii) |G'| = 3 or (iii) |G'| = 5 and G modulo its centre has order 25. Next it was shown in [1] that if a finite group G belongs to P_4 , then G' is nilpotent. This was improved in [5] where all P_4 -groups were shown to be metabelian.

The purpose of this work is to take the classification of P_4 -groups a stage further and we shall give a complete description of the non-nilpotent groups in P_4 . A contribution to the nilpotent case by P. Longobardi and the second author will appear elsewhere and a third and final contribution by all three authors giving the complete classification of P_4 -groups will combine all the previous results. The non-nilpotent case, however, provides a convenient self-contained exercise, using ideas and methods peculiar to that case. The main result is:

THEOREM. A group G belongs to P_4 if and only if one of the following holds:

Received February 1, 1990.

The authors are grateful to British Council and C.N.R. for financial support while this work was being carried out in Italy and Warwick.

¹⁹⁸⁰ Math. Subject Classification (1985 Revision): 20F34, 20F99.

- (i) G has an abelian subgroup of index 2;
- (ii) G is nilpotent of class ≤ 4 and $G \in P_4$;
- (iii) $G' \cong V_4$;
- (iv) G = B(a, x), where $B \le Z(G)$, |a| = 5 and $a^x = a^2$.

Notation is as follows.

 C_n a cyclic group of order n,

 V_4 the 4-group,

 Σ_n the symmetric group of degree n,

G' derived subgroup of G,

Z(G) centre of G,

 $Z_i(G)$ ith term of the upper central series of G,

 C_G centraliser in G,

|g| order of element g,

 $g^x x^{-1}gx$

 $[x, y] x^{-1}y^{-1}xy.$

After some technical lemmas, abelian-by-cyclic groups are studied in detail and then the finite non-nilpotent P_4 -groups are classified. Local arguments allow us to pass to infinite groups.

2.1. Some technical preliminaries

- **2.1.1.** Let $G \in P_4$ and A be an abelian subgroup of G containing G'. If $a, b \in A$ and $x, y \in G$, then at least one of the following holds:
 - (i) [a, x] = 1;
 - (ii) [a, y] = 1;
 - (iii) $[a, x^{-1}y] = 1$;
 - (iv) [a, x] = [b, x];
 - (v) [b, x] = 1;
 - (vi) $[b,x] = [y,a]^x$;
 - (vii) $[b, xy] = [y, a]^x$;
 - (viii) $[y, a]^x = [b, y];$
 - (ix) [a, x] = [ab, y];
 - (x) [a, x] = [b, y];
 - (xi) [b, xy] = 1;
 - (xii) [b, xy] = [a, x];
 - (xiii) [b, xy] = [a, x][y, a].

Proof. If [x, y] = 1, then the result follows without difficulty by considering all the possible rearrangements of the product yaxb. Thus if there are elements $c, d \in A$ such that [xc, yd] = 1, then, with xc, yd for x, y respectively, we

obtain the same conclusion (observing that the commutators in (i)–(xiii) remain unchanged). Therefore we may assume that $[xc, yd] \neq 1$ for all $c, d \in A$, and again one easily checks that the only possible rearrangements of yaxb lead to one of the listed relations.

A special case of this result will be useful.

- **2.1.2.** Let $G \in P_4$ and A be an abelian subgroup of G containing G'. Let $a, b \in A$, $x, y \in G$ and suppose that [a, x], [a, y] and $[a, x^{-1}y]$ are all different from 1 and [b, y] = 1.
 - (i) If [b, x] has order 2 and commutes with x, then

$$[b, x] = [a, x], [a, y] \text{ or } [a, x][y, a].$$

(ii) If [a, y] has order 2 and commutes with x, then

$$[b, x] = 1, [a, x], [a, y] \text{ or } [a, x][a, y].$$

- *Proof.* (i) One checks easily from the hypotheses that the only possibilities in 2.1.1 are (iv), (vi), (vii), (xii) and (xiii), giving the result.
- (ii) Again the only possibilities in 2.1.1 are (iv), (v), (vi), (vii), (xii), (xii) and (xiii), hence the result.

We apply 2.1.2 immediately.

- **2.1.3.** Let $G \in P_4$ be a finite 2-group and A be an abelian subgroup of G containing G'. If $G = A\langle x \rangle$, then one of the following holds:
 - (1) $[A, x^2] = 1$;
 - (2) $G' \cong V_4$;
 - (3) $G' \cong C_4$ and $G' \leqq Z(G)$.

Proof. Suppose that $x^2 \notin C_G(A)$ and choose an element b in $(Z_2(G) \cap A) \setminus Z(G)$ of minimal order. Then

$$1 = [b^2, x] = [b, x^2]$$

and $[b,x] \neq 1$. Now let a be an element of A such that $[a, x^2] \neq 1$. We claim that

- (i) $[a, x^2] = [b, x]$ and
- (ii) if $c \in A$ and $[c, x^2] = 1$ with $[c, x] \neq 1$, then $[c, x] = [a, x^2]$. For, taking $y = x^2$ in 2.1.2(i), we have

$$[b, x] = [a, x], [a, x^2] \text{ or } [a, x][x^2, a] (= [x, a]^x).$$

But if [b,x] = [a,x], then $[a,x^2] = [b,x^2] = 1$, a contradiction. The third possibility coincides with the first and so (i) follows. Then take c and x^2 for b and y, respectively, in 2.1.2(ii). This is permissible, since $[a,x^2]$ has order 2 and commutes with x, by (i). If [c,x] = [a,x] or $[a,x][a,x^2]$, then $1 = [c,x^2] = [a,x^2]$, a contradiction, and so (ii) holds.

From (i) we have

$$A = \langle a \rangle C_A(x^2).$$

We distinguish two possibilities:

Case (a). Suppose that $[a^2, x] \neq 1$. Then, by (i),

$$[a^2, x^2] = 1;$$

and, by (ii),

$$[a^2, x] = [a, x^2].$$

Therefore $[a, x] \in Z(G)$ and |[a, x]| = 4. Again by (ii),

$$[C_A(x^2), x] \leq \langle [a^2, x] \rangle$$

and so $G' = [A, x] = \langle [a, x] \rangle$, i.e. (3) holds.

Case (b). Suppose that $[a^2, x] = 1$. Then

$$[b, x] = [a, x^2] = [a, x, x]$$

and

$$V_4 \cong \langle [a, x], [b, x] \rangle \triangleleft G.$$

By (ii), $[C_A(x^2), x] \le \langle [a, x^2] \rangle = \langle [b, x] \rangle$ and it follows that $G' = \langle [a, x], [b, x] \rangle$, i.e. (2) holds.

2.2. Finite P_4 -groups: Part 1. In this paragraph we obtain preliminary results for the later description (in 2.3) of finite P_4 -groups.

Throughout, G will be a finite P_4 -group and A will denote a maximal abelian subgroup of G containing G'.

We shall use the following observation (see [1]) repeatedly. Let a, b be elements of a P_4 -group and c = [a, b] with $c^2 \neq 1$. Since $a^{-1}b^{-1}ab$ can be rearranged, it is easy to check that, by conjugation,

(1) a, b or ab inverts or centralises c.

2.2.1. Suppose that $G = A\langle x \rangle$. Then

$$A \leq C_G(x^4) \cup C_G(x^3) \cup Z_3(G).$$

Proof. Let $a \in A$ and let

$$x_1 = x^{-1}$$
, $x_2 = a$, $x_3 = x$, $x_4 = xa$.

By considering the rearrangements of the product

$$x_1x_2x_3x_4$$

it is easy to see that either

$$[a, x^2] = 1$$
 or $[a, x^3] = 1$

or one of the following holds:

- (i) $ax^{2}a = xa^{2}x$, or
- (ii) $ax^2a = xax^2ax^{-1}$, or
- (iii) $ax^2a = x^3a^2x^{-1}$.

From (i) we obtain $[a, x^2] = [a^2, x]$ and hence [a, x, x] = 1, i.e. $a \in Z_2(G)$. If (ii) holds, we have

$$[ax^2a, x] = 1$$

and so $[a,x]^{x^2} = [x,a]$. Then $[a,x^4] = 1$. Finally suppose that (iii) holds. Thus

$$x^{-2}ax^2a^{-1} = xa^2x^{-1}a^{-2}$$

and hence

$$[a, x^2] = [a^2, x^{-1}] = [x, a^2]^{x^{-1}}.$$

By (1) it follows that either $|[a,x]| \le 2$ or x^2 inverts or centralises [a,x]. In the first case $[a^2,x]=1$ and so $[a,x^2]=1$. If $[a,x]^{x^2}=[x,a]$, then $[a,x^4]=1$. If

$$[a, x, x^2] = 1.$$

then

$$[a, x^2]^x = [a, x^2] = [x, a^2]$$

and therefore $[a^2, x, x] = 1$. Thus

$$[a, x, x]^x = [a, x, x]^{-1} = [a, x, x]$$
 and $a \in Z_3(G)$.

2.2.2. Let $G = A\langle x \rangle$. Then $x^4 \in A$ or $x^3 \in A$ or G is nilpotent of class ≤ 3 .

Proof. We have $Z(G) = C_A(x) = C_A(x^4) \cap C_A(x^3) \le A \cap Z_3(G)$. By 2.2.1,

$$A = C_A(x^4) \cup C_A(x^3) \cup (A \cap Z_3(G)).$$

If the result is false, then A is covered by 3 proper subgroups and so $A/Z(G) \cong V_4$ ([6]). Thus $[a^2, x] = 1$, all $a \in A$. Therefore if $a \in Z_3(G)$,

$$[a, x^{4}] = [a, x^{2}][a, x^{2}]^{x^{2}}$$
$$= [a, x, x][a, x, x]^{x^{2}}$$
$$= [a, x, x]^{2} = 1.$$

Hence $A = C_A(x^4) \cup C_A(x^3)$, a contradiction.

Now we make further applications of 2.1.1 to yield

2.2.3. Let $G = A\langle x \rangle$ and a be a p-element of A (p prime) with $[a, x^2] \neq 1$. Then x centralises the p-complement of A.

Proof. Let b be a p'-element of A and put $y = x^2$. Assume, for a contradiction, that $[b,x] \neq 1$. Then (xi) of 2.1.1 must hold, i.e. $[b,x^3] = 1$. Taking y in the notation of 2.1.1 to be x^{-2} here, we must have $[a,x^3] = 1$ and so

(2)
$$[ab, x^3] = 1.$$

Now either $[a, x]^2 \neq 1$ or $[b, x]^2 \neq 1$ and hence

$$[ab,x]^2 \neq 1.$$

With abx and x replacing a, b respectively in (1), it follows that x^4 must centralise [ab, x] and therefore, by (2), [ab, x, x] = 1. Thus

$$1 = [ab, x^3] = [ab, x]^3 = [a, x]^3[b, x]^3$$

and so $[a, x]^3 = [b, x]^3 = 1$, a contradiction.

Further relations in the situation of 2.2.3 are contained in

2.2.4. Suppose that $G = A\langle x \rangle$ and a is an element of A such that $[a, x^2] \neq 1$. Then one of the following holds: (i) [a, x, x, x] = 1; (ii) |[a, x]| = 2; (iii) $|[a, x^2]| = 2$; (iv) $[a, x]^x = [a, x]^2$; (v) $[a, x]^x = [a, x]^{-2}$.

Proof. Suppose that neither (i) nor (ii) holds. By 2.2.1 we must have

$$[a, x^4] = 1 \text{ or } [a, x^3] = 1.$$

With ax and x for a, b in (1), we have that x^2 centralises or inverts [a, x] and therefore if $[a, x^3] = 1$, it follows that [a, x, x] = 1, a contradiction. Thus

$$[a, x^4] = 1.$$

Hence

$$[a, x^3] = [a, x^{-1}] = [x, a]^{x^{-1}}.$$

In the notation of 2.2.1, take $b = a^x$ and $y = x^2$. Then we have

$$|[a, x^2]| = 2 \text{ or } [a, x] = [x^2, a] \text{ or } [x^2, a] = [x, a]^{x^{-1}}.$$

The second possibility gives (v). Therefore suppose that

$$[x^2, a] = [x, a]^{x^{-1}}.$$

Then $[x, a]^{x^2}[x, a]^x = [x, a]$. Recalling that

$$[a, x]^{x^2} = [a, x]^{\pm 1},$$

we obtain (iv).

When G is not nilpotent we can describe G' precisely. Thus

2.2.5. Let $G = A\langle x \rangle$ and a be an element of A such that $[a, x^2] \neq 1$. If G is not nilpotent, then $G' = \langle [a, x] \rangle^G$.

Proof. Let $b \in A$. By 2.2.2, either $x^3 \in A$ or $x^4 \in A$. If $x^3 \in A$, a consideration of the rearrangements of the product

$$x^{-1}a(bx)x$$

shows that $[b,x] \in \langle [a,x] \rangle^G$. If $x^4 \in A$, then a similar consideration of

$$x^{-1}ax(bx)$$

gives the same conclusion.

Now we turn our attention to the case when G/A is not necessarily cyclic.

2.2.6. Let $x, y \in G$ and $a \in A$.

(a) If
$$[a, x, y] = 1$$
, then $[a, x, x] = 1$ or $[a, y] = 1$ or $[a, x, x, x] = [a, y, y] = 1$

1. Now suppose that $x^2, y^2 \in A$. Then

(b)
$$[a, x] \in C_G(x) \cup C_G(y) \cup C_G(xy)$$
;

(c)
$$a^2 \in C_G(x) \cup C_G(y) \cup C_G(xy)$$
; and

(d) if
$$[a^2, x] = [a^2, y] = 1$$
, then $[a, x, y] = [a, x, x] = [a, y, y] = 1$.

Proof. (a) Clearly [a, x, y] = 1 implies [a, y, x] = 1. Let

$$b = [a^{-1}, x].$$

Then [b, y] = 1 and $[b, xy] = [b, x]^y = [b, x]$. From 2.1.1 there are 13 possibilities:

- (i) [a, x] = 1; or
- (ii) [a, y] = 1; or
- (iii) $[a, y] = [a^{-1}, x^{-1}]^y = [a, x]^{x^{-1}y} = [a, x]^{x^{-1}} = [a, x]$ and so [a, x, x] = 1; or
 - (iv) $[a, x] = [a^{-1}, x, x]$, i.e. [a, x] = 1; or
 - (v) $[a^{-1}, x, x] = 1$, i.e. [a, x, x] = 1; or
- (vi) $[a^{-1}, x, x] = [y, a]$, i.e. [a, x, x] = [a, y] and so [a, x, x, x] = [a, y, y] = 1;
 - (vii) [b,x] = [y,a] as in (vi); or
- (viii) [a, y] = 1; or
- (ix) [a, x] = [a, y] as in (iii); or
- (x) [a, x] = 1; or
- (xi) $[a^{-1}, x, x] = 1$ as in (v); or
- (xii) [b, x] = [a, x] as in (iv); or finally
- (xiii) $[a^{-1}, x, x] = [a, x][y, a]$, i.e. $[a^{-1}, x, x, x] = [a, x, x]$ and so [a, x, x] = 1. Thus in all cases we obtain the required conclusion.
- (b) Observe now that, by conjugation, x inverts [a, x], y inverts [a, y] and xy inverts [a, xy]. Taking b in 2.1.1 to be a^{-1} here, the only possibilities which do not immediately give our requirements are
 - (iv) $[a,x] = [a^{-1},x]$ and so $1 = [a,x][a,x]^x = [a,x,x]$;
- (vi) $[a^{-1}, x] = [y, a]^x$, i.e. [a, x] = [y, a] which is inverted by x and y and therefore centralised by xy;
 - (vii) $[a^{-1}, xy] = [y, a]^x$, i.e. conjugating by xy,

$$[a, xy] = [a, y]$$

and so [a, x] = 1;

- (viii) $[y, a]^x = [a^{-1}, y]$, i.e. $[a, y]^x = [a, y]$ and therefore $[a, x]^y = [a, x]$;
- (x) $[a, x] = [a^{-1}, y]$ as in (vi);
- (xi) $[a^{-1}, xy] = 1$, i.e. $[a, y][a, x]^y = 1$ and so [a, x] = [a, y] which is centralised by xy;
 - (xii) $[a^{-1}, xy] = [a, x]$ which is centralised by x^2y and therefore by y;
 - (xiii) $[a^{-1}, xy] = [a, x][y, a]$, i.e. $[a^{-1}, x]^y = [a, x]$ and so xy centralises [a, x].

- (c) By (b), $[a,x] \in C_G(x) \cup C_G(y) \cup C_G(xy)$. If [a,x,x] = 1, then $1 = [a,x^2] = [a^2,x]$. If [a,x,y] = 1, then by (a) either [a,x,x] = 1 (whence again $[a^2,x] = 1$) or [a,y,y] = 1 and so similarly $[a^2,y] = 1$. Finally if [a,x,xy] = 1, then again by (a) either [a,x,x] = 1 or [a,xy,xy] = 1, i.e. $[a^2,xy] = 1$.
- (d) From $1 = [a, x^2] = [a, x]^2[a, x, x] = [a^2, x][a, x, x]$, we get [a, x, x] = 1. Similarly [a, y, y] = 1. Taking b in 2.1.1 to be [a, y] here, it follows without difficulty that [a, x, y] = 1.
- **2.2.7.** Suppose that G/A is a non-cyclic elementary abelian 2-group. Then the 2-complement of A is contained in Z(G).

Proof. Let B be the 2-complement and C the 2-component of A. So $A = B \times C$. Choose $x \in G \setminus A$. It suffices to show that [B, x] = 1.

By hypothesis there exists $y \in G \setminus A$ such that

$$\langle xA, yA \rangle = \langle xA \rangle \times \langle yA \rangle.$$

From 2.2.6(c) we have

$$B = B^2 \le C_G(x) \cup C_G(y) \cup C_G(xy)$$

and hence (see [6]) B lies in the centraliser of x, y or xy. Suppose, for a contradiction, that $[B, x] \neq 1$. Then without loss of generality [B, y] = 1. Since $y \notin A$, there is a 2-element $c \in A$ such that $[c, y] \neq 1$. Let $b \in B$ with $[b, x] \neq 1$. Since [b, x] and [c, x] have coprime orders,

$$[b^{-1}c, x] \neq 1.$$

Similarly $[b^{-1}c, x^{-1}y] \neq 1$; and $[b^{-1}c, y] = [c, y] \neq 1$. Taking a in the notation of 2.1.1 to be $b^{-1}c$ here, it follows easily that either [b, x] or $[b^2, x]$ has even order. Thus $[b^2, x] = 1$ and so [b, x] = 1, a contradiction.

- **2.3. Finite** P_4 -groups: Part **2.** In this paragraph we classify the finite, non-nilpotent P_4 -groups. It will transpire that they are abelian-by-cyclic (see 2.3.2). Thus we begin with
- **2.3.1.** Let $G = A\langle x \rangle$ be a finite P_4 -group, where A is a maximal abelian subgroup of G containing G'. Then one of the following holds:
 - (i) $x^2 \in A$; or
 - (ii) G is nilpotent; or
 - (iii) $G' \cong V_4$; or
 - (iv) $G = B\langle a, x \rangle$, where $B \le Z(G)$, $a \in A$, |a| = 5 and $a^x = a^2$.

Proof. Suppose that G is not nilpotent and $x^2 \notin A$. Then there exists $a \in A$ such that a is a p-element, for some prime p, and $[a, x^2] \neq 1$. By 2.2.3

$$A = A_1 \times A_2$$

where A_1 is the *p*-complement of *A* and lies in Z(G) and A_2 is the *p*-component of *A*. Since *G* is not nilpotent, A_2 is not contained in the hypercentre of *G*. Also $C_{A_2}(x^2) < A_2$. Using the fact that a group cannot be the set-theoretic union of 2 proper subgroups, we may assume that *a* does not lie in the hypercentre of *G*. In particular

(3)
$$[a, x, x, x] \neq 1$$
.

By 2.2.2, either $x^3 \in A$ or $x^4 \in A$.

Assume first that $x^3 \in A$. If p = 3, then G/A_1 is a 3-group and hence G is nilpotent, a contradiction. Therefore $p \neq 3$. If $|[a,x]| \neq 2$, then with ax and x for a,b in (1), 2.2, it follows that $[a,x,x^4] = 1$. Since $[a,x,x^3] = 1$, we have [a,x,x] = 1, contradicting (3). Thus |[a,x]| = 2. Then from $[a,x^3] = 1$ we obtain

$$[a, x]^{x^2} = [a, x^2] = [a, x][a, x]^x$$

and hence

$$\langle [a, x] \rangle^G = \langle [a, x], [a, x]^x \rangle \cong V_4.$$

Therefore, by 2.2.5, $G' \cong V_4$.

Now suppose that $x^4 \in A$. Then $p \neq 2$ since G is not nilpotent. Therefore by 2.2.4 and (3)

$$[a, x]^x = [a, x]^{\pm 2}.$$

Since $[a, x^4] = 1$, it follows that $[a, x^2]^{x^2} = [x^2, a]$ and so

$$[a, x]^{x^2} \neq [a, x].$$

Therefore by (1) in 2.2

$$[a, x]^{x^2} = [x, a]$$

and hence $[x,a] = [a,x]^4$ and |[a,x]| = 5. Let c = [a,x]. By 2.2.5, $G' = \langle c \rangle = \langle [c,x] \rangle$. If $b \in A$, then

$$[b, x] = [c^{\alpha}, x],$$

for some α , and so $bc^{-\alpha} \in Z(G)$. Therefore

$$A = (Z(G) \cap A)\langle c \rangle$$

and thus, with $B = Z(G) \cap A$, $G = B\langle c, x \rangle$. Since $c^x = c^2$ or $c^{x^{-1}} = c^2$, we have established (iv) (replacing a by c and x by x^{-1} if necessary).

Now we can establish the nilpotency of the finite P_4 -groups which are not abelian-by-cyclic.

2.3.2. Let G be a finite P_4 -group and A be a maximal abelian subgroup of G containing G'. Suppose that G/A is not cyclic. Then G is nilpotent.

Proof. Suppose, for a contradiction, that G is not nilpotent. Then there exists $x \in G$ such that

$$A\langle x\rangle$$
 is not nilpotent.

If G/A has exponent 2, then G/Z(G) is a 2-group (by 2.2.7), contradicting the fact that G is not nilpotent. Therefore there is an element $y \in G$ such that $y^2 \notin A$. Thus we may assume that $x^2 \notin A$, since $A\langle y \rangle$ and $A\langle xy \rangle$ cannot both be nilpotent.

Let $H = A\langle x \rangle$. By 2.3.1, either $H' \cong V_4$ or $H' \cong C_5$. Thus $G/C_G(H')$ is cyclic. Now let $g \in C_G(H')$. For any $a \in A$, either [a, x, x, x] = 1 or [a, g] = 1, by 2.2.6(a). Therefore $A \subseteq Z_3(H) \cup C_G(g)$. Since H is not nilpotent, $A \nleq Z_3(H)$ and hence $g \in C_G(A) = A$. Thus $C_G(H') \leqq A$ and so G/A is cyclic, a contradiction.

Now we turn our attention to nilpotentfinite P_4 -groups and show (in 2.3.4) that either they have class ≤ 4 or they have an abelian subgroup of index 2. First we have

2.3.3. Let $G = A \times B$ be a finite P_4 -group with A of odd order and B a 2-group. Then either A or B is abelian.

Proof. Since G is metabelian, $G' = A' \times B'$ is abelian; and, by [4], $A' \le Z(G)$. Suppose that A is not abelian and choose $b, x \in A$ such that $[b, x] \ne 1$. We claim that

$$(4) C_B(B') = Z(B).$$

Then since $B' \leq C_B(B')$, it follows that B is abelian as required.

Suppose, for a contradiction, that (4) is false and choose $c \in C_B(B'), y \in B$ such that |[c, y]| = 2. Then

$$[b, y] = [b, c] = [c, x] = 1.$$

https://doi.org/10.4153/CJM-1990-056-4 Published online by Cambridge University Press

Let $C = \langle G', b, c \rangle$ and $a = b^{-1}c$. Clearly C is abelian,

$$[a, x] = [b, x]^{-1}, [a, y] = [c, y]$$

and

$$[a, x^{-1}y] = [c, y][b^{-1}, x^{-1}]^y = [c, y][b, x].$$

Then an easy application of 2.1.2(ii) gives the required contradiction.

This leads to information about finite nilpotent P_4 -groups.

2.3.4. Let G be a finite nilpotent P_4 -group. Then either G has class ≤ 4 or G has an abelian subgroup of index 2.

Proof. By Higman's characterisation of the finite P_4 -groups of odd order [4] and 2.3.3, we may assume that G is a 2-group. Let A be a maximal abelian subgroup of G containing G'.

Consider first the case in which G has an element x with $x^2 \notin A$ and let $H = A\langle x \rangle$. Then $H \triangleleft G$ and |H'| = 4, by 2.1.3. Thus $H' \leq Z_2(G)$ and so $[A,x] \leq Z_2(G)$. Now let $y \in G$. If $y^2 \notin A$, then similarly $[A,y] \leq Z_2(G)$. If $y^2 \in A$, then $(xy)^2 \notin A$ and so $[A,xy] \leq Z_2(G)$, i.e. $[A,y] \leq Z_2(G)$. Hence

$$G' \leq A \leq Z_3(G)$$

and G has class ≤ 4 .

Now it remains to consider the case in which G/A is elementary abelian, but not cyclic. We claim that

(5)
$$[a^4, x] = 1$$
 for all $a \in A, x \in G$.

For, suppose $x \notin A$ and choose $y \in G$ such that

$$\langle x, y \rangle A / A = \langle xA \rangle \times \langle yA \rangle$$

has order 4. From 2.2.6(a) and (b) it follows easily that, for any $a \in A$,

$$[a, x, x, x] = 1$$
 or $[a, y] = 1$ or $[a, xy] = 1$.

Therefore $A \subseteq Z_3(A\langle x \rangle) \cup C_A(y) \cup C_A(xy)$. By the maximality of A, $C_A(y)$ and $C_A(xy)$ are proper subgroups of A. Thus, by [6],

either
$$A \leq Z_3(A\langle x \rangle)$$
 or $a^2 \in C_A(y) \cap C_A(xy)$, all $a \in A$.

In the first case, [A, x, x, x] = 1 and then $[a^4, x] = 1$, for all $a \in A$, since $x^2 \in A$. In the second case, $[a^2, x] = 1$ for all $a \in A$. Therefore (5) is true.

It follows from 2.2.6(d) that $[a^2, g] \in Z(G)$, for all $a \in A$, $g \in G$. Hence, again by the same result, $[a, g] \in Z_2(G)$. Therefore $G' \subseteq A \subseteq Z_3(G)$ and so G has class $\subseteq A$.

So far we have considered only consequences of $G \in P_4$. We end this paragraph with a complete characterisation of the finite P_4 -groups which are not nilpotent.

- **2.3.5.** Let G be a finite group. Then $G \in P_4$ if and only if one of the following holds:
 - (i) G has an abelian subgroup of index 2;
 - (ii) G is nilpotent of class ≤ 4 and $G \in P_4$;
 - (iii) $G' \cong V_4$;
 - (iv) $G = B\langle a, x \rangle$, where $B \le Z(G)$, |a| = 5 and $a^x = a^2$.

Proof. Suppose that $G \in P_4$ and let A be a maximal abelian subgroup of G containing G'. Suppose also that $|G/A| \neq 2$. If G/A is cyclic, then one of (ii), (iii), (iv) holds, by 2.3.1 and 2.3.4. If G/A is not cyclic, then G is nilpotent, by 2.3.2, and of class ≤ 4 , by 2.3.4, i.e. (ii) holds.

Conversely, suppose that (i) holds. Then an easy exercise shows that $G \in P_4$. If (iii) holds, then Higman ([4]) has shown that $G \in P_4$. Finally suppose that (iv) holds. If $x^4 = 1$, then

$$\langle a, x \rangle = \langle a \rangle \rtimes \langle x \rangle$$

with x acting faithfully on $\langle a \rangle$. Embedding $\langle a, x \rangle$ in Σ_5 with a = (12345) and x = (2354), Derek Holt (to whom we are most grateful) has shown, using CAYLEY on the Mathematics Institute computer at Warwick University, that $\langle a, x \rangle \in P_4$. Alternatively this can be established by a long and tedious hand calculation which we omit. Thus $G \in P_4$.

Now suppose that $x^4 \neq 1$ and let $H = \langle x^4 \rangle$. Then $H \leq Z(G)$ and (by the previous case) for any $x_1, x_2, x_3, x_4 \in \langle a, x \rangle$, there exists $\sigma \in \Sigma_4, \sigma \neq 1$, such that

$$x_1 x_2 x_3 x_4 \equiv x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)} \mod H$$
.

We have $x_i = a^{\alpha_i} x^{\beta_i}$ for integers $\alpha_i, \beta_i, 1 \le i \le 4$. Thus there are integers γ, δ such that

$$x_1x_2x_3x_4 = a^{\gamma}x^{\beta}$$
 and $x_{\sigma(1)}x_{\sigma(2)}x_{\sigma(3)}x_{\sigma(4)} = a^{\delta}x^{\beta}$,

where $\beta = \beta_1 + \beta_2 + \beta_3 + \beta_4$. Therefore $a^{\gamma} \equiv a^{\delta} \mod H$ and so $a^{\gamma} = a^{\delta}$. Thus

$$x_1x_2x_3x_4 = x_{\sigma(1)}x_{\sigma(2)}x_{\sigma(3)}x_{\sigma(4)}$$

and $\langle a, x \rangle \in P_4$. Hence $G \in P_4$.

2.4. Arbitrary P_4 -groups. A finitely generated P_4 -group is polycyclic ([3]) and hence residually finite. Then it is not difficult to extend 2.3.5 to infinite groups and to obtain our Theorem, stated in the introduction.

Proof of the Theorem. Let $G \in P_4$ and suppose, for a contradiction, that none of (i)–(iv) holds. Using local arguments it is not difficult to see that we may assume that G is finitely generated and therefore residually finite. Similarly it then follows easily that G has a finite quotient which does not satisfy any of (i)–(iv), contradicting 2.3.5.

For the converse, the argument of 2.3.5 applies.

REFERENCES

- M. Bianchi, R. Brandl, A. Gillio Berta Mauri, On the 4-permutational property, Arch. Math. 48 (1987), 281–285.
- 2. M. Curzio, P. Longobardi, M. Maj, Su di un problema combinatorio di teoria dei gruppi, Atti Acc. Lincei Rend. Sci. Mat. Fis. Nat., 74 (1983), 136–142.
- D. J. S. Robinson, On a permutational property of groups, Arch, Math. 44 (1985), 385–389.
- G. Higman, Rewriting products of group elements, Lectures given in Urbana in 1985 (unpublished).
- P. Longobardi, M. Maj, On groups in which every product of four elements can be reordered, Arch. Math. 49 (1987), 273–276.
- G. Scorza, I gruppi finiti che possono pensarsi come somma di tre loro sottogruppi, Boll. U.M.I. 5 (1926), 216–218.

Dipartimento Di Matematica Ed Applicazioni, Via Mezzocannone 8, 80134 Napoli, Italy

Mathematics Institute University of Warwick, Coventry CV4 7AL, England.