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ON HOMOGENOUS MINIMAL INVOLUTIVE VARIETIES

L. C. O. ALMEIDA and S. C. COUTINHO

Abstract

Let S(2n, k) be the variety of homogeneous polynomials of degree
k in 2n variables. The authors of this paper give a computer-assisted
proof that there is an analytic open set � of S(4, 3) such that the
surface F = 0 is a minimal homogeneous involutive variety of C4

for all F ∈ �. As part of the proof, they give an explicit example of
a polynomial with rational coefficients that belongs to �.

1. Introduction

The study of the homogeneous involutive varieties of C2n began in 1988 with the work of
J. Bernstein and V. Lunts [3]. Their interest in these varieties was prompted by the fact that
they appear naturally as characteristic varieties of modules over the Weyl algebra. This is the
(noncommutative) complex algebra An generated by the coordinate functions x1, . . . , xn
and the differential operators ∂/∂x1, . . . , ∂/∂xn.

The word ‘involutive’ here refers to the behaviour of these varieties with respect to
the standard symplectic structure of C2n given by the 2-form ω = ∑n

i=1 dxi+n ∧ dxi .
This form defines a Poisson bracket in the polynomial ring C[x1, . . . , x2n]. First, to a
polynomialf ∈ C[x1, . . . , x2n], we associate the hamiltonian vector field hf by the formula
ω(·, hf ) = df . The Poisson bracket is now defined by {f, g} = ω(hf , hg). An algebraic
variety X ⊆ C2n is involutive if its ideal I (X) is closed under the Poisson bracket; that is,
if {I (X), I (X)} ⊆ I (X). See [5, Chapter 1] for more details.

A celebrated theorem in the theory of D-modules states that the characteristic variety
of a finitely generated An-module is always involutive. Moreover, if we endow An with the
filtration obtained by giving degree 1 to both the xi and the ∂/∂xi , then the characteristic
variety of an An-module computed with respect to this filtration will be a homogeneous
subvariety of C2n, in the sense that its ideal is homogeneous with respect to the usual grading
of the polynomial ring.

In their work in [3], Bernstein and Lunts were led to consider homogeneous involutive
varieties of C2n that are minimal in the sense that they do not contain a proper homo-
geneous involutive subvariety. They showed that (apart from an extra, mild hypothesis) if
a finitely generated An-module has such a minimal homogeneous involutive variety for its
characteristic variety, then it must be simple.

Since an involutive variety must have dimension greater than or equal to n, all irreducible
homogeneous involutive varieties of dimension n must be minimal. The main result of [3]
is the following theorem.

The research of the first author was supported by a PIBIC/CNPq Scholarship. The research of the second author
was partially supported by grants from CNPq and PRONEX (Commutative algebra and algebraic geometry).
Received 8 December 2003, revised 18 July 2005; published 23 December 2005.
2000 Mathematics Subject Classification 37F75, 34M45 (primary), 53D05, 13P10 (secondary).
© 2005, L. C. O. Almeida and S. C. Coutinho

LMS J. Comput. Math. 8 (2005) 301–315https://doi.org/10.1112/S1461157000001005 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/8
https://doi.org/10.1112/S1461157000001005


On homogenous minimal involutive varieties

Theorem 1.1. If F ∈ C[x1, x2, x3, x4] is a homogeneous generic polynomial of degree
k � 4, then the hypersurface Z(F ) is a minimal involutive homogeneous variety of C4.

We must explain what we mean by ‘a generic polynomial’ in this context. First of all,
we may identify the space S(2n, k) of all homogeneous polynomials in 2n variables and
degree k with the affine space of dimension

(2n+k
k

)
. Then, ‘general’ means that the set

of polynomials F for which Z(F ) is not a minimal involutive homogeneous variety is
contained in a countable union of hypersurfaces of S(2n, k).

This result was later generalized by Lunts [15] to all n � 2 and k � 4, and by T. McCune
[16] to k = 3 and n = 2. It should be pointed out that although these results imply that
‘most’ polynomials of degree k � 3 give rise to minimal involutive hypersurfaces in C4,
the proofs given in [3], [15] and [16] do not allow one to write down any explicit examples
of such polynomials — say, one with rational coefficients, with which one might try a few
computations.

In order to prove Theorem 1.1, Bernstein and Lunts look at the direction field induced
on the complex projective space P3 by the hamiltonian vector field hF of C4. This places
the problem in the framework of the theory of holomorphic foliations, and allows one to
use all the machinery that has been developed in this field. Indeed, similar problems have
been studied for foliations over projective space for many years, notably by Jouanolou, Lins
Neto and Soares [11, 13, 14, 18].

Our aim in this paper is twofold. First, we use methods from symbolic and numerical
computation to obtain an example of a polynomial of degree 3 such that Z(F ) is a minimal
involutive homogeneous subvariety of C4. Then we use this example to prove the following
theorem.

Theorem 1.2. There exists an open analytic dense subset � of P(S(4, 3)) such that the
hypersurface Z(F ) is minimal involutive homogeneous for every F ∈ �.

We prove the theorem using the method developed by Lins Neto in [13], together with
an index theorem for singular foliations on surfaces proved by Suwa [19, Theorem 2.1].
The same strategy can also be applied to polynomials of degree 4, the only constraint being
the time taken by the computations. However, in order to apply it to polynomials of degree
higher than 4, one would have to generalise Proposition 3.7.

The paper is divided into six sections. Section 2 contains a summary of some of the
basic results on singular foliations that we require. Section 3 is devoted to the strategy used
in the algorithm that checks whether a given polynomial determines a minimal involutive
homogeneous hypersurface of C4. The algorithm itself is described in Section 4, while
details of its implementation and application can be found in Section 5. The proof of
Theorem 1.2 is the subject of Section 6.

2. Holomorphic foliations

LetX be a smooth complex algebraic variety of dimensionn.A one-dimensional foliation
over X is a map θ : �1

X −→ L from the sheaf of Kähler differentials to some line bundle
L over X. From now on, we will refer to such a map simply as a foliation of X.

A singularity of θ is a point p ∈ X at which θ is not surjective. The set of all singular
points of θ is an algebraic subvariety of X denoted by Sing(θ). From now on, we assume
that all the foliations that we consider in this paper have a finite set of singular points. We say
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On homogenous minimal involutive varieties

that an algebraic subvariety Y of X is invariant under θ if there exists a map �1
Y −→ L|Y

such that the following diagram is commutative.

�1
X|Y

��

θ |Y �� L|Y

�1
Y

��

Given p ∈ X, there exists a neighbourhood U of p with coordinates x1, . . . , xn such
that θ is represented on U by a vector field

θU =
n∑
i=1

gi ∂/∂xi,

where the gi are regular functions on U . Note that p is a singular point of θ if and only
if θU (p) = 0. If p ∈ Sing(θ) ∩ U , we write Jp(θ) for the 1-jet of θU at p. The 1-jet is
independent of the choice of local coordinates, and it is equal to the jacobian matrix of the
map U −→ Cn which sends q ∈ U to the vector (g1(q), . . . , gn(q)). The singularity p is
said to be nondegenerate if det(Jp(θ)) �= 0. The foliation θ is nondegenerate if all its singular
points are nondenegerate. The characteristic exponents of θ at a nondegenerate singularity
p are the ratios λ/λ′, where λ and λ′ are eigenvalues of Jp(θ). We say that θ is of Poincaré
type if all its singularities are nondegenerate and none of its characteristic exponents is
a real number. We require this hypothesis in order to use the following consequence of
[14, Proposition 2.5, p. 656].

Proposition 2.1. Let θ be a nondegenerate foliation of Poincaré type, and assume that C
is an algebraic curve invariant under θ . If C is singular at some p ∈ Sing(θ), then it has
at most n smooth analytic branches through p.

From now on we assume that X has dimension 2. The key result that we use in this
paper is a theorem of Suwa’s [19, Theorem 2.1]. In order to state it, we must define the
index indp(θ, C) of [19, p. 2991], where C ⊂ X is an algebraic curve invariant under θ
and p ∈ Sing(θ) ∩ C. However, instead of giving the definition in full generality, we will
do it only for nondegenerate foliations of Poincaré type. If θ is such a foliation, then it
follows from Poincaré’s theorem [1, Chapter 5, §24, p. 187] that the germ of vector field θp
is biholomorphically equivalent to λx ∂/∂x + λ′y ∂/∂y, where λ and λ′ are the (nonzero)
eigenvalues of Jp(θ) at p. Moreover, the same hypotheses, together with Proposition 2.1,
imply that the holomorphic germ of C at p is given in the local coordinate system at p by
one of the following three equations: x = 0, y = 0, or xy = 0. Thus, by [19, Example 1.6,
p. 2992], we find that

indp(θ, C) =


λ′/λ if the germ is given by x = 0;
λ/λ′ if the germ is given by y = 0;
(λ′ + λ)2/λλ′ if the germ is given by xy = 0.

Define

S(C, θ) =
∑

p∈Sing(θ)∩C
indp(θ, C).
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Note that if C is singular at a nondegenerate singularity p of θ , then the formula above
gives

indp(θ, C) = λ′

λ
+ λ

λ′ + 2.

Therefore, if θ is a nondegenerate foliation of Poincaré type and C is an invariant curve
with s singular points, then S(C, θ) − 2s is a sum of characteristic exponents. Applying
[19, Theorem 2.1] in this situation, we obtain the following result.

Theorem 2.2. Let S be a smooth complex algebraic surface, and let θ be a nondegenerate
foliation of Poincaré type on S. If C is a reduced and irreducible algebraic curve of S
invariant under θ , and C ∩ Sing(θ) �= ∅, then C2 − 2s is a sum of characteristic exponents
of θ , where s is the number of singularities of C.

Let m � 1 be an integer, and let Pm be the complex projective space of dimension m,
with homogeneous coordinates x0, . . . , xm. We denote by Uj the open set of Pm defined by
xj �= 0. Given a homogeneous affine variety Y of Cm+1, we write Y for the projectivization
of Y in Pm. In other words, Y is the cone over Y .

It follows from the Euler exact sequence that a map θ : �1
Pm −→ O(k − 2) is induced

by the homogeneous vector field of Cm+1 given by G0 ∂/∂x0 + · · · + Gm ∂/∂xm, where
G0, . . . ,Gm are homogeneous polynomials of degree k − 1 in the variables x0, . . . , xm. It
is easy to see that Sing(θ) is the projective variety cut out by the minors of the matrix[

x0 · · · xm
G0 · · · Gm

]
. (2.1)

On the other hand, if Y is the projective subvariety of Pm determined by the homogeneous
radical ideal I , then Y is invariant under θ if and only if

G0 ∂H/∂x0 + . . .+Gm ∂H/∂xm

belongs to I for every H ∈ I .
A foliation of Pm determines (and is determined by) a vector field θj of Uj . This vector

field is obtained by dehomogenizing θ with respect to xj . It corresponds to the projection
of (θ −GjE)|xj=1 onto xj = 0, where E is the Euler vector field. Identifying Uj with Cm

in the usual way, we find that

θj =
∑
i �=j
(Gi −Gjxi)|xj=1 ∂/∂xi .

It is easy to see that p ∈ Uj is a singular point of θ if and only if θj (p) = 0.
Suppose now that m = 2n− 1. We say that the foliation θ is hamiltonian if there exists

a homogeneous polynomial F of degree k in x1, . . . , x2n such that

Gi =
{
∂F/∂xi+n if 0 � i � n;
−∂F/∂xi−n if n+ 1 � i � 2n.

We write hF for this homogeneous vector field.
This foliation is closely related to the symplectic geometry of C2n, as explained in the

introduction. Recall that an algebraic variety Y of C2n is involutive if its ideal I(Y ) is closed
with respect to the Poisson bracket. In other words, {F,G} ∈ I(Y ), for all F,G ∈ I(X). In
particular, if Y is contained in the homogeneous hypersurface Z(F ), then

hF (G) = {F,G} ∈ I(Y ) for all G ∈ I(Y ).
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Therefore, Y is a subvariety of P2n−1 invariant under the foliation of P2n−1 induced by the
homogeneous vector field hF . The following elementary property of the involutive varieties
is used in Section 3.

Proposition 2.3. If Y is an involutive variety of C2n, then dim Y � n.

3. The strategy

In this section we discuss the strategy to be used in proving that a given homogeneous
hypersurface of C4 is a minimal homogeneous involutive variety. We enumerate, along
the way, the various hypotheses that are required for the strategy to work. We assume that
once a hypothesis has been stated, it will be in force from that point onwards. Of course,
the resulting algorithm will have to check each one of these hypotheses before we can be
confident that it works correctly.

Let F be a homogeneous irreducible polynomial of degree k � 3 in the variables
x1, . . . , x4, and let X = Z(F ) in C4. Suppose that Y is an involutive homogeneous sub-
variety of C4 contained in X. Let S = X and C = Y . It follows from Proposition 2.3 that
dimC = 1. From now on, the following hypothesis will be in force.

Hypothesis 3.1. S is a smooth surface.

Thus C is a curve on S invariant under the foliation θF induced by hF over S. The
following lemma will be used often, without further comment.

Lemma 3.2. Let F be a homogeneous polynomial of degree k � 2. Assume that S =
Z(F ) ⊂ P3 is a smooth complex algebraic surface. If C ⊂ S is a reduced and irreducible
algebraic curve invariant under θF , then C ∩ Sing(θF ) �= ∅.

Proof. Denoting by hF both the hamiltonian vector field of C4 and the foliation that it
induces on P3, we see that θF = (hF )|S . In particular, since C is invariant under θF , it is
also invariant under hF . But hF is a foliation of P3, so it cannot have compact leaves, by [11,
Proposition 4.2, p. 130]. Therefore, C ∩ Sing(hF ) �= ∅. However, by [3, Lemma 2, p. 228],
we know that Sing(hF ) ⊂ S. Hence, C ∩ Sing(θF ) �= ∅, which proves the lemma.

It follows from Lemma 3.2 that we can apply Theorem 2.2 to θF and C. Hence, there is
a sum of characteristic exponents of θF that is an integer. Therefore, if we could show that
there are no integral sums of characteristic exponents of θF , then we would conclude that
X does not contain any involutive subvarieties. However, the sum of all the characteristic
exponents of θF is always integral. This follows from a famous theorem of Baum and
Bott [2, Theorem 1, p. 280]. Let λp and λ′

p be the eigenvalues of Jp(θF ) at a singularity
p ∈ Sing(θF ). Denote by S(θF ) the sum of (λp + λ′

p)
2/λpλ

′
p, for all p ∈ Sing(θF ). In

order to apply the Baum–Bott theorem more easily, we make our second hypothesis.

Hypothesis 3.3. The foliation θF induced by hF on S must be nondegenerate and of
Poincaré type.

Theorem 3.4. Let F be a homogeneous polynomial of degree k � 2. Assume that S =
Z(F ) ⊂ P3 is a smooth complex algebraic surface, and that θF is a nondegenerate foliation
of Poincaré type of S. Then S(θF ) = 4k.
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Proof. It follows from [2, Theorem 1, p. 280] that

S(θF ) =
∫
S

c1(�S/O(2 − k))2.

But

c1(�S) = −c1

( 2∧
�S

)
= −c1(O(k − 4)).

Therefore,

c1(�S/O(2 − k)) = c1(�S)− c1(O(2 − k)) = 2h,

where h is the hyperplane section of S. Since h2 = k, it follows that∫
S

c1(�S ⊗ O(k − 2))2 = 4k,

as required.

Our next result is also a consequence of the Baum–Bott theorem.

Proposition 3.5. If θF is nondegenerate, then it has

m(k) = (k − 1)3 + (k − 1)2 + (k − 1)+ 1

singular points (counted with multiplicity).

Proof. The vector field hF induces a foliation of degree k − 1 over P3. By [14, Remark
4.1, p. 667], this foliation hasm(k) singular points. However, by [3, Lemma 2] each one of
these singular points belongs to S. Therefore, θF has m(k) singular points.

Combining the last two results, we have the following corollary.

Corollary 3.6. The sum of all the characteristic exponents of θF over all its singular
points is equal to −2k2(k − 2).

Proof. Since

(λp + λ′
p)

2

λpλ′
p

= λp

λ′
p

+ λ′
p

λp
+ 2,

it follows that the sum of all the characteristic exponents over all the singular points of θF
is equal to

S(θF )− 2m(k) = −2k2(k − 2).

This is enough to show that if a curve is invariant under θF , then it cannot be singular at
all the singularities of θF .

Proposition 3.7. Let k = 3 or k = 4, and let C be a curve of S ⊂ P3 that is invariant
under θF . Then Sing(C) � Sing(θF ).

Proof. If Sing(C) = Sing(θF ), then S(C, θF ) = S(θF ), and we show that for k = 3 and
k = 4, this leads to a contradiction.

It follows from the genus formula [4, I.15, p. 8] that C2 = 2pa + (4 − k)d − 2, where
pa is the arithmetic genus and d is the degree of C. However, by Proposition 3.5, θF has
m(k) = (k − 1)3 + (k − 1)2 + (k − 1) + 1 singularities as a foliation of S. Moreover,
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by Proposition 2.1, C must have a node at every one of these singularities. Therefore, by
[10, Exercise 1.8, p. 298],

pa = g + 2m(k),

where g is the genus of the normalization of C. Hence

C2 = 2g + 4m(k)+ (4 − k)d − 2.

But we are assuming that S(C, θ) = S(θ). Thus, by Theorems 2.2 and 3.4,

C2 = S(C, θ) = S(θ) = 4k.

It then follows that

2g + (4 − k)d = 4k − 4m(k)+ 2 = −4k3 + 8k2 − 4k + 2.

The right-hand side of this equation is negative for all k � 3. Since the left-hand side
is positive for k = 3 and k = 4, we obtain a contradiction in these two cases, and the
proposition is proved.

4. The algorithm

In this section we give a step-by-step description of the algorithm whose strategy was
discussed in Section 3. We explain what each step does, and what kind of computation has
to be performed in order to achieve it. The significance of Step 4 is discussed at the end of
this section.

Much of the work done by the algorithm is aimed at checking Hypotheses 3.1 (Step 1) and
3.3 (Steps 5 and 7). Let F be a homogeneous polynomial on x1, x2, x3 and x4 with rational
coefficients. Throughout this section we denote by hF both the hamiltonian vector field
defined byF , and the foliation induced by hF on P3, while θF is the foliation induced by the
vector field hF on the surfaceF = 0. We also writem(k) = (k−1)3+(k−1)2 +(k−1)+1.

Input: a homogeneous polynomial F ∈ Q[x1, x2, x3, x4], of degree k � 3.

Output: an error message, or

‘The hypersurface defined by F

is minimal involutive homogeneous .’

Step 1 checks that Z(F ) is smooth.
Compute the radical of the ideal generated by F and its partial derivatives. If it is not
equal to (x1, x2, x3, x4), print

‘The projective surface is not smooth. ’

and stop.

Step 2 checks that all singularities of hF belong to U4.
Compute the radical of the ideal generated by x4 and the minors of the matrix[

x1 x2 x3 x4
∂F/∂x3 ∂F/∂x4 −∂F/∂x1 −∂F/∂x2

]
.

If it is not equal to (x1, x2, x3, x4), print

‘There are singularities at infinity. ’

and stop.
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Step 3 finds a vector field that determines the foliation hF in U4 ∼= C3.
We use x1, x2, x3 to denote the coordinates at U4. Compute

H = (hF + ∂F/∂x2E)|x4=1,

whereE = ∑4
i=1 xi ∂/∂xi is the Euler vector field. Leth1,h2 andh3 be the coordinate

entries of H .

Step 4 checks that the foliation has m(k) distinct singularities.
Compute a Gröbner basis {qi} for the ideal (h1, h2, h3)∩Q[xi], using an elimination
order. If one of the qi is reducible, print

‘The singularities may not be distinct. ’

and stop.

Step 5 checks if there is a degenerate singularity.
Compute a reduced Gröbner basis for the ideal generated by h1, h2, h3 and the deter-
minant of the jacobian matrix J (H) of H = (h1, h2, h3). If it is not {1}, print

‘There are degenerate singularities. ’

and stop.

Step 6 computes the polynomial of characteristic exponents of the foliation defined by θF .
Denote by M(λ) the ideal generated by the 3 × 3 minors of the 4 × 3 matrix[

J (H)− λI

∇F
]
.

Let I be the ideal defined by h1, h2, h3, λt−λ′,M(λ) andM(λ′). Compute a Gröbner
basis G of I with respect to the lexicographic order with

λ′ > λ > x1 > x2 > x3 > t,

using the FGLM algorithm [7] . Since I is zero-dimensional, it must contain a
polynomial in the variable t . Moreover, this polynomial can be written in the form
(t − 1)p(t) because the zero set of I will always admit solutions with λ = λ′. If p(t)
is reducible, print

‘The polynomial of characteristic exponents is reducible. ’

and stop.

Step 7 checks whether the foliation θF is of Poincaré type.
Apply Sturm’s theorem [6, p. 108] to p(t). If p(t) has real roots, print

‘The foliation is not of Poincaré type. ’

and stop.

Step 8 checks that the polynomial of characteristic exponents has maximum degree.
If deg(p(t)) < 2m(k), print

‘There are repeated characteristic exponents. ’

and stop.
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Step 9 computes the characteristic exponents.
Compute approximations of the roots of p(t) with a sufficiently small error.

Step 10 checks if there is a sum of characteristic exponents that is an integer.
Check if any sum of 2m(k)− 1, or fewer, of these roots is an integer. If there is a sum
which is an integer, print

‘There are integral sums of characteristic exponents. ’

and stop; otherwise, print

‘The hypersurface defined by F

is minimal involutive homogeneous. ’

and stop.

We must still discuss the significance of Step 4, especially in its relation to Step 10. The
purpose of Step 10 is to show that no sum of indices indp(θF ), with p ranging in some
proper subset of Sing(θF ), is integral. However, what has actually been implemented is a
test to determine if there exists a sum of r distinct characteristic exponents that is integral,
for some r < 2m(k). Of course, for this strategy to work, them(k) singularities of θF must
be distinct, and different singularities must have different characteristic exponents. This is
where Step 4 comes to our aid.

First of all, in this step we are checking that a certain ideal is radical. This is done with
the help of the following result of Seidenberg [12, Proposition 3.7.15, p. 250].

Theorem 4.1. Let J be a zero-dimensional radical ideal of K[x1, . . . , xn], where K ⊂ C

is a field. If, for every 1 � i � n, there exists a nonzero polynomial gi ∈ J ∩ K[xi] such
that gcd(gi, dgi/dxi) = 1, then J is a radical ideal.

Now it follows from Step 2 that the number of singularities of θF (counted with
multiplicity) is equal to the dimension of

Q[x1, x2, x3]
(h1, h2, h3)

as a vector space over Q. Thus, if (h1, h2, h3) is radical, then all the singularities must be
distinct. Therefore, if θF passes the test of Step 4, then we can be certain that it has m(k)
distinct singularities.

We must now show that the last coordinate of any two distinct points of the set

W = {
(p, c) ∈ Cn+1 : c is a characteristic exponent of θF at p ∈ Sing(θF )

}
are distinct. Let I be the ideal defined at Step 6, and denote by Ĩ the ideal generated by I
and the polynomial s(t − 1)− 1 in Q[x1, x2, x3, x4, λ, λ

′, t, s]. Let

J = Ĩ ∩ Q[x1, x2, x3, x4, t].
Then W = Z(J ). We show the required result using the following lemma. For a proof, see
[12, Theorem 3.7.25, p. 257].
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Lemma 4.2 (Shape lemma). Let I be a zero-dimensional radical ideal of the polynomial
ringK[x1, . . . , xn], whereK ⊂ C is a field. Suppose that the dimension ofK[x1, . . . , xn]/I
as a vector space over K is equal to the degree of the monic generator gn of K[xn] ∩ I .
Then the following statements hold.

1. The reduced Gröbner basis of I with respect to the lexicographical order is of the
form

{x1 − g1, . . . , xn−1 − gn−1, gn}, g1, . . . , gn−1 ∈ K[xn].
2. The polynomial gn has d = deg gn distinct roots α1, . . . , αd in C, and

Z(I ) = {(g1(αi), . . . , gn−1(αi), αi) : 1 � i � d}.
In particular, the last coordinates of any two distinct points of Z(I ) are distinct.

We have already checked (in Steps 4 and 8) that J is a zero-dimensional ideal and that
the monic generator of Q[t] ∩ J has the correct dimension. Thus, we need only to show
that J is radical, and the required result will hold. However,

(gi) = I ∩ Q[xi] ⊆ Ĩ ∩ Q[xi] = J ∩ Q[xi],
for 1 � i � 3. But we have already shown in Step 4 that gi is irreducible over Q. Therefore,
the ideal (gi) of Q[xi] is maximal. Hence, J ∩ Q[xi] = (gi) is a prime ideal. Moreover,
since

(p(t)) ⊆ I ∩ Q[t] ⊆ Ĩ ∩ Q[t] = J ∩ Q[t]
and p(t) is irreducible by Step 6, it follows that J ∩Q[t] is a prime ideal of Q[t]. Therefore,
by Seidenberg’s lemma, J is a radical ideal of the polynomial ring Q[x1, x2, x3, t].

5. Implementation and results

The algorithm described in the previous section consists of ten steps. The first eight are
done symbolically, while the last two steps perform numerical computations in floating-
point arithmetic. We implemented the symbolic steps using the computer algebra system
Singular (Version 2-0-3) [8]. We also used the numerical library available in Singular
to compute the characteristic exponents. However, the Singular program that we wrote to
check whether the various sums of characteristic exponents were integers proved to be too
slow. This led us to implement this part of the algorithm directly in C. Thus we have split
the algorithm of the previous section into three files (see Appendix A).

• procedures is implemented in Singular. It contains the procedures that are re-
quired to perform the steps described in Section 4.

• main is also implemented in Singular. It performs Steps 1 to 9 and returns a file
(roots.txt ) with the real and imaginary parts of the characteristic exponents of
θF computed to 15 decimal digits.

• sums is implemented in C, and corresponds to Step 10. Its input is the file output of
main , and its output is a file out.txt .

Upon receiving its input, sums checks that no sum of r characteristic exponents is
integral, for r � m(k). Note that we need not check sums of more than m(k) exponents
because we know from Theorem 3.4 that the sum of all the characteristic exponents is
an integer. This quite dramatically reduces the time required for computing these sums.
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We implemented an algorithm that computes the sums through a number of nested for
loops. This program assumes that k = 3, and that the characteristic exponents are complex
numbers whose real part has modulus at most 2.

The real and imaginary parts of the numbers used in sums are represented in the type
double, which guarantees a precision of 15 significant digits. Since at most two digits are
enough to represent the integer part of the mantissa of each one of the sums, at least 13
digits remain available for the decimal part. Thus, the absolute error in the representation
of each characteristic exponent cannot exceed 10−13. Moreover, we have to sum at most
m(k) of these numbers. Therefore, the absolute error for each of these sums cannot exceed
m(k) · 10−13. For k = 3 this gives an error of at most 10−11, which means that we can
definitely trust the first 10 decimal digits of the mantissa. The program sums takes a number
not to be an integer if any of these 10 digits is nonzero, and if they are not all equal to 9.

We now present the results that we obtained by applying the algorithm to the following
polynomial of degree 3:

F = x3
1 + x2

1x2 + x2
1x3 + x2

1x4 + 2x1x
2
2 + 2x1x

2
3 + 2x1x

2
4 + 8x3

2 + x2
2x3

+ x2
2x4 + 2x2x

2
3 + 2x2x

2
4 + x3

3 + x2
3x4 + 2x3x

2
4 + 8x3

4 .

The characteristic exponents of θF are the roots of an irreducible one-variable polynomial
of degree 30, namely

p(t) =
1 424 796 099 432 013 162 078 686 196 898 890 282 091 710 120 981 672 625 009(t30+ 1)

+ 25 646 329 789 776 236 917 416 351 544 180 025 077 650 782 177 670 107 250 162(t29+ t)

+ 208 719 751 477 278 207 557 068 054 763 472 255 012 672 013 172 760 985 302 947(t28+ t2)

+ 993 774 241 989 011 452 724 494 253 583 473 446 478 329 465 627 721 741 527 300(t27+ t3)

+ 2 934 151 927 851 069 813 467 768 496 725 417 790 099 211 662 395 946 239 595 997(t26+ t4)

+ 4 850 559 593 996 588 654 984 770 830 359 044 659 161 269 643 905 711 653 692 422(t25+ t5)

+ 785 945 048 465 657 668 604 960 376 476 295 275 969 394 851 004 593 754 434 495(t24+ t6)

− 17 477 009 553 027 230 339 989 135 355 513 126 370 533 241 703 776 928 850 722 712(t23+ t7)

− 44 504 853 905 255 806 049 333 072 942 045 220 211 232 255 933 116 231 668 230 803(t22+ t8)

− 45 588 527 721 498 682 414 532 196 654 071 923 958 937 169 383 481 123 689 694 654(t21+ t9)

+ 19 340 938 917 972 092 540 387 438 832 586 947 514 732 886 107 772 044 177 203 015(t20+ t10)

+ 127 905 471 034 714 231 098 198 821 850 282 677 184 610 726 609 434 588 916 322 620(t19+ t11)

+ 170 932 571 090 857 366 892 573 428 984 877 226 995 591 602 951 724 167 485 830 009(t18+ t12)

+ 56 489 617 051 266 221 694 646 175 317 820 063 864 861 238 308 999 527 879 984 070(t17+ t13)

− 149 550 394 434 265 981 523 928 562 114 623 689 697 009 464 850 343 740 260 328 669(t16+ t14)

−254 102 055 569 328 976 647 969 237 196 536 931 854 556 092 369 333 450 743 854 416t15.

Note that the sum of the roots of this polynomial is

−25 646 329 789 776 236 917 416 351 544 180 025 077 650 782 177 670 107 250 162

1 424 796 099 432 013 162 078 686 196 898 890 282 091 710 120 981 672 625 009
= −18,

as expected from Corollary 3.6. None of the roots of this polynomial is a real number.
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Listing only one root of each pair of complex conjugate roots to 15 decimal digits, we have:

−0.493 604 660 708 982 + 0.118 269 412 246 561i;
−0.578 203 943 097 618 + 0.255 690 449 211 412i;
−0.582 233 372 173 013 + 0.372 905 625 105 277i;
−0.602 557 103 820 076 + 0.337 250 062 983 222i;

0.721 791 882 015 353 + 0.025 999 147 890 059i;
−0.786 553 781 560 882 + 0.060 252 640 255 812i;
−0.934 831 035 045 717 − 0.209 948 982 884 531i;

0.999 012 562 172 831 + 0.044 428 601 383 287i;
−1.018 348 172 483 035 + 0.228 705 675 164 794i;
−1.217 923 081 533 882 + 0.780 048 670 783 815i;
−1.263 718 738 660 996 + 0.707 300 970 322 240i;
−1.263 951 920 695 255 + 0.096 822 928 277 282i;

1.383 645 681 417 165 + 0.049 839 309 079 181i;
−1.446 604 193 449 767 + 0.639 710 054 678 468i;
−1.915 920 122 376 120 + 0.459 061 197 800 113i.

No sum of 15, or fewer, numbers chosen from among these roots and their complex
conjugates is an integer. Thus the involutive homogeneous hypersurface Z(F ) must be
minimal.

Running under Windows Me on a PC with a Pentium III processor at 1.0 GHz, the
program main took 211 seconds to produce the list of roots given above, while sums
returned its verdict within 696 seconds.

6. Proof of Theorem 1.2

In this section we prove Theorem 1.2. Throughout the section we assume that there exists
a homogeneous polynomial F ∈ C[x1, x2, x3, x4], of degree k � 3, such that

• Z(F ) is smooth;

• θF is nondegenerate of Poincaré type;

• θF has m(k) = (k − 1)3 + (k − 1)2 + (k − 1)+ 1 distinct singularities;

• θF has 2m(k) distinct characteristic exponents;

• xk1 has nonzero coefficient in F ;

• no sum of r characteristic exponents of θF is an integer, for any r < m(k).

For k = 3, we can take F to be the polynomial displayed in Section 5.
As in Section 1, we identify S(4, k) with AN(k), where N(k) = (4+k

k

)
. Let [F ] be the

class of F ∈ AN(k) in the projective space PN(k)−1, and write

DF = hF + ∂F

∂x2
E = (A1, A2, A3, A4),

where E is the Euler vector field.
Let

G : CN(k) × C4 −→ C3
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be the map defined byG(F, p) = (A1(p),A2(p),A3(p)), and denote by J (F ) the jacobian
of G with respect to x1, x2 and x3. Consider the matrices

A =
[
J (F )− λI

∇F
]

and

B =
[
∂F/∂x3 ∂F/∂x4 −∂F/∂x1 −∂F/∂x2
x1 x2 x3 x4

]
.

Writing M(C) for the ideal of maximal minors of a matrix C, let

J = (F )+M(A)+M(B) and X = Z(J ) ⊆ PN(k) × P3.

If p ∈ U4, then ([F : λ], p) ∈ X if and only if

• p is a singularity of θF , and

• λ is an eigenvalue of θF at p.

Moreover, if ([F : λ], p) ∈ X and F = 0, then λ = 0. Thus, there exists a well-defined
map

π : PN(k) × P3 −→ PN(k)−1

given by π([F : λ], p) = [F ]. By [17, Corollary, p. 116], the set

Y1 = {[F ] ∈ PN(k)−1 : dim π−1([F ]) � 1
}

is closed in PN(k)−1. Since F /∈ Y1, it follows that Y1 is a proper subset of PN(k)−1.
Therefore, dim Y1 < N(k)− 1.

The set

Y2 = π
({([F : λ], p) : λ · x4 · ∂F/∂xj = 0 for all 1 � j � 4})

is also a proper closed subset of PN(k)−1 because F /∈ Y2. Now takeU = PN(k)−1\(Y1∪Y2).
Since π−1[F ] is finite for every [F ] ∈ U , it follows from [9, Lemma 14.8, p. 178] that the
map

π|U : π−1(U) −→ U,

obtained by restricting π to π−1(U), is finite.
Moreover, 	π−1([F ]) � 2m(k) for every [F ] ∈ U . Since 	π−1([F ]) = 2m(k), then by

[17, Theorem 7, p. 116] the set

V = {[F ] ∈ U : 	π−1([F ]) = 2m(k)} �= ∅
is open inU . Therefore, if [F ] ∈ V , then ([F : λ], p) ∈ X satisfies the following conditions:

1. F = 0 is a smooth surface of P3;

2. θF is nondegenerate at every one of its singularities;

3. all singularities of θF are distinct; and

4. the foliation θF has two distinct eigenvalues at each one of its singularities.

Furthermore, F ∈ V .
Let V0 be the open subset of V of those polynomials for which the coefficient of xk1 is

nonzero. Since V0 �= ∅, it is dense in PN(k)−1. We may identify V0 with an open subset of
AN(k)−1. Moreover, sinceV0 is an open nonempty set in the Zariski topology, it is also a dense
open set in the analytic topology. ThusG|V0 gives rise to a functionG0 : V0 × C3 −→ C3.
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Choose a polynomial F0 ∈ V0 such that Sing(hF0) = {p1, . . . , pm(k)}. Since hF0 is
nondegenerate at pj ∈ Sing(hF0), it follows that the jacobian of G0 with respect to the
coordinates of C3 is nonzero. Thus, by the implicit function theorem, there exist open
analytic neighbourhoods U(F0) of F0 and Wi of pi , and functions ψi : U(F0) −→ Wi ,
such that

G0(F,ψi(F )) = 0 for all F ∈ U(F0).

Let F ∈ U(F0) and 1 � i � m(k). Denote by Ji(F ) the 1-jet of θF at ψi(F ). If q and
1/q are the characteristic exponents of θF at ψi(F ), then

(det Ji(F ))q
2 + (2 det Ji(F )− (trJi(F )

2)q + det Ji(F ) = 0. (6.1)

Since the eigenvalues of θF atψi(F ) are distinct, it follows that the discriminant of this equa-
tion is nonzero. Hence, by shrinking U(F0) if necessary, we can construct a holomorphic
function ρi : U(F0) −→ C such that ρi(F ) satisfies (6.1), for every F ∈ U(F0).

We will define � locally at F0 as follows. Given a subset S of Sk = {1, . . . , m(k)} and
F ∈ U(F0), set

ρS(F ) =
∑
i∈S

ρi(F ).

Since Z is a closed subset of C in the analytic topology, it follows that ρ−1
S (Z) is a closed

subset of U(F0) in the topology induced from the analytic topology of AN(k)−1. Now

� ∩ U(F0) = U(F0) \
⋃
S�Sk

ρ−1
S (Z).

Note that if � ∩ U(F0) is nonempty, then it must be dense in U(F0). Moreover, F ∈
� ∩ U(F ) �= ∅. Since V0 is connected, it follows that � must be be a dense nonempty set
of V0, and so also of PN(k)−1.

Acknowledgements. We thank I.Vainsencher, Mauro Rincón and the referee for their many
helpful suggestions.

Appendix A. Program files

This appendix contains the files procedures , main and sums, and can be found at

http://www.lms.ac.uk/jcm/8/lms2003-033/appendix-a .

See the README.txt file included there for an explanation of how to use the programs.
The files are also available for downloading from

http://www.dcc.ufrj.br/˜collier/folia.html .
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