PRINCIPAL TRAIN ALGEBRAS OF RANK 3 AND DIMENSION $\leqq 5$

by R. COSTA*
(Received 13th March 1988)

A commutative algebra A over the field F, endowed with a non-zero homorphism $\omega: A \rightarrow F$ is principal train if it satisfies the identity $x^{r}+\gamma_{1} \omega(x) x^{r-1}+\cdots+\gamma_{r-1} \omega(x)^{r-1} x=0$ where $\gamma_{1}, \ldots, \gamma_{r-1}$ are fixed elements in F. We present in this paper, after the introduction of the concept of "type" of A, some results concerning the classification in the case $r=3$. In particular we describe all these algebras of dimension $\leqq 5$.

1980 Mathematics subject classification (1985 Revision): 17A01.

1. Introduction

Let F be an infinite field of characteristic not 2 and A a finite-dimensional, non-associative algebra over F. The principal powers of $x \in A$ are defined by $x^{1}=x$ and $x^{i}=x^{i-1} x$ for $i \geqq 2$. If $\omega: A \rightarrow F$ is a non-zero homomorphism, the ordered pair (A, ω) is called a baric algebra and ω its weight function. (A, ω) is a principal train algebra (train algebra, for short) if we have identically in A :

$$
\begin{equation*}
x^{r}+\gamma_{1} \omega(x) x^{r-1}+\cdots+\gamma_{r-1} \omega(x)^{r-1} x=0 \tag{1}
\end{equation*}
$$

where $\gamma_{1}, \ldots, \gamma_{r-1}$ are fixed elements in F. The equation like (1) with minimum degree is the rank equation of A, r is the rank of A and the roots of the algebraic equation $x^{r}+\gamma_{1} x^{r-1}+\cdots+\gamma_{r-1} x=0$, in some extension field of F, are the train roots of A. Most algebras appearing in the algebraic formalism of Genetics are in this class (see [8, chapter $3,3,4]$).

The following properties of a train algebra are immediate:
(a) $1+\gamma_{1}+\cdots+\gamma_{r-1}=0$;
(b) All $x \in A$ such that $\omega(x)=1$ satisfy the same equation;
(c) The kernel B of ω is an ideal of codimension 1 satisfying the identity $x^{\prime \prime}=0$. Also it is true that ω is the only non-zero homomorphism from A to F. We say that B is the kernel of A.

In this paper we deal only with train algebras of rank 3.

[^0]Every baric algebra with an idempotent of weight 1 can be obtained in the following way. Suppose B is an arbitrary commutative finite-dimensional algebra over F. Take the direct sum B^{\prime} of F and B and define a multiplification in B^{\prime} by

$$
\begin{equation*}
(\alpha, a)(\beta, b)=(\alpha \beta, a b+\tau(\alpha b+\beta a)) ; \quad \alpha, \beta \in F ; \quad a, b \in B \tag{2}
\end{equation*}
$$

where $\tau: B \rightarrow B$ is an arbitrary F-linear mapping. Then $\omega: B \rightarrow F$ given by $\omega(\alpha, a)=\alpha$ is a non-zero homomorphism, (B, ω) is a baric algebra and $(1,0)$ is an idempotent of weight 1. Two different τ 's may give rise to isomorphic algebras. Note that $(1,0)(0, a)=(0, \tau(a))$. If B satisfies the identity $a^{3}=0$, it is easy to see that B^{\prime} satisfies the rank equation

$$
x^{3}-(1+\gamma) \omega(x) x^{2}+\gamma \omega(x)^{2} x=0
$$

if and only if the following identities hold:

$$
\begin{gather*}
2 \tau(a) a+\tau\left(a^{2}\right)=(1+\gamma) a^{2} ; \quad a \in B \tag{3}\\
2 \tau^{2}-(1+2 \gamma) \tau+\gamma I=0 \quad(I=\text { identity operator }) \tag{4}
\end{gather*}
$$

Note that any τ satisfying (3) is determined by its values on a generating system of the algebra B. It also follows from (3) by induction that the powers B^{i} defined by $B^{1}=B$ and $B^{i}=B^{i-1} B(i \geqq 2)$ are invariant under τ. The same holds for the ideal $A n(B)$ of absolute divisors of zero in B.

2. Invariants

In this paragraph we will assume that $\gamma \neq 1 / 2$ in equation (1^{\prime}). By (4), if we have a train algebra B^{\prime} of rank 3, constructed as explained above, the proper values of τ will be $1 / 2$ and/or γ. Decompose $B=B_{1} \oplus B_{2}$ where $B_{1}=\operatorname{ker}(\tau-(1 / 2) I), B_{2}=\operatorname{ker}(\tau-\lambda I)$. The linearized form of (3) gives the following relations:

$$
\begin{gather*}
B_{1} B_{1} \subset B_{2} \tag{5}\\
B_{1} B_{2} \subset B_{1} \tag{6}\\
B_{2} B_{2}=0 . \tag{7}
\end{gather*}
$$

To show this, note that if $x_{1}, x_{2} \in B_{1}, \tau\left(x_{1} x_{2}\right)=(1+\gamma) x_{1} x_{2}-\tau\left(x_{1}\right) x_{2}-x_{1} \tau\left(x_{2}\right)=\gamma x_{1} x_{2}$ so (5). (6) is similar. For (7), if $x_{1}, x_{2} \in B_{2}, \tau\left(x_{1} x_{2}\right)=(1-\gamma) x_{1} x_{2}$ so $x_{1} x_{2}=0$ because $1-\gamma$ is not a proper value. Take now $x=\alpha x_{1}+\beta x_{2}, \alpha, \beta \in F, x_{1} \in B_{1}, x_{2} \in B_{2}$. Then $x^{3}=0$ implies $0=\alpha \beta^{2}\left(x_{1} x_{2}\right) x_{2}+\alpha^{2} \beta x_{1}\left(x_{1} x_{2}\right)$. Each component must be zero so:

$$
\begin{align*}
& \left(x_{1} x_{2}\right) x_{2}=0 \tag{8}\\
& x_{1}\left(x_{1} x_{2}\right)=0 \tag{9}
\end{align*}
$$

and the linearized forms

$$
\begin{align*}
& \left(x_{1} x_{2}\right) y_{2}+\left(x_{1} y_{2}\right) x_{2}=0 \\
& x_{1}\left(y_{1} x_{2}\right)+y_{1}\left(x_{1} x_{2}\right)=0 .
\end{align*}
$$

Suppose conversely that the algebra B is given. If a linear mapping $\tau: B \rightarrow B$ satisfies (4) and $B_{1}=\operatorname{ker}(\tau-(1 / 2) I)$ and $B_{2}=\operatorname{ker}(\tau-\gamma I)$ satisfy the above relations (5), $\ldots,(9)$, then B^{\prime}, defined by (2), satisfies (1^{\prime}).

Idempotents in B^{\prime} must have weight 1 because B is nil. $(1, a) \in B^{\prime}$ is idempotent if and only if $2 \tau(a)=a-a^{2}$. Decomposing $a=a_{1}+a_{2}, a_{i} \in B_{i}$, we are led to the equations

$$
\left\{\begin{array}{l}
a_{1} a_{2}=0 \\
a_{1}^{2}+2 \gamma a_{2}=a_{2}
\end{array}\right.
$$

so idempotents have the form ($\left.1, a_{1}+(1-2 \gamma)^{-1} a_{1}^{2}\right), a_{1} \in B_{1}$.
Proposition 1. The function $a_{1} \in B_{1} \rightarrow\left(1, a_{1}+(1-2 \gamma)^{-1} a_{1}^{2}\right)$ is a bijection between the subspace B_{1} and the set of idempotents of B^{\prime}. In particular, the dimension of B_{1} is independent of the operator τ used to construct B^{\prime}. The same holds for the dimension of B_{2}.

Definition. The type of B^{\prime} is the ordered pair of non-negative integers $\left(1+\operatorname{dim} B_{1}, \operatorname{dim} B_{2}\right)$.

Algebras having the extreme types are very simple, in any dimension. If the type is $(1, n)$, we take any basis $\left\{c_{1}, \ldots, c_{n}\right\}$ of B and call $c_{0}=(1,0)$. The table is: $c_{0}^{2}=c_{0}, c_{0} c_{i}=\gamma c_{i}$ $(i=1, \ldots, n)$ and $c_{i} c_{j}=0(i, j=1, \ldots, n)$. If the type is $(n+1,0)$, we have a similar table with γ replaced by $1 / 2$. This algebra satisfies in fact the equation $x^{2}=\omega(x) x$.

Proposition 2. If B^{\prime} has type $(2, n-1)$, there is a basis $\left\{c_{0}, x_{1}, \ldots, x_{n}\right\}$ of B^{\prime} such that its multiplication table is:

$$
c_{0}^{2}=c_{0}, \quad c_{0} x_{1}=\frac{1}{2} x_{1}, \quad c_{0} x_{i}=\gamma x_{i}(i=2, \ldots, n), \quad x_{1}^{2}=\varepsilon x_{2}
$$

where $\varepsilon=0$ or 1 , other products are zero.
Proof. Start with $B_{1}=\left\langle c_{1}\right\rangle$ and $B_{2}=\left\langle c_{2}, \ldots, c_{n}\right\rangle$. By (5), (6) and (7), $c_{1} c_{j}=\lambda_{j} c_{1}$ $(j=2, \ldots, n), c_{j} c_{k}=0(j, k=2, \ldots, n), c_{1}^{2} \in B_{2}$. But by (8), $0=\left(c_{1} c_{j}\right) c_{j}=\lambda_{j}^{2} c_{1}$ so $\lambda_{j}=0$. If $c_{1}^{2}=0$, we are done. Otherwise replace some $c_{j}(2 \leqq j \leqq n)$ by c_{1}^{2} where possible, permute so that c_{1}^{2} becomes the first vector. This is the case $\varepsilon=1$.

Other numerical invariants of train algebras B^{\prime} of rank 3 are the dimensions of the ideals B^{i} of B^{\prime}. In fact, B^{i} is invariant under τ by (3) so it is an ideal in B^{\prime}. We have $B^{2}=B_{1} B_{2} \oplus B_{1}^{2}, B^{3}=\left(\left(B_{1} B_{2}\right) B_{2}+B_{1}^{3}\right) \oplus\left(B_{1} B_{2}\right) B_{1}$ and so on. For some $k, B^{k}=0([1$, Theorem 1]). Etherington introduced in [3] the concepts of "nil products" and "nil
squares" and also the ideal generated by all the nil squares. In our context, this ideal will be $J=B_{1} B_{2} \oplus B_{2}$. In fact, the sum $B_{1} B_{2}+B_{2}$ is direct by (6) and the relations

$$
\begin{gathered}
x_{1}\left(u_{1} u_{2}+v_{2}\right)=x_{1}\left(u_{1} u_{2}\right)+x_{1} v_{2} \in B_{2} \oplus B_{1} B_{2} \\
x_{2}\left(u_{1} u_{2}+v_{2}\right)=x_{2}\left(u_{1} u_{2}\right) \in B_{2} B_{1}
\end{gathered}
$$

if $x_{1}, u_{1} \in B_{1}$ and $x_{2}, u_{2}, v_{2} \in B_{2}$, show that J is an ideal of B. As J is obviously invariant under τ, it is an ideal of B^{\prime}. If J^{\prime} is the ideal generated by all nil squares $x^{2}-\omega(x) x$, for $x \in B^{\prime}$, then $J^{\prime} \subset J$. In fact, if $x=(\alpha, a)$, where $a=u_{1}+u_{2}, u_{i} \in B_{i}$, then $x^{2}-\alpha x=2 u_{1} u_{2}+$ $\left(u_{1}^{2}+(2 \gamma-1) \alpha u_{2}\right) \in J$. Let us show that $B_{1} B_{2}$ and B_{2} are contained in J^{\prime}. For the second inclusion, if $u_{2} \in B_{2}$, take $x=\left(1, u_{2}\right) \in B^{\prime}$, then $x^{2}-x=(2 \gamma-1) u_{2}, u_{2} \in J^{\prime}$. If $u_{1} u_{2}$ is a generator of $B_{1} B_{2}$ take $x=\left(1, u_{1}+u_{2}\right)$. Then $x^{2}-x-\left(u_{1}^{2}+(2 \gamma-1) u_{2}\right)=2 u_{1} u_{2}$ and so $B_{1} B_{2} \subset J^{\prime}$. Hence $J=J^{\prime}$ and the dimension of J is a numerical invariant of B^{\prime}.

Remark. $B^{\prime} \supset B \supsetneqq J \supset B^{2} \supset B^{3} \supset \cdots$ (see [4, p. 140]). The only relation to be proved is $J \neq B$. In fact, if $J=B$ then it would follow that $B^{2}=B^{3}$, contrary to Abraham's Theorem 1 of [1].

Remark. Train algebras of rank 3, with $\gamma=0$, are Bernstein algebras satisfying two additional conditions (see [8, Theorem 9.12] or [4, Theorem XII]). The ideal J coincides, in this case, with the ideal appearing in [8, equation 9.56].

We describe now train algebras of a given type having the smallest possible ideal J, that is $J=B_{2}$. Consider the set of all triples (B_{1}, B_{2}, ψ) where B_{1} and B_{2} are arbitrary finite dimensional vector spaces over the field F and $\psi: B_{1} \times B_{1} \rightarrow B_{2}$ is an arbitrary symmetric bilinear function.

Two triples $\left(B_{1}, B_{2}, \psi\right)$ and $\left(C_{1}, C_{2}, \phi\right)$ are equivalent if and only if there exist bijective linear mappings $v: B_{1} \rightarrow C_{1}$ and $\mu: B_{2} \rightarrow C_{2}$ such that the diagram commutes:

$$
\begin{gathered}
B_{1} \times B_{1} \xrightarrow{\psi} B_{2} \\
\downarrow^{v \times v} \quad \downarrow^{\mu} \\
C_{1} \times C_{1} \xrightarrow[\phi]{\rightarrow} C_{2}
\end{gathered}
$$

This is clearly an equivalence relation. Given now (B_{1}, B_{2}, ψ) we construct a train algebra in the following way. Take in the vector space $B=B_{1} \oplus B_{2}$ the multiplication

$$
\left(\dot{u}_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)=\left(0, \psi\left(u_{1}, u_{2}\right)\right) ; \quad u_{1}, u_{2} \in B_{1} ; \quad v_{1}, v_{2} \in B_{2}
$$

Then $(u, v)^{3}=0$ for all $(u, v) \in B$. Now $\tau: B \rightarrow B$ given by $\tau(u, v)=((1 / 2) u, \gamma v)$ satisfies (3) and (4) so B^{\prime} is a train algebra of rank 3 , of type $\left(1+\operatorname{dim} B_{1}, \operatorname{dim} B_{2}\right)$ and also $J=B_{2}$. Denote this algebra by $\left[B_{1}, B_{2}, \psi\right]$. If $\left(B_{1}, B_{2}, \psi\right)$ and $\left(C_{1}, C_{2}, \phi\right)$ are equivalent the corresponding algebras will be isomorphic, $1_{F} \oplus v \oplus \mu$ being an isomorphism. On the
other hand every train algebra of rank 3 with $J=B_{2}$ is obtained in this way, by taking $\psi: B_{1} \times B_{1} \rightarrow B_{2}$ as the product already existing. Moreover two isomorphic train algebras B^{\prime} and C^{\prime} must come from equivalent triples. To see this, consider their kernels $B_{1} \oplus B_{2}$ and $C_{1} \oplus C_{2}$. Then B_{2} (resp. C_{2}) is formed by absolute divisors of zero in B (resp. C). An isomorphism from B to C must therefore take B_{2} to C_{2}. The result follows by passage to quotients. We summarize these results in:

Proposition 3. (a) The train algebras $\left[B_{1}, B_{1}, \psi\right]$ and $\left[C_{1}, C_{2}, \phi\right]$ are isomorphic if and only if the triples $\left(B_{1}, B_{2}, \psi\right)$ and $\left(C_{1}, C_{2}, \phi\right)$ are equivalent.
(b) Every train algebra of rank 3 with minimum J is isomorphic to some $\left[B_{1}, B_{2}, \psi\right]$.

As a particular case, when the type of B^{\prime} is $(r+1, r)$, the classification of train algebras with minimum J is equivalent to the classification of commutative algebras of dimension r. In another particular case, when the type is $(n, 1)$ and $\operatorname{dim} J=1$, the problem reduces to the classification of bilinear forms in spaces of dimension $n-1$.

Proposition 4. If B^{\prime} has type $(n, 1)$ then $\operatorname{dim} J \leqq \frac{1}{2}(n+1)$.
Proof. Start with $B_{1}=\left\langle c_{1}, \ldots, c_{n-1}\right\rangle$ and $B_{2}=\left\langle c_{n}\right\rangle$. Then J is generated by $\left\{c_{n}, c_{1} c_{n}, \ldots, c_{n-1} c_{n}\right\}$. If $\operatorname{dim} J=1+k(k \geqq 0)$ there are exactly k linearly independent vectors in the set $\left\{c_{1} c_{n}, \ldots, c_{n-1} c_{n}\right\}$. We may suppose they are $c_{1} c_{n}, \ldots, c_{k} c_{n}$. The set $\left\{c_{1} c_{n}, \ldots, c_{k} c_{n}, c_{1}, c_{2}, \ldots, c_{n}\right\}$ which generates B, must contain a basis of the form $\left\{c_{1} c_{n}, \ldots, c_{k} c_{n}, c_{i_{1}}, \ldots, c_{i_{n-k-1}}, c_{n}\right\}$. These vectors give a new generating system of J, namely $\left\{c_{i_{1}} c_{n}, \ldots, c_{i_{n-k-1}} c_{n}, c_{n}\right\}$ because $\left(c_{i} c_{n}\right) c_{n}=0(i=1, \ldots, k)$. Then $k+1=\operatorname{dim} J \leqq n-k$ and so $\operatorname{dim} j \leqq \frac{1}{2}(n+1)$.

Proposition 5. For every train algebra B^{\prime} of rank $3, J^{2}$ is an ideal. If the type of B^{\prime} is $(n, 1)$ then $J^{2}=0$.

Proof. Clearly J^{2} is invariant under τ. As $J^{2}=\left(B_{1} B_{2}\right) B_{2} \oplus\left(B_{1} B_{2}\right)^{2}$, the following relations show that J^{2} is an ideal in B :

$$
\begin{gathered}
x_{1}\left(\left(u_{1} u_{2}\right) v_{2}\right)=-\left(u_{1} u_{2}\right)\left(x_{1} v_{2}\right) \in\left(B_{1} B_{2}\right)^{2} \\
x_{1}\left(\left(u_{1} u_{2}\right)\left(v_{1} v_{2}\right)\right)=-\left(u_{1} u_{2}\right)\left(x_{1}\left(v_{1} v_{2}\right)\right)-\left(v_{1} v_{2}\right)\left(x_{1}\left(u_{1} u_{2}\right)\right) \in\left(B_{1} B_{2}\right) B_{2} \\
x_{2}\left(\left(u_{1} u_{2}\right) v_{2}\right)=\left(\left(u_{1} u_{2}\right) v_{2}\right) x_{2} \in\left(B_{1} B_{2}\right) B_{2} \\
x_{2}\left(\left(u_{1} u_{2}\right)\left(v_{1} v_{2}\right)\right)=0
\end{gathered}
$$

for $x_{i}, u_{i}, v_{i} \in B_{i}(i=1,2)$.
The second assertion: if $B_{1}=\left\langle c_{1}, \ldots, c_{n-1}\right\rangle$ and $B_{2}=\left\langle c_{n}\right\rangle$, then J is linearly generated by $c_{1} c_{n}, \ldots, c_{n-1} c_{n}$ and c_{n}. The product of any two of these elements is 0 by (8).

3. Train algebras of dimension $\leqq 5$

The invariants type, $\operatorname{dim} J$ and $\operatorname{dim} B^{2}$ classify train algebras of rank 3 (always $\gamma \neq \frac{1}{2}$) up to dimension 5 or reduce this problem to the classification of other algebraic objects. Etherington proved that every train algebra of rank 3 is special triangular, a gap in his proof was filled by Abraham [1]. Algebras in this paragraph are expressed by means of a canonical basis. Almost all computational details are omitted, to save space.
(I) $\operatorname{dim} B^{\prime}=2$. The possible types are $(2,0)$ and $(1,1)$, already discussed, see Proposition 2 and the discussion preceding it.
(II) $\operatorname{dim} B^{\prime}=3$. The non-extreme type $(2,1)$ is covered by Proposition 2, yielding two non-isomorphic algebras.
(III) $\operatorname{dim} B^{\prime}=4$. The only type to be considered is $(3,1)$. The ideal J may have dimension 1 or 2 , because $J \neq B$.
(a) $\operatorname{dim} J=1$. The algebras have already been described by Proposition 3. Every essentially distinct bilinear form in a F-vector space of dimension 2 gives an algebra here and conversely.
(b) $\operatorname{dim} J=2$. The answer is given by the following:

Proposition 6. There is only one, up to isomorphisms, train algebra of type $(3,1)$ such that $\operatorname{dim} J=2$.

Proof. If $B_{1}=\left\langle c_{1}, c_{2}\right\rangle$ and $B_{2}=\left\langle c_{3}\right\rangle$ then J is generated by $\left\{c_{3}, c_{1} c_{3}, c_{2} c_{3}\right\}$. One of $c_{1} c_{3}$ and $c_{2} c_{3}$ is non-zero, the other is a scalar multiple of it. By symmetry we may suppose $c_{1} c_{3} \neq 0$ and $c_{2} c_{3}=k c_{1} c_{3}, k \in F$. The set $\left\{c_{1} c_{3}, c_{1}, c_{2}, c_{3}\right\}$ generates B so it must contain a basis of the form $\left\{c_{1} c_{3}, ?, c_{3}\right\}$. There are two possibilities:
(a) $\left\{c_{1} c_{3}, c_{1}, c_{3}\right\}$ is a basis of B. The multiplication table of B, according to (8) is (on the left):

	$c_{1} c_{3}$	c_{1}	c_{3}
$c_{1} c_{3}$	0	0	0
c_{1}		0	$c_{1} c_{3}$
c_{3}			0

	c_{0}	x_{1}	x_{2}	x_{3}
c_{0}	c	$\frac{1}{2} x_{1}$	γx_{2}	$\frac{1}{2} x_{3}$
x_{1}		0	x_{3}	0
x_{2}			0	0
x_{3}				0

Calling $x_{1}=c_{1}, x_{2}=c_{3}$ and $x_{3}=c_{1} c_{3}, B^{\prime}$ is given by the above (on the right) table.
(b) $\left\{c_{1} c_{3}, c_{2}, c_{3}\right\}$ is a basis of B. The multiplication table is:

	$c_{1} c_{3}$	c_{2}	c_{3}
$c_{1} c_{3}$	0	0	0
c_{2}		λc_{3}	$k c_{1} c_{3}$
c_{3}			0

But here J is generated by c_{3} and $k c_{1} c_{3}$ so necessarily $k \neq 0$ because $\operatorname{dim} J=2$. From $0=c_{2}^{3}=\lambda k c_{1} c_{3}$ we get $\lambda=0$. Taking now the basis $\left\{k^{-1} c_{1} c_{3}, k^{-1} c_{2}, k^{-1} c_{3}\right\}$ we get the same table but with 1 in place of k. Introducing now x_{i} as in case (a) we get B^{\prime} exactly as in case (a).
(IV) $\operatorname{dim} B^{\prime}=5$. There are two non-trivial types to consider: $(4,1)$ and $(3,2)$.
(A) Algebras of type $(4,1)$

By Proposition $4,1 \leqq \operatorname{dim} J \leqq 2$.
A.1. $\operatorname{dim} J=1$. The algebras have already been described in Proposition 3. They correspond to essentially distinct bilinear forms in spaces of dimension 3 over the field F.
A.2. $\operatorname{dim} J=2$. Take $B_{1}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$ and $B_{2}=\left\langle c_{4}\right\rangle$ so J will be generated by $\left\{c_{4}, c_{1} c_{4}, c_{2} c_{4}, c_{3} c_{4}\right\}$. One of the last 3 vectors must be non-zero and the other 2 must be scalar multiples of it. By symmetry, we may suppose that $c_{1} c_{4} \neq 0$ and $c_{2} c_{4}=k_{2} c_{1} c_{4}$, $c_{3} c_{4}=k_{3} c_{1} c_{4}$, with $k_{2}, k_{3} \in F$. The set $\left\{c_{1} c_{4}, c_{1}, c_{2}, c_{3}, c_{4}\right\}$ must contain a basis of the form $\left\{c_{1} c_{4}, ?, ?, c_{4}\right\}$. Let us examine the three possibilities.
A.2.1. $\left\{c_{1} c_{4}, c_{1}, c_{2}, c_{4}\right\}$ is a basis of B. The multiplication table:

	$c_{1} c_{4}$	c_{1}	c_{2}	c_{4}
$c_{1} c_{4}$	0	0	0	0
c_{1}		0	0	$c_{1} c_{4}$
c_{2}			0	$k_{2} c_{1} c_{4}$
c_{4}				0

(In fact, $c_{1}^{2}=\mu c_{4}$ but $0=c_{1}^{3}=\mu c_{1} c_{4}$ so $\mu=0 ; c_{1} c_{2}=\lambda c_{4}$ and $c_{2}^{2}=\nu c_{4}$ but for all $m, n \in F$, $\left(m c_{1}+n c_{2}\right)^{3}=0$ implies $v=\lambda=0$, an easy calculation.)

Calling now $k_{2}=k, x_{1}=c_{1}, x_{2}=c_{2}, x_{3}=c_{4}$ and $x_{4}=c_{1} c_{4}$ the table of B^{\prime} is:

	c_{0}	x_{1}	x_{2}	x_{3}	x_{4}
c_{0}	c_{0}	$\frac{1}{2} x_{1}$	$\frac{1}{2} x_{2}$	γx_{3}	$\frac{1}{2} x_{4}$
x_{1}		0	0	x_{4}	0
x_{2}			0	$k x_{4}$	0
x_{3}				0	0
x_{4}					0

A.2.2. $\left\{c_{1} c_{4}, c_{2}, c_{3}, c_{4}\right\}$ is a basis of B, whose table is:

	$c_{1} c_{4}$	c_{2}	c_{3}	c_{4}
$c_{1} c_{4}$	0	0	0	0
c_{2}		λc_{4}	μc_{4}	$k_{2} c_{1} c_{4}$
c_{3}			νc_{4}	$k_{3} c_{1} c_{4}$
c_{4}				0

where the following relations hold: $\lambda k_{2}=\nu k_{3}=\lambda k_{3}+2 \mu k_{2}=\nu k_{2}+2 \mu k_{3}=0$, a consequence of the identity $x^{3}=0$. We see that J is generated by the set $\left\{c_{4}, k_{2} c_{1} c_{4}, k_{3} c_{1} c_{4}\right\}$ so necessarily $k_{2} \neq 0$ or $k_{3} \neq 0$. By symmetry we may study only one case, say $k_{2} \neq 0$. This implies that in the above table $\lambda=\mu=\nu=0$. Introducing now the vectors $x_{1}=k_{2}^{-1} c_{2}$, $x_{2}=c_{3}, x_{3}=k_{2}^{-1} c_{4}$ and $x_{4}=k_{2}^{-1} c_{1} c_{4}$ we get the same table for B^{\prime} obtained in case A.2.1.
A.2.3. $\left\{c_{1} c_{4}, c_{1}, c_{3}, c_{4}\right\}$ is a basis of B. This is similar to A.2.1, because the roles of c_{2} and c_{3} can be interchanged. We summarize the facts:

Proposition 7. Train algebras of type $(4,1)$ such that $\operatorname{dim} J=2$ form a one-parameter family, given by the above table of A.2.1.
(B) Algebras of type $(3,2)$

We have $2 \leqq \operatorname{dim} J \leqq 3$ because $J \neq B$.
B.1. $\operatorname{dim} J=2$. These algebras have already been described in Proposition 3. Every essentially distinct commutative algebra of dimension 2 gives an algebra here. The classification of such bidimensional algebras is a problem of its own interest, see for example [2] and [6].
B.2. $\operatorname{dim} J=$ 3. Take $B_{1}=\left\langle c_{1}, c_{2}\right\rangle$ and $B_{2}=\left\langle c_{3}, c_{4}\right\rangle$. Then as J is generated by $\left\{c_{3}, c_{4}\right.$, $\left.c_{1} c_{3}, c_{1} c_{4}, c_{2} c_{3}, c_{2} c_{4}\right\}$ one of the last 4 vectors is non-zero and the remaining 3 are scalar multiples of it. Again by symmetry we may suppose that $c_{1} c_{3} \neq 0$ and $c_{1} c_{4}=$ $k_{1} c_{1} c_{3}, c_{2} c_{3}=k_{2} c_{1} c_{3}, c_{2} c_{4}=k_{3} c_{1} c_{3}, k_{i} \in F$. The set $\left\{c_{1} c_{3}, c_{1}, c_{2}, c_{3}, c_{4}\right\}$ generates B so it must contain a basis of the form $\left\{c_{1} c_{3}, ?, c_{3}, c_{4}\right\}$. There are two possibilities:
B.2.1. $\left\{c_{1} c_{3}, c_{1}, c_{3}, c_{4}\right\}$ is a basis of B. The multiplication table is:

	$c_{1} c_{3}$	c_{1}	c_{3}	c_{4}
$c_{1} c_{3}$	0	0	0	0
c_{1}		$\mu\left(c_{4}-k_{1} c_{3}\right)$	$c_{1} c_{3}$	$k_{1} c_{1} c_{3}$
c_{3}			0	0
c_{4}				0

(In general. $c_{1}^{2}=\lambda c_{3}+\mu c_{4}$ but $0=c_{1}^{3}=\left(\lambda+\mu k_{1}\right) c_{1} c_{3}$ implies $\lambda=-\mu k_{1}$.)
The ideal B^{2} is generated, as a vector space, by $c_{1} c_{3}, k_{1} c_{1} c_{3}$ and $\mu\left(c_{4}-k_{1} c_{3}\right)$ so $1 \leqq \operatorname{dim} B^{2} \leqq 2$.
B.2.1.1. $\operatorname{dim} B^{2}=1$. This means that $\mu=0$. Calling $k_{1}=k, x_{1}=c_{1}, x_{2}=c_{3}, x_{3}=c_{4}$ and $x_{4}=c_{1} c_{3}$ we get the table of B^{\prime} :

	c_{0}	x_{1}	x_{2}	x_{3}	x_{4}
c_{0}	c_{0}	$\frac{1}{2} x_{1}$	γx_{2}	γx_{3}	$\frac{1}{2} x_{4}$
x_{1}		0	x_{4}	$k x_{4}$	0
x_{2}			0	0	0
x_{3}				0	0
x_{4}					0

B.2.1.2. $\operatorname{dim} B^{2}=2$. In this case $\mu \neq 0$. We look now for the new basis $x_{1}=\mu^{-1} c_{1}$, $x_{2}=\mu^{-1} c_{3}, x_{3}=\mu^{-1}\left(c_{4}-k_{1} c_{3}\right), x_{4}=\mu^{-1} c_{1} c_{3}$. The table of B^{\prime} will be, for some $k \neq 0$:

	c_{0}	x_{1}	x_{2}	x_{3}	x_{4}
c_{0}	c_{0}	$\frac{1}{2} x_{1}$	γx_{2}	γx_{3}	$\frac{1}{2} x_{4}$
x_{1}		x_{3}	$k x_{4}$	0	0
x_{2}			0	0	0
x_{3}				0	0
x_{4}					0

B.2.2. $\left\{c_{1} c_{3}, c_{2}, c_{3}, c_{4}\right\}$ is a basis of B. The table is:

	$c_{1} c_{3}$	c_{2}	c_{3}	c_{4}
$c_{1} c_{3}$	0	0	0	0
c_{2}		$\lambda c_{3}+\mu c_{4} k_{2} c_{1} c_{3}$	$k_{3} c_{1} c_{3}$	
c_{3}			0	0
c_{4}				0

with $\lambda k_{2}+\mu k_{3}=0$, coming from $c_{2}^{3}=0$. From this table we have J generated by c_{3}, c_{4}, $k_{2} c_{1} c_{3}$ and $k_{3} c_{1} c_{3}$ so necessarily $k_{2} \neq 0$ or $k_{3} \neq 0$. By symmetry we may study only the case $k_{2} \neq 0$. This means that $c_{2}^{2}=\mu\left(c_{4}-\left(k_{3} / k_{2}\right) c_{3}\right)$. The ideal B^{2} is generated as a vector space by the vectors $k_{2} c_{1} c_{3}, k_{3} c_{1} c_{3}$ and $\mu\left(c_{4}-\left(k_{3} / k_{2}\right) c_{3}\right)$ so $1 \leqq \operatorname{dim} B^{2} \leqq 2$.
B.2.2.1. $\operatorname{dim} B^{2}=1$. This means $\mu=0$. Calling $k_{3}=k, x_{1}=k_{2}^{-1} c_{2}, x_{2}=k_{2}^{-1} c_{3}, x_{3}=c_{4}$, $x_{4}=k_{2}^{-1} c_{1} c_{3}$, we get for B^{\prime} the same table already obtained in case B.2.1.1.
B.2.2.2. $\operatorname{dim} B^{2}=2$. This means $\mu \neq 0$. Using now the basis of $B x_{1}=\mu^{-1} c_{2}$, $x_{2}=\mu^{-1} c_{3}, x_{3}=\mu^{-1}\left(c_{4}-\left(k_{3} / k_{2}\right) c_{3}\right)$ and $x_{4}=\mu^{-2} c_{1} c_{3}$, we get the same table already obtained in case B.2.1.2.

This ends the classification for the case where the type is $(3,2)$. We have obtained one one-parameter family of algebras when $\operatorname{dim} J=3$ and $\operatorname{dim} B^{2}=1$ and another oneparameter family when $\operatorname{dim} J=3$ and $\operatorname{dim} B^{2}=2$. The invariant $\operatorname{dim} \operatorname{An}(B)$ can be used to give a little bit more information about isomorphisms between algebras in the same family in the case $\operatorname{dim} B^{2}=1$.

Added in proof: some improvement of this classification will appear in a forthcoming paper by the author in Linear Algebra and its Applications.

REFERENCES

1. V. M. Abraham, A note on train algebras, Proc. Edinburgh Math. Soc. 20 (1976), 53-58.
2. S. C. Althoen and L. D. Kluger, When is R^{2} a division algebra?, Amer. Math. Monthly 90 (1983), 625-635.
3. I. M. H. Etherington, Genetic algebras, Proc. Roy. Soc. Edinburgh 59 (1939), 242-258.
4. I. M. H. Etherington, Commutative train algebras of ranks 2 and 3, J. London Math. Soc. 15 (1940), 136-149.
5. P. Holgate, Free non associative principal train algebras, Proc. Edinburgh Math. Soc. 27 (1984), 313-319.
6. L. Marcus, Contributions to the Theory of Nonlinear Oscillations, Vol. 5, Princeton Univ. Press, Princeton, N.J., 1960, 185-213.
7. W. Scharlau, Quadratic and Hermitian Forms (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984).
8. A. Worz-Busekros, Algebras in Genetics (Lecture Notes in Biomathematics, Vol. 36, 1980).

Permanent Address	Present Address
Instituto de Matemática e Estatistica	Birkbeck College, Department of Statistics
Universidade de Sáo Paulo	Malet Street, London WC1E 7HX
Caixa Postal 20570-Ag. Iguatemi-CEP 01498	England

[^0]: *Sponsored by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNP) of Brazil. Proc. 203041/87-9-MA

