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NON-NILPOTENT GROUPS IN WHICH EVERY 
PRODUCT OF FOUR ELEMENTS CAN BE REORDERED 

M. MAJ AND S. E. STONEHEWER 

1. Introduction. Let G be a group and n(^ 2) an integer. We say that G 
belongs to the class of groups Pn if every product of n elements can be reordered, 
i.e. for all «-tuples (xi,*2, • • • ?•*«)> *i £ G, there exists a non-trivial element a 
in the symmetric group £„ such that 

*ff(l)*<7(2) • • -Xa(ri) — X\X2 ..-Xn. 

Let P denote the union of the classes Pn, n ^ 2. Clearly every finite group 
belongs to P and each class Pn is closed with respect to forming subgroups and 
factor groups. 

Trivially P2 is the class of abelian groups and in [2] P3 was shown to be 
precisely those groups G for which the derived subgroup G' has order ^ 2. 
Also the class P is known to coincide with the class of groups G possessing a 
subgroup N with \G : N\ and N' both finite [3]. The situation with regard to 
P4 seems to be more complicated. Graham Higman [4] considered the problem 
and obtained two striking results. First, a group G with G' = V4 (the 4-group) 
always belongs to P4; and secondly a finite group G of odd order belongs to P4 
if and only if (i) G is abelian or (ii) \G'\ — 3 or (iii) \G'\ — 5 and G modulo its 
centre has order 25. Next it was shown in [1] that if a finite group G belongs 
to P4, then G' is nilpotent. This was improved in [5] where all P4-groups were 
shown to be metabelian. 

The purpose of this work is to take the classification of P4-groups a stage 
further and we shall give a complete description of the non-nilpotent groups in 
P4. A contribution to the nilpotent case by P. Longobardi and the second author 
will appear elsewhere and a third and final contribution by all three authors 
giving the complete classification of P4-groups will combine all the previous 
results. The non-nilpotent case, however, provides a convenient self-contained 
exercise, using ideas and methods peculiar to that case. The main result is: 

THEOREM. A group G belongs to P4 if and only if one of the following holds: 
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(i) G has an abelian subgroup of index 2; 

(ii) G is nilpotent of class ^ 4 and G G P4; 

(iii) G' ^ V4; 

(iv) G = B{a,x)y where B û Z(G), \a\ = 5 and ax = a2. 

Notation is as follows. 

Cn a cyclic group of order n, 

V4 the 4-group, 

£n the symmetric group of degree n, 

G' derived subgroup of G, 

Z(G) centre of G, 

Z,(G) ith term of the upper central series of G, 

CG centraliser in G, 

\g I order of element g, 

[x,y] x~ly~lxy. 

After some technical lemmas, abelian-by-cyclic groups are studied in detail 

and then the finite non-nilpotent P\-groups are classified. Local arguments allow 

us to pass to infinite groups. 

2.1. Some technical preliminaries 

2.1.1. Let G G PA and A be an abelian subgroup of G containing G'. If 

a,b G A and je,y G G, then at least one of the following holds: 

( i ) [ a ,* ] = l; 

(ii)[fl,y] = l; 

(iii) [tf,.x~1.y] = 1; 

(iv) [a,x] = [fc,*]; 

(v)[fe,jc] = l; 

( v i ) [ M l = l>,a] x ; 
(vii) [fc,*y] = [y,a]x; 

(viii) [y,a]* = [b,y]; 

(ix) [a,*] = [afc,y]; 

(x) [a,x\ = [/?,v]; 

(xi) [Z?,ry] = 1; 

(xii) [fe,xy] = [a,x\\ 

(xiii) [&,xy] = [a,x][y,a]. 

Proof If [JC, v] = 1, then the result follows without difficulty by considering 

all the possible rearrangements of the product yaxb. Thus if there are elements 

c,d G A such that [xc,yd] — 1, then, with xc,yd for x,y respectively, we 
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obtain the same conclusion (observing that the commutators in (i)-(xiii) remain 
unchanged). Therefore we may assume that [xc,yd] ^ 1 for all c, d G A, and 
again one easily checks that the only possible rearrangements of yaxb lead to 
one of the listed relations. • 

A special case of this result will be useful. 

2.1.2. Let G e P4 and A be an abelian subgroup of G containing G'. Let 
a, b G A, x,y G G and suppose that [#,*], [a,y] and [a,x~ly] are all different 
from 1 and [b,y] = 1. 

(i) If [b,x] has order 2 and commutes with x, then 

[b, x] = [a, * ] , [a, y] or [a, x]\y, a]. 

(ii) If [a, y] has order 2 and commutes with x, then 

[Z?, x] = 1, [a, * ] , [a, y] or [a, *][a, v]. 

Proof, (i) One checks easily from the hypotheses that the only possibilities 
in 2.1.1 are (iv), (vi), (vii), (xii) and (xiii), giving the result. 

(ii) Again the only possibilities in 2.1.1 are (iv), (v), (vi), (vii), (xi), (xii) and 
(xiii), hence the result. • 

We apply 2.1.2 immediately. 

2.1.3. Let G G P4 be a finite 2-group and A be an abelian subgroup of G 
containing G'. If G — A{x), then one of the following holds: 

(1)[A?*
2] = 1; 

(2) G' ^ v4; 
(3) G' ^ C4 and G' Û Z(G). 

Proof. Suppose that x1 £ CG(A) and choose an element b in (ZiiG) HA)\Z(G) 
of minimal order. Then 

1 - [b\ x] = [b, x2] 

and [b,x] ̂  1. Now let a be an element of A such that [a, x2] ^ 1. We claim 
that 

(i) [a,x2] — [Z?,JC] and 

(ii) if c G A and [c,x2] = 1 with [c,x] ^ 1, then [c,x] = [a,x2]. 
For, taking y — x2 in 2.1.2(i), we have 

[/?, x] — [a, x], [a, x2] or [a, x][x2, a}{= [x, a]*). 
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But if [b,x] = [<2,JC], then [a,x2] = [b,x2] = 1, a contradiction. The third 
possibility coincides with the first and so (i) follows. Then take c and x1 for b 
and y, respectively, in 2.1.2(ii). This is permissible, since [a, x2] has order 2 and 
commutes with JC, by (i). If [c,x] = [fl,Jt] or [a,x][a,x2], then 1 = [c,x2] = 
[a,jc2], a contradiction, and so (ii) holds. 

From (i) we have 

A = (a)CA(x2). 

We distinguish two possibilities: 

Case (a). Suppose that [a2,;c] ^ 1. Then, by (i), 

[a2, x2] = U 

and, by (ii), 

[a2, x] = [a, x2]. 

Therefore [a,jc] G Z(G) and |[tf,x]| = 4. Again by (ii), 

[CA(x2),x}^(\a2,x}) 

and so G' = [A,JC] = ([<Z,JC]), i.e. (3) holds. 

Case (ft). Suppose that [A2,JC] = 1. Then 

[b, x] = [a, x ] = [a, x, x] 

and 

V4^([fl, * ] , [ft, *])<G. 

By (ii), [CA(JC2),JC] ^ ([fl,jt2]) = ( [ M l ) and it follows that G' = ([a,jc], [b,x]), 
i.e. (2) holds. • 

2.2. Finite P4-groups: Part 1. In this paragraph we obtain preliminary results 
for the later description (in 2.3) of finite /Vgroups. 

Throughout, G will be a finite P4-group and A will denote a maximal abelian 
subgroup of G containing G'. 

We shall use the following observation (see [1]) repeatedly. Let a, b be el­
ements of a P4-group and c = [a,b] with c2 ^ 1. Since a~xb~xab can be 
rearranged, it is easy to check that, by conjugation, 

(1) a, b or ab inverts or centralises c. 
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2.2.1. Suppose that G = A(x). Then 

A ^ CG(x4) U CG(JC3) U Z3(G). 

Proof. Let a G A and let 

x\ — x~ ^ X2 = a, X3 = JC, X4 = xa. 

By considering the rearrangements of the product 

it is easy to see that either 

[#, x2] — 1 or [a, JC3] = 1 

or one of the following holds: 
(i) ax2a — xa2x, or 
(ii) ax2a — xax2ax~l, or 
(iii) ax2a — x3a2x~l. 

From (i) we obtain [a, x2] = [a2, x] and hence [«, JC, x] = 1, i.e. a G Z2(G). 
If (ii) holds, we have 

[ax2a, x] = 1 

and so [<2,JC]X = [jc,a]. Then [a,x4] = 1. Finally suppose that (iii) holds. Thus 

- 2 2 - 1 2 - 1 - 2 

x ax a = xa x a 

and hence 

[a, x2] - [a2, x"1] = [x, a2]*' ' . 

By (1) it follows that either |[a7 JC]| ^ 2 or JC2 inverts or centralises [a, JC]. In the 
first case [a2,jc] = 1 and so [a,x2] = 1. If [A,*]* = [x,a], then [a,x4] = 1. If 

[a, x, x2] = 1, 

then 

[a, x2f = [a, x2] = [x, a2] 

and therefore [<22,JC,JC] = 1. Thus 

[a, JC, x]x = [a, JC, JC]-1 = [a, JC, JC] and a G Z3{G). • 
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2.2.2. Let G = A(x). Then JC4 G A or x3 G A or G is nilpotent of class ^ 3. 

P roo / We have Z(G) = CA(x) = CA(x4) D CA(x3) ^ A D Z3(G). By 2.2.1, 

A = CA(x4) U CA(x3) U (A Pi Z3(G)). 

If the result is false, then A is covered by 3 proper subgroups and so A/Z(G) = 

V4 ([6]). Thus [a2,x] = 1, all a G A. Therefore if a G Z3(G), 

[a, x4] = [<2, JC2][«, JC2]* 

2 

= [a, JC, JC][A, JC, x]x 

= [a, x, JC]2 = 1. 

Hence A = CA(x4) U CA(JC3), a contradiction. • 

Now we make further applications of 2.1.1 to yield 

2.2.3. Let G = A(x) and a be a p-element of A (p prime) with [a, x2] ^ 1. 

Then JC centralises the /^-complement of A. 

Proof. Let fr be a//-element of A and put y = JC2. Assume, for a contradiction, 

that [b,x] ^ 1. Then (xi) of 2.1.1 must hold, i.e. [6,JC3] = 1. Taking y in the 

notation of 2.1.1 to be JC~2 here, we must have [a,x3] = 1 and so 

(2) [ab, JC3] = 1. 

Now either [a,jc]2 ^ 1 or [b,x]2 ^ 1 and hence 

[ab,x]2^l. 

With abx and JC replacing a,b respectively in (1), it follows that JC4 must cen­

tralise [ab,x] and therefore, by (2), [ab,x,x] = 1. Thus 

1 = [ab, x3] = [ab, JC]3 = [a, x]3[fr, JC]3 

and so [a, JC]3 = [&, JC]3 = 1, a contradiction. • 

Further relations in the situation of 2.2.3 are contained in 

2.2.4. Suppose that G = A{x) and a is an element of A such that [a, JC2] ^ 1. 

Then one of the following holds: (i) [a,jc,jc,jc] = 1; (ii) |[Û,JC]| = 2; (in) 

\[a,x2]\ = 2; (iv) [a,x]x = [a,xf\ (v) [a,x]x = [a,xT2. 

Proof. Suppose that neither (i) nor (ii) holds. By 2.2.1 we must have 

[a, x4] = 1 or [a,x3] = 1. 
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With ax and x for a, b in (1), we have that x2 centralises or inverts [a,x] and 
therefore if [a,x3] = 1, it follows that [a,x,x] = 1, a contradiction. Thus 

[a,x4] = L 

Hence 

[a, x3] = [a,x~l] = [x,a]x~\ 

In the notation of 2.2.1, take b — ax and y — x1. Then we have 

\[a, x2]\ —2 or [a,x] = [x2, a] or [JC2, a] = [JC, a]* . 

The second possibility gives (v). Therefore suppose that 

[x2,a] = [*, a]x~\ 

Then [*,#]* [x,a]* = [x,a]. Recalling that 

[a, xf2 = [Û, x ] ± 1 , 

we obtain (iv). • 

When G is not nilpotent we can describe G' precisely. Thus 

2.2.5. Let G = A(x) and a be an element of A such that [a,x2] ^ 1. If G is 
not nilpotent, then G1 = ([a,x])G. 

Proof. Let b G A. By 2.2.2, either JC3 G A o r i 4 G A. If x3 G A, a consideration 
of the rearrangements of the product 

x~la(bx)x 

shows that [b,x] G ([a,x])G. If JC4 G A, then a similar consideration of 

x~lax(bx) 

gives the same conclusion. • 

Now we turn our attention to the case when G/A is not necessarily cyclic. 

2.2.6. Let x,y G G and a G A. 
(a) If [<?,x,y] = 1, then [a,x,x] = 1 or [fl,y] = 1 or [a,x,x,x] = [a, v, v] = 

1. Now suppose that JC2, y2 G A. Then 
(b) [a,x] G CG(JC) U CG(y) U CG(xy); 
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(c) a2 e CG(x) U CG(y) U CG(xy); and 
(d) if [a2,x] = [a2,y] = 1, then [a,x,y] = [a,x,x] = [a,y,y] = 1. 

Proof, (a) Clearly [a,x,y] = 1 implies [a,y,x] = 1. Let 

b = [a~\ x]. 

Then [b,y] — 1 and [b,xy] — [b,x]y = [b,x]. From 2.1.1 there are 13 possibil­
ities: 

(i) [a,x] = 1; or 
(ii) [a,y] = 1; or 
(iii) [a,y] — [a_1,jc_1F = [a,x]x y = [a,x]x — [a,x] and so [a,x,x] — 1; 

or 
(iv) [a,x] — [fl_1,x,x], i.e. [fl,x] = 1; or 
(v) [a~{,x,x] = 1, i.e. [a,x,x] = 1; or 
(vi) [<2_1,x,x] = [y,fl], i.e. [a,x,x] = [tf,y] and so [a,x,x,x] = [a,y,y] — 1; 

or 
(vii) [b,x] = [y,^] as in (vi); or 
(viii) [a, y] = 1 ; or 
(ix) [a,x] = [<2,v] as in (iii); or 
(x) [a,x] = 1; or 
(xi) [a - 1 ,*,*] = 1 as in (v); or 
(xii) [Z?,x] = [a,x] as in (iv); or finally 
(xiii) [a_1,jc,jc] = [a,x][y,a], i.e. [Û_1,JC,JC,JC] = [#,x,x] and so [a,x,x] = 1. 

Thus in all cases we obtain the required conclusion. 
(b) Observe now that, by conjugation, x inverts [a,x], y inverts [a, v] and xy 

inverts [a,xy]. Taking b in 2.1.1 to be a~l here, the only possibilities which do 
not immediately give our requirements are 

(iv) [a,x] = [a_1,x] and so 1 = [a,x][a,x]* = [a,x,x]; 
(vi) [a_1,jc] = [y, a]*, i.e. [a,x] = [y,a] which is inverted by x and y and 

therefore centralised by xy; 
(vii) [a~l,xy] = {y,a]x, i.e. conjugating by xy, 

[a, xy] = [a, y] 

and so [a,x] = 1; 
(viii) [y,a]x = [a~l,y], i.e. [a,y]x = [a,y] and therefore [a,x]y = [a,x]\ 
(x) [a,x] = [a_1,y] as in (vi); 
(xi) [a~l,xy] = 1, i.e. [a,y][tf,JcP = 1 and so [a,x] — [a,y] which is 

centralised by xy; 
(xii) [a~l,xy] = [a,x] which is centralised by x2y and therefore by y; 
(xiii) [a_1,xy] = [a,x][y,fl], i.e. [a~l,x]y = [a,x] andsoxy centralises [a,x]. 
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(c) By (b), [a,x] G CG(x) U CG(y) U CG(xy). If [a,x,x] = 1, then 1 = 
[a,x2] — [a2,x]. If [#,x,y] = 1, then by (a) either [a,x,x] = 1 (whence again 
[a2,x] — 1) or [a,y,y] = 1 and so similarly [a2^] — 1. Finally if [a,x,xy] — 1, 
then again by (a) either [a,jc,jt] = 1 or [a^xy^xy] = 1, i.e. [a2,xy] = 1. 

(d) From 1 = [a7x2] = [a^xfla^x^x] = [a2,x][a,x,x], we get [a,x,x] = 1. 
Similarly [a,y,y] — 1. Taking b in 2.1.1 to be [a,y] here, it follows without 
difficulty that [a,x,y] = 1. • 

2.2.7. Suppose that G/A is a non-cyclic elementary abelian 2-group. Then 
the 2-complement of A is contained in Z(G). 

Proof. Let B be the 2-complement and C the 2-component of A. So A = 
B x C. Choose JC € G \ A. It suffices to show that [B,x] = 1. 

By hypothesis there exists y G G \ A such that 

(xA, yA) = (xA) x {yA). 

From 2.2.6(c) we have 

B=B2^ CG(x) U CG(y) U CG(xy) 

and hence (see f6]) B lies in the centraliser of x,y or xy. Suppose, for a contra­
diction, that [B,x] ^ 1. Then without loss of generality [B,y] — 1. Since y £ A, 
there is a 2-element c E A such that [c,_y] ^ 1. Let b £ B with [fr,Jt] ^ 1. Since 
[b,x] and [c,x] have coprime orders, 

[b-lc,x]?l. 

Similarly [b~lc,x~ly] ^ 1; and [b~lc,y] = [c, j ] ^ 1. Taking a in the notation 
of 2.1.1 to be b~xc here, it follows easily that either \b,x\ or \b2,x\ has even 
order. Thus \b2,x\ — 1 and so [b,x] — 1, a contradiction. • 

2.3. Finite P4-groups: Part 2. In this paragraph we classify the finite, non-
nilpotent /Vgroups. It will transpire that they are abelian-by-cyclic (see 2.3.2). 
Thus we begin with 

2.3.1. Let G = A(x) be a finite P4-group, where A is a maximal abelian 
subgroup of G containing G'. Then one of the following holds: 

(i) x2 E A; or 
(ii) G is nilpotent; or 
(iii) G' ^ VA\ or 
(iv) G = B(a,x), where B ^ Z(G), a£A,\a\=5 and a* = a2. 
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Proof. Suppose that G is not nilpotent and x2 ft A. Then there exists a G A 
such that a is a /^-element, for some prime p, and [a,x2] ^ 1. By 2.2.3 

A=A\ xA2 

where A\ is the /^-complement of A and lies in Z(G) and A2 is the /^-component 
of A. Since G is not nilpotent, A2 is not contained in the hypercentre of G. Also 
CA2(X

2) < A2. Using the fact that a group cannot be the set-theoretic union of 2 
proper subgroups, we may assume that a does not lie in the hypercentre of G. 
In particular 

(3) [a, x, x, x]^ 1. 

By 2.2.2, either x3 G A or x4 G A. 
Assume first that JC3 G A. If /? = 3, then G/Ai is a 3-group and hence G is 

nilpotent, a contradiction. Therefore p ^ 3. If |[a,jc]| ^ 2, then with or and x 
for a,/? in (1), 2.2, it follows that [a,x,x4] = 1. Since [a^x^x3] = 1, we have 
[a,jc,jc] = 1, contradicting (3). Thus |[tf,jc]| = 2. Then from [a,x3] = 1 we 
obtain 

2 ~ 

[a, JC]* = [a, x ] = [a,x][<3, x]x 

and hence 

Therefore, by 2.2.5, G' ^ V4. 
Now suppose that x4 G A. Then p ^ 2 since G is not nilpotent. Therefore by 

2.2.4 and (3) 

[a, x f = [a, JC]±2. 

Since [a,x4] = 1, it follows that [a,x2]x = [x2,a] and so 

[a, xf ^ [a, * ] . 

Therefore by (1) in 2.2 

[a, xf2 = [*, a] 

and hence [JC,#] = [a,jc]4 and |[a,jc]| = 5. Let c = [a,x]. By 2.2.5, G' — (c) = 
([C,JC]). If b eA, then 

[b, x] = [ca, x], 
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for some a, and so be a G Z(G). Therefore 

A = (Z(G)DA)(c> 

and thus, with B = Z(G) f lA ,G = B(c,x). Since c* = c2 or ^ ' = c2, we 
have established (iv) (replacing a by c and x by Jt_1 if necessary). • 

Now we can establish the nilpotency of the finite P4-groups which are not 
abelian-by-cyclic. 

2.3.2. Let G be a finite P4-group and A be a maximal abelian subgroup of G 
containing G'. Suppose that G/A is not cyclic. Then G is nilpotent. 

Proof. Suppose, for a contradiction, that G is not nilpotent. Then there exists 
x £ G such that 

A(x) is not nilpotent. 

If G/A has exponent 2, then G/Z(G) is a 2-group (by 2.2.7), contradicting the 
fact that G is not nilpotent. Therefore there is an element y G G such that 
y2 £ A. Thus we may assume that x2 £ A, since A(y) and A(xy) cannot both be 
nilpotent. 

Let H = A(JC). By 2.3.1, either H' = V4 or H"^ C5. Thus G/CG(Hf) is cyclic. 
Now let g G CG(H'). For any a G A, either [«,JC,JC,JC] = 1 or [fl,g] = 1, by 
2.2.6(a). Therefore A C Z3(H) U CG(g). Since H is not nilpotent, A $ Z3(#) and 
hence g G CG(A) = A. Thus CG(H') ^ A and so G/A is cyclic, a contradiction. 

• 

Now we turn our attention to nilpotentfinite P4-groups and show (in 2.3.4) 
that either they have class ^ 4 or they have an abelian subgroup of index 2. 

First we have 

2.3.3. Let G = A x B be a finite P4 -group with A of odd order and B a 
2-group. Then either A or B is abelian. 

Proof. Since G is metabelian, G' =A'xB' is abelian; and, by [4], A' ^ Z(G). 
Suppose that A is not abelian and choose b,x £A such that [b,x] ^ 1. We claim 
that 

(4) CB(B') = Z(B). 

Then since B' ^ CB(B'), it follows that 5 is abelian as required. 
Suppose, for a contradiction, that (4) is false and choose c G Cfi(B7),v G 5 

such that |[c,y]| = 2. Then 

[*,>>] = [*, c] = [c,x] = L 
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Let C — (G',b,c) and a — b {c. Clearly C is abelian, 

[a, x] = [b, x]~\ [a, y] = [c, y] 

and 

[a, x'{y] = [c, y][b~\ x~l]y = [c, y][b, x]. 

Then an easy application of 2.1.2(H) gives the required contradiction. • 

This leads to information about finite nilpotent /Vgroups. 

2.3.4. Let G be a finite nilpotent P4-group. Then either G has class ^ 4 or 
G has an abelian subgroup of index 2. 

Proof. By Higman's characterisation of the finite /Vgroups of odd order [4] 
and 2.3.3, we may assume that G is a 2-group. Let A be a maximal abelian 
subgroup of G containing G'. 

Consider first the case in which G has an element x with x2 £ A and let 
H = A(x). Then H < G and \H'\ = 4, by 2.1.3. Thus H' ^ Z2(G) and so 
[A,JC] ^ Z2(G). Now let y G G. If y2 <£ A, then similarly [A,y] ^ Z2(G). If 
y2 G A, then (xy)2 £ A and so [A,xy] ^ Z2(G\ i.e. [A,y] ^ Z2(G). Hence 

G' ^ A ^ Z3(G) 

and G has class ^ 4. 
Now it remains to consider the case in which G/A is elementary abelian, but 

not cyclic. We claim that 

(5) [a4, x] = 1 for all a G A, x G G. 

For, suppose x 0 A and choose >'ÇG such that 

<*, y)A/A = (xA) x (yA) 

has order 4. From 2.2.6(a) and (b) it follows easily that, for any a G A, 

[a, JC, JC, JC] = 1 or [a, _y] = 1 or [a, xy] = 1. 

Therefore A C Z3(A(x)) U CA(y) U Q(xy). By the maximality of A, CA(y) 
and C^ixy) are proper subgroups of A. Thus, by [6], 

either A ^ Z3(A(JC)) or a2 G CA(y) H CA(.ry), all a G A. 
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In the first case, [A,x,x,x] = 1 and then [a4,x] — 1, for all a G A, since x2 G A. 
In the second case, [fl2,x] = 1 for all a G A. Therefore (5) is true. 

It follows from 2.2.6(d) that [a2,g] G Z(G), for all a G A, g G G. Hence, 
again by the same result, [a,g] G Z2(G). Therefore G' ^ A ^ Z3(G) and so G 
has class ^ 4 . • 

So far we have considered only consequences of G G P4. We end this para­
graph with a complete characterisation of the finite P4-groups which are not 
nilpotent. 

2.3.5. Let G be a finite group. Then G G P4 if and only if one of the following 
holds: 

(i) G has an abelian subgroup of index 2; 
(ii) G is nilpotent of class ^ 4 and G G P4; 

(iii) G' ^ V4; 
(iv) G = B(a,x), where 5 ^ Z{G\ \a\ = 5 and a* - a2 

Proof. Suppose that G E P4 and let A be a maximal abelian subgroup of G 
containing G'. Suppose also that |G/A| ̂  2. If G/A is cyclic, then one of (ii), 
(iii), (iv) holds, by 2.3.1 and 2.3.4. If G/A is not cyclic, then G is nilpotent, by 
2.3.2, and of class ^ 4, by 2.3.4, i.e. (ii) holds. 

Conversely, suppose that (i) holds. Then an easy exercise shows that G G P4. 
If (iii) holds, then Higman ([4]) has shown that G G P4. Finally suppose that 
(iv) holds. If x4 = 1, then 

(a, x) = (a) x (x) 

with x acting faithfully on (A). Embedding (a, x) in Z5 with a = (12345) 
and x — (2354), Derek Holt (to whom we are most grateful) has shown, using 
CAYLEY on the Mathematics Institute computer at Warwick University, that 
(a,x) G P4. Alternatively this can be established by a long and tedious hand 
calculation which we omit. Thus G G P4. 

Now suppose that x4 ^ 1 and let H = (x4). Then H ^ Z(G) and (by the 
previous case) for any x\,X2,X3,*4 G (a,x), there exists a G £4, a ^ 1, such that 

X1X2X3X4 = ^(1)^(2)^(3)^(4) m o d / / . 

We have xi — aaix^ for integers «/,/?/, 1 ^ 1 ̂  4. Thus there are integers 7,5 
such that 

X1X2X3X4 = a7** and 
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where fi — fi\ + fii + ft + fi A- Therefore a1 = ah mod H and so a1 = aè. Thus 

X 1^2X3X4 = Xa(\)Xa(2)Xa(3)Xa(4) 

and (a,jc) G P4. Hence G G P4. • 

2.4. Arbitrary /Vgroups. A finitely generated /Vgroup is polycyclic ([3]) 
and hence residually finite. Then it is not difficult to extend 2.3.5 to infinite 
groups and to obtain our Theorem, stated in the introduction. 

Proof of the Theorem. Let G G P4 and suppose, for a contradiction, that 
none of (i)-(iv) holds. Using local arguments it is not difficult to see that we 
may assume that G is finitely generated and therefore residually finite. Similarly 
it then follows easily that G has a finite quotient which does not satisfy any of 
(i)-(iv), contradicting 2.3.5. 

For the converse, the argument of 2.3.5 applies. • 
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