PRINCIPAL TRAIN ALGEBRAS OF RANK 3 AND DIMENSION≦5

by R. COSTA*

(Received 13th March 1988)

A commutative algebra A over the field F, endowed with a non-zero homorphism $\omega: A \to F$ is principal train if it satisfies the identity $x^r + \gamma_1 \omega(x) x^{r-1} + \dots + \gamma_{r-1} \omega(x)^{r-1} x = 0$ where $\gamma_1, \dots, \gamma_{r-1}$ are fixed elements in F. We present in this paper, after the introduction of the concept of "type" of A, some results concerning the classification in the case r = 3. In particular we describe all these algebras of dimension ≤ 5 .

1980 Mathematics subject classification (1985 Revision): 17A01.

1. Introduction

Let F be an infinite field of characteristic not 2 and A a finite-dimensional, non-associative algebra over F. The principal powers of $x \in A$ are defined by $x^1 = x$ and $x^i = x^{i-1}x$ for $i \ge 2$. If $\omega: A \to F$ is a non-zero homomorphism, the ordered pair (A, ω) is called a baric algebra and ω its weight function. (A, ω) is a principal train algebra (train algebra, for short) if we have identically in A:

$$x^{r} + \gamma_{1}\omega(x)x^{r-1} + \dots + \gamma_{r-1}\omega(x)^{r-1}x = 0$$
(1)

where $\gamma_1, \ldots, \gamma_{r-1}$ are fixed elements in *F*. The equation like (1) with minimum degree is the rank equation of *A*, *r* is the rank of *A* and the roots of the algebraic equation $x^r + \gamma_1 x^{r-1} + \cdots + \gamma_{r-1} x = 0$, in some extension field of *F*, are the train roots of *A*. Most algebras appearing in the algebraic formalism of Genetics are in this class (see [8, chapter 3, 3, 4]).

The following properties of a train algebra are immediate:

- (a) $1 + \gamma_1 + \cdots + \gamma_{r-1} = 0;$
- (b) All $x \in A$ such that $\omega(x) = 1$ satisfy the same equation;
- (c) The kernel B of ω is an ideal of codimension 1 satisfying the identity x'=0. Also it is true that ω is the only non-zero homomorphism from A to F. We say that B is the kernel of A.

In this paper we deal only with train algebras of rank 3.

*Sponsored by Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNP) of Brazil. Proc. 203041/87-9-MA

R. COSTA

Every baric algebra with an idempotent of weight 1 can be obtained in the following way. Suppose B is an arbitrary commutative finite-dimensional algebra over F. Take the direct sum B' of F and B and define a multiplification in B' by

$$(\alpha, a)(\beta, b) = (\alpha\beta, ab + \tau(\alpha b + \beta a)); \quad \alpha, \beta \in F; \quad a, b \in B$$
(2)

where $\tau: B \to B$ is an arbitrary F-linear mapping. Then $\omega: B \to F$ given by $\omega(\alpha, a) = \alpha$ is a non-zero homomorphism, (B, ω) is a baric algebra and (1, 0) is an idempotent of weight 1. Two different τ 's may give rise to isomorphic algebras. Note that $(1, 0)(0, a) = (0, \tau(a))$. If B satisfies the identity $a^3 = 0$, it is easy to see that B' satisfies the rank equation

$$x^{3} - (1 + \gamma)\omega(x)x^{2} + \gamma\omega(x)^{2}x = 0$$
 (1')

if and only if the following identities hold:

$$2\tau(a)a + \tau(a^2) = (1+\gamma)a^2; \quad a \in B$$
(3)

$$2\tau^2 - (1+2\gamma)\tau + \gamma I = 0 \quad (I = \text{identity operator}), \tag{4}$$

Note that any τ satisfying (3) is determined by its values on a generating system of the algebra *B*. It also follows from (3) by induction that the powers B^i defined by $B^1 = B$ and $B^i = B^{i-1}B$ ($i \ge 2$) are invariant under τ . The same holds for the ideal An(B) of absolute divisors of zero in *B*.

2. Invariants

In this paragraph we will assume that $\gamma \neq 1/2$ in equation (1'). By (4), if we have a train algebra B' of rank 3, constructed as explained above, the proper values of τ will be 1/2 and/or γ . Decompose $B = B_1 \oplus B_2$ where $B_1 = \ker(\tau - (1/2)I)$, $B_2 = \ker(\tau - \lambda I)$. The linearized form of (3) gives the following relations:

$$B_1 B_1 \subset B_2 \tag{5}$$

$$B_1 B_2 \subset B_1 \tag{6}$$

$$B_2 B_2 = 0.$$
 (7)

To show this, note that if $x_1, x_2 \in B_1$, $\tau(x_1x_2) = (1+\gamma)x_1x_2 - \tau(x_1)x_2 - x_1\tau(x_2) = \gamma x_1x_2$ so (5). (6) is similar. For (7), if $x_1, x_2 \in B_2$, $\tau(x_1x_2) = (1-\gamma)x_1x_2$ so $x_1x_2 = 0$ because $1-\gamma$ is not a proper value. Take now $x = \alpha x_1 + \beta x_2$, $\alpha, \beta \in F$, $x_1 \in B_1$, $x_2 \in B_2$. Then $x^3 = 0$ implies $0 = \alpha \beta^2(x_1x_2)x_2 + \alpha^2\beta x_1(x_1x_2)$. Each component must be zero so:

$$(x_1 x_2) x_2 = 0 (8)$$

$$x_1(x_1x_2) = 0 (9)$$

and the linearized forms

$$(x_1 x_2) y_2 + (x_1 y_2) x_2 = 0 \tag{8'}$$

$$x_1(y_1x_2) + y_1(x_1x_2) = 0. (9')$$

Suppose conversely that the algebra B is given. If a linear mapping $\tau: B \to B$ satisfies (4) and $B_1 = \ker(\tau - (1/2)I)$ and $B_2 = \ker(\tau - \gamma I)$ satisfy the above relations (5),...,(9), then B', defined by (2), satisfies (1').

Idempotents in B' must have weight 1 because B is nil. $(1, a) \in B'$ is idempotent if and only if $2\tau(a) = a - a^2$. Decomposing $a = a_1 + a_2$, $a_i \in B_i$, we are led to the equations

$$\begin{cases} a_1 a_2 = 0\\ a_1^2 + 2\gamma a_2 = a_2 \end{cases}$$

so idempotents have the form $(1, a_1 + (1 - 2\gamma)^{-1}a_1^2), a_1 \in B_1$.

Proposition 1. The function $a_1 \in B_1 \rightarrow (1, a_1 + (1-2\gamma)^{-1}a_1^2)$ is a bijection between the subspace B_1 and the set of idempotents of B'. In particular, the dimension of B_1 is independent of the operator τ used to construct B'. The same holds for the dimension of B_2 .

Definition. The type of B' is the ordered pair of non-negative integers $(1 + \dim B_1, \dim B_2)$.

Algebras having the extreme types are very simple, in any dimension. If the type is (1, n), we take any basis $\{c_1, \ldots, c_n\}$ of B and call $c_0 = (1, 0)$. The table is: $c_0^2 = c_0$, $c_0c_i = \gamma c_i$ $(i = 1, \ldots, n)$ and $c_ic_j = 0$ $(i, j = 1, \ldots, n)$. If the type is (n + 1, 0), we have a similar table with γ replaced by 1/2. This algebra satisfies in fact the equation $x^2 = \omega(x)x$.

Proposition 2. If B' has type (2, n-1), there is a basis $\{c_0, x_1, \ldots, x_n\}$ of B' such that its multiplication table is:

$$c_0^2 = c_0, \quad c_0 x_1 = \frac{1}{2} x_1, \quad c_0 x_i = \gamma x_i \ (i = 2, ..., n), \quad x_1^2 = \varepsilon x_2,$$

where $\varepsilon = 0$ or 1, other products are zero.

Proof. Start with $B_1 = \langle c_1 \rangle$ and $B_2 = \langle c_2, ..., c_n \rangle$. By (5), (6) and (7), $c_1c_j = \lambda_jc_1$ (j=2,...,n), $c_jc_k=0$ (j,k=2,...,n), $c_1^2 \in B_2$. But by (8), $0=(c_1c_j)c_j=\lambda_j^2c_1$ so $\lambda_j=0$. If $c_1^2=0$, we are done. Otherwise replace some $c_j(2 \le j \le n)$ by c_1^2 where possible, permute so that c_1^2 becomes the first vector. This is the case $\varepsilon = 1$.

Other numerical invariants of train algebras B' of rank 3 are the dimensions of the ideals B^i of B'. In fact, B^i is invariant under τ by (3) so it is an ideal in B'. We have $B^2 = B_1 B_2 \bigoplus B_1^2$, $B^3 = ((B_1 B_2) B_2 + B_1^3) \bigoplus (B_1 B_2) B_1$ and so on. For some k, $B^k = 0$ ([1, Theorem 1]). Etherington introduced in [3] the concepts of "nil products" and "nil

R. COSTA

squares" and also the ideal generated by all the nil squares. In our context, this ideal will be $J = B_1 B_2 \oplus B_2$. In fact, the sum $B_1 B_2 + B_2$ is direct by (6) and the relations

$$x_1(u_1u_2 + v_2) = x_1(u_1u_2) + x_1v_2 \in B_2 \oplus B_1B_2$$
$$x_2(u_1u_2 + v_2) = x_2(u_1u_2) \in B_2B_1$$

if $x_1, u_1 \in B_1$ and $x_2, u_2, v_2 \in B_2$, show that J is an ideal of B. As J is obviously invariant under τ , it is an ideal of B'. If J' is the ideal generated by all nil squares $x^2 - \omega(x)x$, for $x \in B'$, then $J' \subset J$. In fact, if $x = (\alpha, a)$, where $a = u_1 + u_2$, $u_i \in B_i$, then $x^2 - \alpha x = 2u_1u_2 + (u_1^2 + (2\gamma - 1)\alpha u_2) \in J$. Let us show that B_1B_2 and B_2 are contained in J'. For the second inclusion, if $u_2 \in B_2$, take $x = (1, u_2) \in B'$, then $x^2 - x = (2\gamma - 1)u_2$, $u_2 \in J'$. If u_1u_2 is a generator of B_1B_2 take $x = (1, u_1 + u_2)$. Then $x^2 - x - (u_1^2 + (2\gamma - 1)u_2) = 2u_1u_2$ and so $B_1B_2 \subset J'$. Hence J = J' and the dimension of J is a numerical invariant of B'.

Remark. $B' \supset B \supseteq J \supset B^2 \supset B^3 \supset \cdots$ (see [4, p. 140]). The only relation to be proved is $J \neq B$. In fact, if J = B then it would follow that $B^2 = B^3$, contrary to Abraham's Theorem 1 of [1].

Remark. Train algebras of rank 3, with $\gamma = 0$, are Bernstein algebras satisfying two additional conditions (see [8, Theorem 9.12] or [4, Theorem XII]). The ideal J coincides, in this case, with the ideal appearing in [8, equation 9.56].

We describe now train algebras of a given type having the smallest possible ideal J, that is $J = B_2$. Consider the set of all triples (B_1, B_2, ψ) where B_1 and B_2 are arbitrary finite dimensional vector spaces over the field F and $\psi: B_1 \times B_1 \rightarrow B_2$ is an arbitrary symmetric bilinear function.

Two triples (B_1, B_2, ψ) and (C_1, C_2, ϕ) are equivalent if and only if there exist bijective linear mappings $v: B_1 \rightarrow C_1$ and $\mu: B_2 \rightarrow C_2$ such that the diagram commutes:

$$B_1 \times B_1 \xrightarrow{\psi} B_2$$
$$\downarrow^{\nu \times \nu} \qquad \downarrow^{\mu}$$
$$C_1 \times C_1 \xrightarrow{\phi} C_2$$

This is clearly an equivalence relation. Given now (B_1, B_2, ψ) we construct a train algebra in the following way. Take in the vector space $B = B_1 \oplus B_2$ the multiplication

$$(u_1, v_1)(u_2, v_2) = (0, \psi(u_1, u_2)); \quad u_1, u_2 \in B_1; \quad v_1, v_2 \in B_2$$

Then $(u, v)^3 = 0$ for all $(u, v) \in B$. Now $\tau: B \to B$ given by $\tau(u, v) = ((1/2)u, \gamma v)$ satisfies (3) and (4) so B' is a train algebra of rank 3, of type $(1 + \dim B_1, \dim B_2)$ and also $J = B_2$. Denote this algebra by $[B_1, B_2, \psi]$. If (B_1, B_2, ψ) and (C_1, C_2, ϕ) are equivalent the corresponding algebras will be isomorphic, $1_F \oplus v \oplus \mu$ being an isomorphism. On the other hand every train algebra of rank 3 with $J = B_2$ is obtained in this way, by taking $\psi: B_1 \times B_1 \rightarrow B_2$ as the product already existing. Moreover two isomorphic train algebras B' and C' must come from equivalent triples. To see this, consider their kernels $B_1 \oplus B_2$ and $C_1 \oplus C_2$. Then B_2 (resp. C_2) is formed by absolute divisors of zero in B (resp. C). An isomorphism from B to C must therefore take B_2 to C_2 . The result follows by passage to quotients. We summarize these results in:

Proposition 3. (a) The train algebras $[B_1, B_1, \psi]$ and $[C_1, C_2, \phi]$ are isomorphic if and only if the triples (B_1, B_2, ψ) and (C_1, C_2, ϕ) are equivalent.

(b) Every train algebra of rank 3 with minimum J is isomorphic to some $[B_1, B_2, \psi]$.

As a particular case, when the type of B' is (r+1,r), the classification of train algebras with minimum J is equivalent to the classification of commutative algebras of dimension r. In another particular case, when the type is (n, 1) and dim J = 1, the problem reduces to the classification of bilinear forms in spaces of dimension n-1.

Proposition 4. If B' has type (n, 1) then dim $J \leq \frac{1}{2}(n+1)$.

Proof. Start with $B_1 = \langle c_1, \ldots, c_{n-1} \rangle$ and $B_2 = \langle c_n \rangle$. Then J is generated by $\{c_n, c_1c_n, \ldots, c_{n-1}c_n\}$. If dim J = 1 + k $(k \ge 0)$ there are exactly k linearly independent vectors in the set $\{c_1c_n, \ldots, c_{n-1}c_n\}$. We may suppose they are c_1c_n, \ldots, c_kc_n . The set $\{c_1c_n, \ldots, c_kc_n, c_1, c_2, \ldots, c_n\}$ which generates B, must contain a basis of the form $\{c_1c_n, \ldots, c_kc_n, c_{i_1}, \ldots, c_{i_{n-k-1}}, c_n\}$. These vectors give a new generating system of J, namely $\{c_{i_1}c_n, \ldots, c_{i_{n-k-1}}c_n, c_n\}$ because $(c_ic_n)c_n = 0$ $(i = 1, \ldots, k)$. Then $k+1 = \dim J \le n-k$ and so dim $j \le \frac{1}{2}(n+1)$.

Proposition 5. For every train algebra B' of rank 3, J^2 is an ideal. If the type of B' is (n, 1) then $J^2 = 0$.

Proof. Clearly J^2 is invariant under τ . As $J^2 = (B_1B_2)B_2 \oplus (B_1B_2)^2$, the following relations show that J^2 is an ideal in B:

$$x_1((u_1u_2)v_2) = -(u_1u_2)(x_1v_2) \in (B_1B_2)^2$$

$$x_1((u_1u_2)(v_1v_2)) = -(u_1u_2)(x_1(v_1v_2)) - (v_1v_2)(x_1(u_1u_2)) \in (B_1B_2)B_2$$

$$x_2((u_1u_2)v_2) = ((u_1u_2)v_2)x_2 \in (B_1B_2)B_2$$

 $x_2((u_1u_2)(v_1v_2)) = 0$

for $x_i, u_i, v_i \in B_i$ (i = 1, 2).

The second assertion: if $B_1 = \langle c_1, \dots, c_{n-1} \rangle$ and $B_2 = \langle c_n \rangle$, then J is linearly generated by $c_1 c_n, \dots, c_{n-1} c_n$ and c_n . The product of any two of these elements is 0 by (8).

3. Train algebras of dimension ≤ 5

The invariants type, dim J and dim B^2 classify train algebras of rank 3 (always $\gamma \neq \frac{1}{2}$) up to dimension 5 or reduce this problem to the classification of other algebraic objects. Etherington proved that every train algebra of rank 3 is special triangular, a gap in his proof was filled by Abraham [1]. Algebras in this paragraph are expressed by means of a canonical basis. Almost all computational details are omitted, to save space.

(I) dim B' = 2. The possible types are (2,0) and (1,1), already discussed, see Proposition 2 and the discussion preceding it.

(II) dim B' = 3. The non-extreme type (2, 1) is covered by Proposition 2, yielding two non-isomorphic algebras.

(III) dim B' = 4. The only type to be considered is (3, 1). The ideal J may have dimension 1 or 2, because $J \neq B$.

(a) dim J = 1. The algebras have already been described by Proposition 3. Every essentially distinct bilinear form in a *F*-vector space of dimension 2 gives an algebra here and conversely.

(b) dim J = 2. The answer is given by the following:

Proposition 6. There is only one, up to isomorphisms, train algebra of type (3, 1) such that dim J = 2.

Proof. If $B_1 = \langle c_1, c_2 \rangle$ and $B_2 = \langle c_3 \rangle$ then J is generated by $\{c_3, c_1c_3, c_2c_3\}$. One of c_1c_3 and c_2c_3 is non-zero, the other is a scalar multiple of it. By symmetry we may suppose $c_1c_3 \neq 0$ and $c_2c_3 = kc_1c_3$, $k \in F$. The set $\{c_1c_3, c_1, c_2, c_3\}$ generates B so it must contain a basis of the form $\{c_1c_3, ?, c_3\}$. There are two possibilities:

(a) $\{c_1c_3, c_1, c_3\}$ is a basis of *B*. The multiplication table of *B*, according to (8) is (on the left):

	$c_{1}c_{2}$	c_1	<i>c</i> ₃		c_0	x_1	<i>x</i> ₂	<i>x</i> ₃
$\begin{array}{c}c_1c_3\\c_1\\c_3\end{array}$	0	0 0	$0 \\ c_1 c_3 \\ 0$	c_0 x_1 x_2	с		$ \begin{array}{c} \gamma x_2 \\ x_3 \\ 0 \end{array} $	0
5			-	x ₃			-	0

Calling $x_1 = c_1$, $x_2 = c_3$ and $x_3 = c_1c_3$, B' is given by the above (on the right) table.

(b) $\{c_1c_3, c_2, c_3\}$ is a basis of *B*. The multiplication table is:

$$\begin{array}{c|ccccc} & c_1c_3 & c_2 & c_3 \\ \hline c_1c_3 & 0 & 0 & 0 \\ c_2 & & \lambda c_3 & kc_1c_3 \\ c_3 & & 0 \end{array}$$

But here J is generated by c_3 and kc_1c_3 so necessarily $k \neq 0$ because dim J=2. From $0=c_2^3=\lambda kc_1c_3$ we get $\lambda=0$. Taking now the basis $\{k^{-1}c_1c_3, k^{-1}c_2, k^{-1}c_3\}$ we get the same table but with 1 in place of k. Introducing now x_i as in case (a) we get B' exactly as in case (a).

(IV) dim B' = 5. There are two non-trivial types to consider : (4, 1) and (3, 2).

(A) Algebras of type (4, 1)

By Proposition 4, $1 \leq \dim J \leq 2$.

A.1. dim J = 1. The algebras have already been described in Proposition 3. They correspond to essentially distinct bilinear forms in spaces of dimension 3 over the field F.

A.2. dim J=2. Take $B_1 = \langle c_1, c_2, c_3 \rangle$ and $B_2 = \langle c_4 \rangle$ so J will be generated by $\{c_4, c_1c_4, c_2c_4, c_3c_4\}$. One of the last 3 vectors must be non-zero and the other 2 must be scalar multiples of it. By symmetry, we may suppose that $c_1c_4 \neq 0$ and $c_2c_4 = k_2c_1c_4$, $c_3c_4 = k_3c_1c_4$, with $k_2, k_3 \in F$. The set $\{c_1c_4, c_1, c_2, c_3, c_4\}$ must contain a basis of the form $\{c_1c_4, ?, ?, c_4\}$. Let us examine the three possibilities.

A.2.1. $\{c_1c_4, c_1, c_2, c_4\}$ is a basis of B. The multiplication table:

	$c_1 c_2$	+ C1	<i>c</i> ₂	C4
c_1c_4	0	0	0	0
c_1		0	0	$c_1 c_4$
c_2			0	$k_{2}c_{1}c_{4}$
C4				0

(In fact, $c_1^2 = \mu c_4$ but $0 = c_1^3 = \mu c_1 c_4$ so $\mu = 0$; $c_1 c_2 = \lambda c_4$ and $c_2^2 = v c_4$ but for all $m, n \in F$, $(mc_1 + nc_2)^3 = 0$ implies $v = \lambda = 0$, an easy calculation.)

Calling now $k_2 = k$, $x_1 = c_1$, $x_2 = c_2$, $x_3 = c_4$ and $x_4 = c_1c_4$ the table of B' is:

	<i>c</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
<i>c</i> ₀	c _o	$\frac{1}{2}x_1$	$\frac{1}{2}x_{2}$	γx_3	$\frac{1}{2}x_{4}$
$c_0 \\ x_1$		0	0	<i>x</i> ₄	0
x_2			0	kx4	0
x_3				0	0
<i>x</i> ₄					0

A.2.2. $\{c_1c_4, c_2, c_3, c_4\}$ is a basis of B, whose table is:

	c_1c_4	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄
<i>c</i> ₁ <i>c</i> ₄	0	0	0	0
c_2		λc_4	μc_4	$k_{2}c_{1}c_{4}$
c_3			VC4	$k_{3}c_{1}c_{4}$
C4				0

where the following relations hold: $\lambda k_2 = vk_3 = \lambda k_3 + 2\mu k_2 = vk_2 + 2\mu k_3 = 0$, a consequence of the identity $x^3 = 0$. We see that J is generated by the set $\{c_4, k_2c_1c_4, k_3c_1c_4\}$ so necessarily $k_2 \neq 0$ or $k_3 \neq 0$. By symmetry we may study only one case, say $k_2 \neq 0$. This implies that in the above table $\lambda = \mu = v = 0$. Introducing now the vectors $x_1 = k_2^{-1}c_2$, $x_2 = c_3$, $x_3 = k_2^{-1}c_4$ and $x_4 = k_2^{-1} c_1c_4$ we get the same table for B' obtained in case A.2.1.

A.2.3. $\{c_1c_4, c_1, c_3, c_4\}$ is a basis of B. This is similar to A.2.1, because the roles of c_2 and c_3 can be interchanged. We summarize the facts:

Proposition 7. Train algebras of type (4, 1) such that dim J = 2 form a one-parameter family, given by the above table of A.2.1.

(B) Algebras of type (3, 2)

We have $2 \leq \dim J \leq 3$ because $J \neq B$.

B.1. dim J = 2. These algebras have already been described in Proposition 3. Every essentially distinct commutative algebra of dimension 2 gives an algebra here. The classification of such bidimensional algebras is a problem of its own interest, see for example [2] and [6].

B.2. dim J = 3. Take $B_1 = \langle c_1, c_2 \rangle$ and $B_2 = \langle c_3, c_4 \rangle$. Then as J is generated by $\{c_3, c_4, c_1c_3, c_1c_4, c_2c_3, c_2c_4\}$ one of the last 4 vectors is non-zero and the remaining 3 are scalar multiples of it. Again by symmetry we may suppose that $c_1c_3 \neq 0$ and $c_1c_4 = k_1c_1c_3$, $c_2c_3 = k_2c_1c_3$, $c_2c_4 = k_3c_1c_3$, $k_i \in F$. The set $\{c_1c_3, c_1, c_2, c_3, c_4\}$ generates B so it must contain a basis of the form $\{c_1c_3, ?, c_3, c_4\}$. There are two possibilities:

B.2.1. $\{c_1c_3, c_1, c_3, c_4\}$ is a basis of B. The multiplication table is:

	$c_{1}c_{3}$	<i>c</i> ₁	<i>c</i> ₃	C4
$c_{1}c_{3}$	0	0	0	0
c_1		$\mu(c_4-k_1c_3)$	$c_{1}c_{3}$	$k_{1}c_{1}c_{3}$
<i>c</i> ₃			0	0
c4				0

(In general. $c_1^2 = \lambda c_3 + \mu c_4$ but $0 = c_1^3 = (\lambda + \mu k_1)c_1c_3$ implies $\lambda = -\mu k_1$.)

The ideal B^2 is generated, as a vector space, by c_1c_3 , $k_1c_1c_3$ and $\mu(c_4-k_1c_3)$ so $1 \leq \dim B^2 \leq 2$.

B.2.1.1. dim $B^2 = 1$. This means that $\mu = 0$. Calling $k_1 = k$, $x_1 = c_1$, $x_2 = c_3$, $x_3 = c_4$ and $x_4 = c_1c_3$ we get the table of B':

	c ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
c_0	<i>c</i> ₀	$\frac{1}{2}x_1$	γx_2	γx ₃	$\frac{1}{2}x_{4}$
x_1		0	x_4	kx4	0
x_2			0	0	0
x_3	{			0	0
$c_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4$					0

B.2.1.2. dim $B^2 = 2$. In this case $\mu \neq 0$. We look now for the new basis $x_1 = \mu^{-1}c_1$, $x_2 = \mu^{-1}c_3$, $x_3 = \mu^{-1}(c_4 - k_1c_3)$, $x_4 = \mu^{-1}c_1c_3$. The table of B' will be, for some $k \neq 0$:

1	<i>c</i> 0	x_1	x_2	x_3	<i>x</i> ₄
$ \begin{array}{c} c_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{array} $	<i>c</i> 0	$\frac{1}{2}x_1$	γx ₂	γx_3	$\frac{1}{2}x_{4}$
x_1		x_3	kx_4	0	0
x_2			0	0	0
x_3				0	0
<i>x</i> ₄					0

B.2.2. $\{c_1c_3, c_2, c_3, c_4\}$ is a basis of B. The table is:

	$c_{1}c_{3}$	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄
$\begin{array}{c} c_1 c_3 \\ c_2 \end{array}$	0	0	0	0
c_2		$\lambda c_3 + \mu c_4$	$k_2c_1c_3$	$k_{3}c_{1}c_{3}$
c_3			0	0
<i>c</i> ₄				0

with $\lambda k_2 + \mu k_3 = 0$, coming from $c_2^3 = 0$. From this table we have J generated by c_3 , c_4 , $k_2c_1c_3$ and $k_3c_1c_3$ so necessarily $k_2 \neq 0$ or $k_3 \neq 0$. By symmetry we may study only the case $k_2 \neq 0$. This means that $c_2^2 = \mu(c_4 - (k_3/k_2)c_3)$. The ideal B^2 is generated as a vector space by the vectors $k_2c_1c_3$, $k_3c_1c_3$ and $\mu(c_4 - (k_3/k_2)c_3)$ so $1 \leq \dim B^2 \leq 2$.

B.2.2.1. dim $B^2 = 1$. This means $\mu = 0$. Calling $k_3 = k$, $x_1 = k_2^{-1}c_2$, $x_2 = k_2^{-1}c_3$, $x_3 = c_4$, $x_4 = k_2^{-1}c_1c_3$, we get for B' the same table already obtained in case B.2.1.1.

B.2.2.2. dim $B^2 = 2$. This means $\mu \neq 0$. Using now the basis of $B x_1 = \mu^{-1}c_2$, $x_2 = \mu^{-1}c_3$, $x_3 = \mu^{-1}(c_4 - (k_3/k_2)c_3)$ and $x_4 = \mu^{-2}c_1c_3$, we get the same table already obtained in case B.2.1.2.

This ends the classification for the case where the type is (3, 2). We have obtained one one-parameter family of algebras when dim J=3 and dim $B^2=1$ and another one-parameter family when dim J=3 and dim $B^2=2$. The invariant dim An(B) can be used to give a little bit more information about isomorphisms between algebras in the same family in the case dim $B^2=1$.

Added in proof: some improvement of this classification will appear in a forthcoming paper by the author in *Linear Algebra and its Applications*.

R. COSTA

REFERENCES

1. V. M. ABRAHAM, A note on train algebras, Proc. Edinburgh Math. Soc. 20 (1976), 53-58.

2. S. C. ALTHOEN and L. D. KLUGER, When is R^2 a division algebra?, Amer. Math. Monthly 90 (1983), 625-635.

3. I. M. H. ETHERINGTON, Genetic algebras, Proc. Roy. Soc. Edinburgh 59 (1939), 242-258.

4. I. M. H. ETHERINGTON, Commutative train algebras of ranks 2 and 3, J. London Math. Soc. 15 (1940), 136-149.

5. P. HOLGATE, Free non associative principal train algebras, Proc. Edinburgh Math. Soc. 27 (1984), 313-319.

6. L. MARCUS, Contributions to the Theory of Nonlinear Oscillations, Vol. 5, Princeton Univ. Press, Princeton, N.J., 1960, 185-213.

7. W. SCHARLAU, Quadratic and Hermitian Forms (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984).

8. A. WORZ-BUSEKROS, Algebras in Genetics (Lecture Notes in Biomathematics, Vol. 36, 1980).

Permanent Address Instituto de Matemática e Estatistica Universidade de São Paulo Caixa Postal 20570—Ag. Iguatemi—CEP 01498 São Paulo, Brazil PRESENT ADDRESS BIRKBECK COLLEGE, DEPARTMENT OF STATISTICS MALET STREET, LONDON WC1E 7HX ENGLAND