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In this article, we consider the modelling of stationary incompressible and isothermal
one-dimensional fluid flow through a long pipeline. The approximation of the average
pressure in the developed model by the arithmetic mean of inlet and outlet pressures
leads to the known empirical Darcy–Weisbach equation. Most importantly, we also
present another improved approach that is more accurate because the average pressure
is estimated by integrating the pressure along the pipeline. Through appropriate
transformation, we show the difference between the Darcy–Weisbach equation and
the improved model that should be treated as a Darcy–Weisbach model error, in
multiplicative and additive form. This error increases when the overall pressure drop
increases. This symptomatic phenomenon is discussed in detail. In addition, we also
consider four methods of estimating the coefficient of friction, assess the impact of
pressure difference on the estimated average flow velocity and, based on experimental
data, we show the usefulness of new proposals in various applications.

Key words: general fluid mechanics

1. Introduction

The pipeline flow process can be defined using a set of parameters related to the
geometry of the pipe in question, fluid parameters and pressure forcing the flow.
Most of these parameters are measurable and remain unchanged during flow. The
coefficient of friction, however, has a very complex origin and depends on various
factors. Therefore, an exact model is required, showing the relationship between the
physical flow parameters and the (Darcy) factor of friction.

Over the years, many models have been proposed that combine the pipe geometry
and the corresponding flow parameters into one equation. One of the most recognized
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empirical and practical laws is the Darcy–Weisbach (DW) equation, whose short
history is in Brown (2003). This equation combines a pressure drop (or head
loss) with the Darcy friction factor, pipe geometry, flow velocity and other fluid
parameters. It was found by Reynolds (1883) that the transition between laminar
and turbulent flow can be evaluated in terms of a certain factor associated with the
flow velocity, the dimension of the considered flow problem and the fluid density
and viscosity. The aforementioned parameters were gathered into one scheduling
variable, called the Reynolds number (Re). Nevertheless, there was still the question
of correct determination of the friction factor. One of the equations dealing with this
problem was proposed by Colebrook (1939). In particular, it can be shown as an
implicit relationship between the friction factor, the Reynolds number and the relative
roughness of the pipe. The above results were jointly presented by Moody on a λ–Re
plot, called nowadays the Moody chart (Moody 1944). It is worth mentioning that
the Moody chart is considered as ±15 % accurate (White 1986). In addition to the
above-mentioned models, the equations of Weymouth, Panhandle A, Panhandle B
and AGA should also be mentioned here (McAllister 2013). The Colebrook equation
gives quite good results; however, it is implicit and requires an iterative procedure to
solve it. Therefore, over time, several authors, e.g. Swamee & Jain (1976), Haaland
(1983) and Romeo, Royo & Monzón (2002), proposed explicit approximations of the
Colebrook equation. For a deeper insight into these approximate models, the reader
is referred to Genić et al. (2011).

In this article, we propose a more accurate approach to one-dimensional flow
modelling in long transmission pipelines, isothermally and incompressibly transporting
fluid. We present a comparison of the proposed model with the DW equation
(empirical, though analytically achievable). The proposed improved model provides a
better basis for the design of pipelines and model-based leak detection and isolation
(LDI) systems.

2. Model of the flow process
Since friction losses are not insignificant, we cannot assume isentropic flow.

Adiabatic conditions can easily be assumed for short and well-insulated pipes. In
the case of long pipes, from many points of view, the problem is much more serious.
Nevertheless, to simplify mathematical judgment, it is most convenient to assume
idealized (which can be justified, for example, by deep pipe laying) isothermal
conditions (Kayode Coker 2007).

With the above findings, let us consider a principal mathematical description
of the pressure and mass flow rate of an incompressible fluid flowing through a
transmission pipeline under isothermal conditions. Such a process can be expressed
by the following two equations resulting from the laws of conservation of momentum
and mass (Billmann & Isermann 1987):

S
ν2

∂p
∂t
+
∂q
∂z
= 0, (2.1)

1
S
∂q
∂t
+
∂p
∂z
=−

λν2

2DS2

q|q|
p
−

g sin α
ν2

p, (2.2)

where S is the cross-sectional area (m2), ν2 (m2 s−2) is a ratio (as shown in
appendix A, it can also be linked to the isothermal speed of sound (m s−1)) of
pressure to density, D is the diameter of the pipe (m), q is the mass flow (kg s−1),
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p is the pressure (Pa), t is the time (s), z is the spatial coordinate (m), λ is the
dimensionless generalized friction coefficient (also known as the Darcy friction factor),
α is the inclination angle (rad) and g is the gravitational acceleration (m s−2).

The model finds its application in model-based LDI systems (Billmann & Isermann
1987; Kowalczuk & Gunawickrama 2004). Through discretization, it is possible
to emulate leak-free operation of a pipe under observation, and then process
residual signals (difference between measurements and model output) to estimate
leak parameters.

2.1. Analytic steady-state solution
Recent research (Kowalczuk & Tatara 2018) shows derivation of steady-state solution
for the system of equations (2.1)–(2.2). In this approach, we begin our considerations
with two assumptions: (a) the time derivatives of pressure and flow rate are zero
(which is equivalent to a constant flow) and (b) the spatial derivative of the mass flow
rate is zero (this rate is constant over the entire length L of the pipe). Then the spatial
pressure derivative can be eliminated by separating its variables and integrating both
sides using boundary conditions (p(z = 0) = pi and p(z = L) = po). In this way one
can obtain explicit formulas for the flow rate in two separate cases: zero and non-zero
inclination angle. Such separation allows us to simplify the derivation.

For the case of zero angle (α = 0), we can write down two modelling equations.
The first model describes the mass flow rate, depending on the sign of the difference
p2

i − p2
o:

q|q| =
DS2

λν2

p2
i − p2

o

L
, (2.3)

where all the parameters on the right-hand side are positive. The above can also be
shown in the following form:

q= sign(p2
i − p2

o)

√
DS2

λν2

|p2
i − p2

o|

L
, (2.4)

where sign(x) is 1 for x > 0 and −1 otherwise.
The second model represents the pressure distribution along the pipe:

p=

√
p2

i −
p2

i − p2
o

L
z. (2.5)

As previously, we solve (2.1) and (2.2) analytically, with the general assumption
of a constant flow, but for a non-zero angle of inclination. In this case (taking into
account the angle of inclination and gravitational acceleration), we obtain a different
set of two modelling equations. Then the flow model (first) is described as

q|q| =
2DS2

λν2

g sin α
ν2

(
p2

i − p2
oe2(g sin α/ν2)L

e2(g sin α/ν2)L − 1

)
, (2.6)

which can be rearranged to directly obtain a flow rate

q=

√∣∣∣∣2DS2

λν2

g sin α
ν2

(
p2

i − p2
oe2(g sin α/ν2)L

e2(g sin α/ν2)L − 1

)∣∣∣∣sign
(

p2
i − p2

oe2(g sin α/ν2)L
)
. (2.7)
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The second/pressure model has the form

p=

√
e−2(g sin α/ν2)zp2

i +

(
p2

i − p2
oe2(g sin α/ν2)L

e2(g sin α/ν2)L − 1

)
(e−2(g sin α/ν2)z − 1). (2.8)

We have shown two sets of equations: for a zero and a non-zero angle of inclination.
The first case is covered by (2.4)–(2.5) while the other is represented by (2.7)–(2.8).
In both cases, easier-to-use, square forms binding mass flow and pressure, (2.3) and
(2.6), respectively, can also be used.

3. Derivation of the flow model
The steady-state model introduced above provides the analytical relationship of the

most essential flow parameters. It is therefore the basic analytical tool for a pipeline
engineer. In the following we show how this model relates to the DW equation.

Recall that in the dynamics of incompressible fluids, the DW equation is known as
the empirical equation that links the loss or gradient of pressure due to the resistance
(friction) along the pipeline to the average flow velocity:

∇p= λ
L
D
ρu2

2
, (3.1)

with u being the average flow rate (m s−1), ρ the fluid density (kg m−3) and ∇p=
pi − po for p = [pi po]

T meaning a vector in the forcing pressure domain (plane
(pi, po)).

Let us reconsider the flow model (2.3) for steady-state mass flow rate and zero
inclination angle:

q|q| =
DS2

λν2

p2
i − p2

o

L
. (3.2)

Assuming that the mass flow is positive and inserting q= ρSu in (3.2), we obtain

ρ2S2u2
=

DS2

λν2

p2
i − p2

o

L
, (3.3)

which further leads to

p2
i − p2

o =
λν2Lρ2u2

D
. (3.4)

As described for (2.2), the simple factor ν (m s−1) represents the root of the ratio
of pressure p to density ρ:

ν =

√
p
ρ
. (3.5)

In the case of isothermal and incompressible flow of gases, the above expression
(which should also include heat capacity if it has a high value for a given gas)
results in a factor which can be directly attributed to the speed of sound (the related
discussion can be found in appendix A).

Consequently, the use of the above factor in (3.4) gives the following functional
version of the isothermal steady-state fluid flow model (2.3):

p2
i − p2

o

p
= λ

L
D
ρu2, (3.6)

which will be further transformed.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

13
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.131


Improved model of isothermal and incompressible fluid flow 891 A5-5

3.1. Approximate approach and the DW model
Let us approximate the reference pressure by means of the arithmetic mean as p ≈
(pi + po)/2, and rewrite the difference of square pressures (p2

i − p2
o) as ∇p(pi + po).

Then (3.6) obtains the following form:

2∇p(pi + po)

(pi + po)
= λ

L
D
ρu2. (3.7)

Hence, the steady-state flow model appears as the known DW equation for ∇p:

∇p∂ = λ
L
D
ρu2

2
. (3.8)

Let us summarize here: in the above way we derived the exact form of the DW
equation for incompressible fluids in constant isothermal flow using an arithmetic-
mean approximation p≈ (pi + po)/2, which is suitable, for instance, for small pressure
differences occurring in short pipes.

3.2. Precise, integral-mean approach
Because the longitudinal distribution of pressure is nonlinear (2.5), a better estimation
of the mean pressure can be obtained by integrating this distribution along the spatial
coordinate and then dividing the result by the pipe length L. Then the integral-mean
reference pressure can be given as

p=

∫ L

0

√
p2

i −
p2

i − p2
o

L
z dz

L
. (3.9)

The integral in the above numerator can be determined as follows:∫ L

0

√
p2

i −
p2

i − p2
o

L
z dz=−

2
3

L
p2

i − p2
o

(
p2

i −
p2

i − p2
o

L
z
)3/2

∣∣∣∣∣
z=L

z=0

, (3.10)

which ultimately gives the following precise (integral) reference pressure:

p=
2
3

p3
i − p3

o

p2
i − p2

o

=
2
3

p2
i + pipo + p2

o

pi + po
. (3.11)

For comparative purposes, the reference pressure obtained in both approaches
(approximate/arithmetic and precise/integral) is shown in figure 1.

Applying the integral-mean pressure to (3.6) leads to the following equation:

∇pP∂ = λ
L
D
ρu2 2

3
(p2

i + pipo + p2
o)(pi − po)

(pi − po)(pi + po)2
, (3.12)

which will be called a precise model (PM). It should be recalled that this is the correct
flow model in the steady state under isothermal and incompressible conditions.

Commentary. It is significant that with small differences in pressure, both approaches
(approximate and precise) converge, that is, the DW equation is consistent with our
PM. In general, small pressure differences are attributed to short pipes or those with
a large diameter (in such cases a smaller pressure difference is required to push the
same amount of fluid through the pipe in the same time).
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FIGURE 1. Reference pressure calculated as (a) the arithmetic mean (DW) and (b) the
integral mean (PM) over the pressure plane p.

3.3. Differences between the models
Let us now limit our discussion to a simple mathematical concept of estimating the
difference between the DW equation and the proposed PM equation. We can approach
the problem of modelling such differences in two ways: multiplicative and additive.
Practically, these differences should be treated as errors of the DW model.

3.3.1. Multiplicative view
Model (3.12) can be rearranged to get a form similar to the DW equation:

∇pP∂ = λ
L
D
ρu2 2

3
(p2

i + pipo + p2
o)

(pi + po)2
, (3.13)

∇pP∂ = λ
L
D
ρu2

2
4
3
(p2

i + pipo + p2
o)

p2
i + 2pipo + p2

o

= λ
L
D
ρu2

2
κ(p), (3.14)

where κ(p) is a pressure-dependent scaling/proportionality coefficient, or a multipli-
cative corrector in relation to the original DW equation.

3.3.2. Additive view
It is worth calculating the simple difference between the two models for ∇p:

∇pP∂ −∇p∂ = λ
L
D
ρu2

2
ε(p), (3.15)

where, taking advantage of (3.14), we can enter a factor ε(p) defined as

ε(p)= κ(p)− 1. (3.16)

It is therefore obvious that ε(p) is another pressure-dependent factor, which can be
used to assess the additive error of the DW equation in relation to the PM equation.
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3.4. Conclusions from the obtained steady-state flow models
This section has shown two approaches to modelling the steady-state incompressible
fluid flow in pipelines under isothermal conditions. First, we developed an approximate
approach that leads to the DW equation. In addition, we proposed another approach,
within which we obtained a PM for estimating the pressure drop in the pipe. We also
showed two methods of estimating the differences (error) between the models, which
will be discussed in more detail in the next section.

4. Error analysis

The analytic differences between the two models considered above as the error of
the DW equation will now be subject to a more detailed analysis.

4.1. Multiplicative error
The multiplicative error κ(p), describing the discrepancy between the models
according to (3.14), can be shown as

κ(p)=
4
3

(
1−

pipo

p2
i + 2pipo + p2

o

)
. (4.1)

As mentioned above, the value of κ(p) depends on the pressure, which is why the
entire PM (3.14) is implicit.

The coefficient κ(p) gives us quantitative information about the extent of the
necessary correction of the pressure drop obtained from the DW model, relative to
the exact PM. Perhaps a more informative form is to present this incompatibility in
the following relative way:

η(p)=
∇pP∂ −∇p∂

∇pP∂
=
κ(p)− 1
κ(p)

=
ε(p)
κ(p)

. (4.2)

The relative error η(p) of the DW equation in relation to the PM for any pipeline
geometry is shown in figure 2 as a two-dimensional plot, and in figure 3 as a
three-dimensional graph. From these figures we can see that the DW equation
underestimates pressure drop, and that for a large drop between (accordingly squared)
inlet and outlet pressures the relative error η(p) reaches about 25 % and follows a
symmetric pattern.

One can observe ten levels of the error marked in figure 2, which lie in the areas
between the two lines (under the appropriate sector angles to the white line). This
chart should be interpreted as a strict dependence of the multiplicative error in relation
to the inlet and outlet pressures. For example, to maintain a 2.5 % relative error, we
must meet the following pressure condition: 0.56 < pi/po < 1.77 (allowing a return
transfer). Similarly, in order to keep the level of this error at 10 %, the following, a
more relaxed limitation, should be observed: 0.27< pi/po < 3.73.

4.2. Additive error
It would also be interesting to take a look at a more important quantity, from the
engineering viewpoint, the additive DW error taken as the difference between the two
models measured in given units (pascals or bars).
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FIGURE 2. Relative multiplicative error η(p) as a function of pressure drop, calculated on
the basis of the DW model and PM (white line indicates singularity of the error in the
absence of pressure drop).

Having the absolute/true multiplicative error κ(p) as (4.1), we can easily calculate
the factor of (3.15), ε(p)= κ(p)− 1, which reflects additive error and gives us at least
the rate of the difference between the PM and DW model (in terms of the resulting
pressure drop). The difference can be calculated as

ε(p)= κ(p)− 1=
4
3

(
1−

pipo

p2
i + 2pipo + p2

o

)
− 1=

1
3
−

4pipo

3(pi + po)2
. (4.3)

Eventually, we get the following final form of the additive error factor:

ε(p)=
pi − po

3(pi + po)
. (4.4)

Clearly, to obtain the true value of the pressure difference according to (3.15), the
coefficient ε(p) should be appropriately scaled using the physical parameters of the
pipeline flow appearing in the expression λ(L/D)(ρu2/2). As a result, the simple
difference between the models is

e(p)=∇pP∂ −∇p∂ = λ
L
D
ρu2

2
ε(p). (4.5)

Since u = q/ρS and the mass flow rate is given by (2.3), we obtain the following
additive error:

e(p)= λ
L
D
ρDS2(p2

i − p2
o)

λLν22S2ρ2
ε(p), (4.6)
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FIGURE 3. Three-dimensional plot of the relative multiplicative error η(p) as a function
of pressure drop, calculated using the DW model and PM (white line denotes singularity
of the relative index for zero pressure drop).

which after simplifications leads to

e(p)=
(p2

i − p2
o)

2ν2ρ
ε(p). (4.7)

It should be noted that in the above error formula there are no pipe parameters
(depending on the experiment) and that it only depends on the pressures and fluid
density. Taking into account equation (3.5), we can further simplify (4.7) to its pure
pressure function

e(p)=
(p2

i − p2
o)

2p
ε(p). (4.8)

The substitution of p from (3.11) and ε(p) from (4.4) in the above form of the
additive error leads to

e(p)=
3
2

p2
i − p2

o

p3
i − p3

o

(p2
i − p2

o)

2
pi − po

3(pi + po)
, (4.9)

e(p)=
1
4

(p2
i − p2

o)
2

(pi − po)(p2
i + pipo + p2

o)

pi − po

(pi + po)
, (4.10)

e(p)=
1
4
(pi − po)(p2

i − p2
o)

(p2
i + pipo + p2

o)
. (4.11)

Thus, it can be seen that the additive error of the DW model is independent of the
flow geometry (physics) factor Πg introduced in Kowalczuk & Tatara (2018) as

Πg =

√
λL
D
. (4.12)
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FIGURE 4. Additive error e(p) of the pressure drop calculated using the DW model.

It is important that only the generic (driving) pressures affect both the pressure
drop and the additive error of the DW model. However, for example, the scale of
the pipeline has no effect on this. In other words, for the same fluid in two different
pipes, driven by identical inlet and outlet pressures, the DW error effect will be the
same. The additive error e(p) is shown in figure 4 as a two-dimensional graph, and
in figure 5 as a three-dimensional chart.

Figure 4 is similar, although it represents a different measure and is somehow
moved in relation to figure 2. It is instructive to say that for the additive difference,
we cannot draw straight lines that provide a certain level of error, as was possible in
figure 2. The three-dimensional chart in figure 5 shows that the additive error evolves
smoothly under the influence of pressure drop variations, while the multiplicative
error of figure 3 is characterized by abrupt changes, especially in the area of low
pressures.

5. Experimental considerations

In order to practically justify the correctness of the presented results, an experimental
study was carried out, including measurements of flow and pressure for known
parameters of fluids and pipes. To preserve the impartiality of this study, instead of
doing our own experiments, we used measurements available in the literature.

The problem with showing the consistency of our results is that the value of the
friction factor is not precisely known, although the Moody diagram may be used
to estimate it. Most often, this value is estimated in a way that compensates for
modelling and measurement errors. Therefore, the friction factor may in practice
deviate from its actual value (Billmann & Isermann 1987).
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FIGURE 5. Three-dimensional plot of the error e(p) of the DW equation determining the
pressure drop.

Adiutori (2009) proposed to abandon the use of the friction factor and the Moody
chart in known forms and provided a set of equations describing the flow and a
transformed chart. In addition, in McGovern (2011), the author cites Moody’s words
that ‘it must be recognized that any high degree of accuracy in determining f is not
to be expected’ (where f is the friction factor, denoted here as λ). On the other hand,
in LDI systems the coefficient of friction is vital in determining the parameters of the
leak and affects the accuracy of the results.

5.1. Friction factor estimation
Below are described four methods for estimating the friction factor using physical–
mathematical relationships.

The first two methods are related to the compounds derived in this article, which
require measurements of flow and pressure (inlet and outlet). Let us start with the
solution (3.6) relative to λ:

λ=
D
L

p2
i − p2

o

ρu2p
. (5.1)

In our experiment, in the above formula, the parameters are either fixed (D, L and ρ)
or measured (pi, po and u), except the reference pressure p. Let us use p appropriate
for the approximate approach, which leads to the friction factor corresponding to the
DW equation, which we denote as case (i):

λ∂(p)=
2D
L

p2
i − p2

o

ρu2(pi + po)
=

2D
L

pi − po

ρu2
. (5.2)
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Instead of using the approximate mean reference pressure, we can apply the precise
value associated with the PM equation, which leads to λ assigned to case (ii):

λP∂(p)=
2D
L

pi − po

ρu2κ(p)
. (5.3)

According to the above discussion on problems with the friction factor (in the above
two cases (i) and (ii) also), in practice such a friction factor is applied that matches
both the measurement data and the adopted model. This can directly lead to a biased
estimation of the flow rate (used for volume balancing or parity equations) in the event
of a leak. Therefore, in sensitive cases it is more rational to use the exact Colebrook
relationship (White 1986), which binds the coefficient of friction:

1
√
λ
=−2 log10

(
ε

3.7D
+

2.51

Re
√
λ

)
, (5.4)

where ε is the roughness height (m) and Re is the dimensionless Reynolds number
defined as

Re=
ρDu
µ
=

Dq
Sµ
, (5.5)

in which µ is the dynamic viscosity of the fluid (Pa s).
The concept of friction factor is very important and is therefore widely used in

practice. Over the years, many explicit patterns (Brkić 2011) approximating the
implicit formula (5.4) have been proposed. Nevertheless, a sufficiently accurate and
explicit formula has not been developed. Therefore, the next part of this work presents
such a solution.

To solve the implicit equation (5.4) for the friction factor, first let us put the
Reynolds number (5.5) into (5.4):

1
√
λ
=−2 log10

(
ε

3.7D
+

2.51Sµ

Dq
√
λ

)
. (5.6)

Now, using u= q/ρS in (5.1), we can determine the mass flow as

q=

√
ρS2D

L
p2

i − p2
o

λp
(5.7)

and consequently, inserting the above in (5.6), we get the following result:

1
√
λ
=−2 log10

(
ε

3.7D
+

2.51Sµ
√

Lp

D
√
ρS2D(p2

i − p2
o)

)
, (5.8)

which is explicit and independent of q. Thus, only the pressure measurements and the
pipe and medium parameters are needed to determine the friction factor (and iteration
is not required). Although two parameters, the roughness and viscosity of the fluid, are
quite difficult to accurately estimate, this formula should be considered to be more
objective and closer to reality. Equation (5.8) can be further converted to yield an
explicit form of the friction factor:

λ=

(
−2 log10

[
ε

3.7D
+

2.51µ
√

Lp√
ρD3(p2

i − p2
o)

])−2

. (5.9)
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On the basis of (5.9) (compare model (5.1)) we can derive two other formulas for λ
using the two previously applied reference pressures.

Taking the approximate equation we get another standard case (iii):

λC∂(p)=

(
−2 log10

[
ε

3.7D
+

2.51µ
√

L√
2ρD3(pi − po)

])−2

, (5.10)

while the precise reference pressure leads to the following improved case (iv):

λCP∂(p)=

(
−2 log10

[
ε

3.7D
+

2.51µ
√

Lκ(p)√
2ρD3(pi − po)

])−2

. (5.11)

The two estimates (5.10) and (5.11), referring to DW and PM, can be used to
determine the flow q, but with the limitation characteristic of the Colebrook formula
that Re> 4000. Clearly, in both solutions one can use either the dynamic viscosity µ
or the kinematic viscosity v =µ/ρ.

It is worth noting that the presented methodology can be applied even to other
implicit formulas derived/invented to calculate the coefficient of friction. However, it
should be remembered that such a relationship should have one of the following three
equivalent forms: λ= f (u

√
λ), λ= f (q

√
λ) or λ= f (Re

√
λ).

5.2. Ratings dependent on friction
In LDI systems based on mass or volume balancing, the flow rate resulting from
the applied model is compared to the appropriate measured variable. This allows the
generation of residual signals that provide symptoms and other information necessary
to determine the size of a leak. In view of this, let us now consider the flow rate
estimates resulting from the DW and PM approaches.

Note that in all four cases (i)–(iv), represented by (5.2), (5.3), (5.10) and (5.11),
the friction factor λ is a function of the inlet and outlet pressures that may vary (e.g.
due to leakage). Therefore, more accurate estimates of λ can improve the results of
diagnostic procedures.

Let us introduce a new instrumental variable ξ describing the pressure ratio (type
of relative excitation) for the DW model first:

ξ =
pi

po
. (5.12)

Note that ξ = 1 means that po = pi, and ξ →∞ denotes situation where pi→∞ or
po→ 0. As a consequence, all possible situations are included in the range ξ ∈ [1,∞).
With this notation in mind, let us now analyse the impact of the calculation method
on the estimated flow rate u.

On the basis of the DW equation (3.8) we obtain

pi − po = λ
L
D
ρu2

2
, (5.13)

u∂ = u∂(p)=

√
2(pi − po)D
λLρ

. (5.14)
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To show the precise flow rate computation, let us take (3.12)

pi − po = λ
L
D
ρu2 2

3
(p2

i + pipo + p2
o)

(pi + po)2
(5.15)

and present it as a function of the pressure ratio ξ from (5.12):

pi − p0 = λ
L
D
ρu2

2
4
3
(ξ 2
+ ξ + 1)
(ξ + 1)2

= λ
L
D
ρu2

2
κ(ξ), (5.16)

where κ(ξ) = 4
3(1 − ξ/(ξ + 1)2)|ξ=pi/po

= κ(p) (with a little symbol abuse). This
ultimately leads to a precise pressure-dependent estimation of the flow rate as

uP∂(p)= uP∂(ξ)=

√
2(pi − po)D
λLρ

√
1
κ(ξ)
=

u∂
√
κ(ξ)

, (5.17)

and υP as a ratio of the above two velocities can be considered as another pressure-
dependent scaling coefficient or a necessary multiplicative corrector in relation to the
DW computation of (5.14):

υP =
uP∂

u∂
=

1
√
κ(ξ)

. (5.18)

The flow rate corrector υP(ξ) is depicted in figure 6.

5.3. Experimental study
In order to support our previous considerations with practical results, we will show
the application of the discussed methods to experimental data. It is worth noticing
that both experiments consist of two parts: (i) stationary flow without leakage and
(ii) stationary flow with leakage. There is a short transient between these two
phases, which is, however, irrelevant from the point of view of system (diagnostic)
applications.

5.3.1. Experiment 1
First, let us consider the experimental data from the work of Espinoza-Moreno,

Begovich & Sanchez-Torres (2014) (retrieved from a digital copy of the paper; the
data do not have to be fully consistent). The experiment was carried out on a pipeline
with the characteristics of D = 0.06271 (m) and L = 88.28 (m), while the pressure
head and volumetric flow rates were measured at the inlet and outlet of the pipe. In
addition, the authors specified the other parameters as ρ = 993.054 (kg m−3), ε =
7× 10−6 (m), v = 6.8817× 10−7(m2 s−1) and T = 37.72 (◦C). The Reynolds number
for this experiment can be calculated from (5.5); it lies in the range 2.44× 105–2.53×
105 with relative pipe roughness ε/D= 1.12× 10−4, which indicates that the flow is
turbulent.

For our analysis, we need to convert the pressure head h to the pressure p= ρgh,
and the volume flow V to the mass flow rate according to q = ρV . The converted
measurement data are shown in figures 7 and 8. Note that the measurements contain
also the symptoms of a leak occurring at time tL ≈ 30 (s), which is not necessary in
this analysis, but shows the important properties of our estimator.
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FIGURE 6. Plot of υP(ξ), the ratio of PM and DW estimates of the flow rate as a function

of the relative pressure ξ . The dashed line indicates the asymptote at the value υP =

√
3
4

for ξ→∞.

As a consequence of what can be seen in figures 2, 3, 4 and 5, this experiment
(with ξ = 1.7

0.85 = 2), although placed in close proximity to the origins of the pressure
plane in figure 1, results in a quantitative difference between the two reference
pressures (DW and PM), as shown in figure 8.

Now we can simulate the use of recorded measurements in accordance with
formulas (5.2)–(5.3) and (5.10)–(5.11) and estimation of the corresponding values of
the friction factor. The obtained run-time results are presented in figure 9.

We can observe that the two friction factors estimated using the DW and PM
approaches are realistically noisy and clearly distant from each other. Whereas in
the sense of the friction factor, the values estimated using the Colebrook approach
are closer to each other. Moreover, the obtained trajectories of λ are quite smooth,
as if they were low-pass filtered. Note that for the initial, faultless period in this
experiment, the presumed true value resulting from Colebrook calculations lies
between the approximate DW and PM estimates. What is very important is that
the Colebrook estimates practically do not change after the leak occurs (which also
indicates the rationality of Colebrook), while a significant change (of the order of
2 %) in the value of λ is obtained by means of the approximate approaches (DW and
PM).

According to (5.3), with κ(ξ) as the factor of proportionality, the DW friction
coefficient is greater than (proportional to) the PM friction coefficient:

λ∂ = λP∂ κ(ξ). (5.19)
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FIGURE 7. Measurements of the inlet and outlet mass flow rates for experiment 1.
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FIGURE 8. Measurement of inlet and outlet pressures for experiment 1 with reference
pressures calculated using PM and DW (note that the model difference is more visible
than in figure 1).
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FIGURE 9. Friction factor estimated using (5.2), (5.3), (5.10) and (5.11) as a result of the
first experiment.

What is opposed to the above (and to some extent surprising) is that, according
to (5.11), the Colebrook PM friction coefficient is greater than the Colebrook DW
friction coefficient, with some function of κ(ξ) as a proportionality factor:

λCP∂(p)= λC∂ fC(p), (5.20)

where fC(p) is a nonlinear (Colebrook) proportionality function resulting from (5.11).

5.3.2. Experiment 2
To provide more practical results, a different set of experimental data of recorded

pressure and flow-rate measurements shown in figures 10 and 11 were taken from
Torres et al. (2011), and the technical details of the pipeline were taken from Garcia,
Leon & Begovich (2009). Consequently, the following parameterization was used:
D = 0.0635 (m), L = 85 (m), ρ = 1000 (kg m−3), ε = 7 × 10−6 (m). The resulting
estimation of the friction factor using the four methods is shown in figure 12.

There was some uncertainty associated with the kinematic viscosity value, which
in Garcia et al. (2009) is described as v = 1.02 × 10−6 (m2 s−1), while in Navarro
et al. (2017) this value is given as v = 2 × 10−6 (m2 s−1) for apparently the same
pipe. Thus, because the temperature of the experiment is unknown, and viscosity can
not be determined unambiguously, the possible estimation error is depicted in the
graph (figure 12) as a shaded zone (band). For better reference and visualization,
the higher viscosity value was used in the Colebrook estimates. In this experiment,
the Reynolds number was recalculated using (5.5). The range of this parameter was
4.03 × 104–8.55 × 105 at relative pipe roughness ε/D = 1.1 × 10−4, which again
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FIGURE 10. Measurements of the inlet and outlet mass flow rates for experiment 2.

means turbulent flow. The Reynolds number distribution, in this case, results from the
discussed uncertainty of kinematic viscosity.

Again, we observe that the friction factors obtained from the Colebrook estimations
change less than the other two, that is, respond less to leakage (tL≈ 130 s). Note that
in the non-leakage case, the friction assessment resulting from the exact model (PM)
appears to be closer to the supposed real value than that obtained from DW. Note
that here the lower boundary of the Colebrook-estimated friction coefficient is around
0.019, while in Garcia et al. (2009) the authors assume λ= 0.0187 as the actual value.

5.4. Conclusions from the presented experiments
We have shown four methods for determining the coefficient of friction: two of them
(DW and PM) match this value to measured data, while the other two (related to
the Colebrook equation) are a combination of the generic Colebrook equation and the
flow steady-state equation. In this case, the difference in the estimated flow velocity
resulting from the application of the two analysed fundamental approaches (PM and
DW) has been determined.

We applied the four calculation models (estimations) for the friction factor in
relation to two different sets of experimental data. The relationship between the
resulting estimates of λ has been discussed, showing the advantages of using the
Colebrook approach.

Relevant values of the Reynolds number and relative pipe roughness, indicating
turbulent behaviour, were provided for both experiments.

Analysis of figures 9 and 12 leads to the conclusion that estimates based on
Colebrook (5.10) and (5.11) are more robust to the technical parameters of the pipe
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FIGURE 11. Measurements of inlet and outlet pressures for experiment 2 (reference
pressures calculated using PM and DW are also indicated).

and pressure changes, including those resulting from a leak. It is also important that
the obtained estimates are characterized by a high degree of smoothing (reminiscent
of low-pass filtration), resulting from logarithm and the inverse of the square root.

The proposed Colebrook-based estimation methods are therefore more robust to
faults than the simple DW or PM approaches. However, it should be remembered
that they require better knowledge of the process (additional parameters are required:
roughness ε and viscosity v). We have also shown that with the simple DW and PM
estimates of the friction factor, DW overestimates the value of λ, whereas on the
basis of the Colebrook equation, the DW approach underestimates λ.

We can therefore conclude that the PM method can be effectively used instead
of the DW method to more accurately represent the flow and pressure relationships.
However, there is a problem with the coefficient of friction, which is usually unreliable
and is rather used to mask model uncertainty and modelling errors.

The kappa function κ(ξ), which is a pressure-dependent function and is the basis
of the analysis used in this work, represents the multiplicative pressure corrector (4.1)
of the original DW equation of (3.8) and plays several functional roles in defining
multiplicative and additive errors (3.14) and (3.16), estimating the friction factor (5.2)
and (5.11) or flow rate (5.17), based on the associated flow-rate corrector υP of (5.18).

A small difference between the ratings of the reference pressure in figures 9 and
12 can be explained by the course of the kappa function shown in figure 13, which
reflects the run of the kappa function as well as its enlarged initial part.
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FIGURE 12. Friction factor estimated using (5.2), (5.3), (5.10) and (5.11) for the second
experiment (shaded area indicates the distribution of the Colebrook PM estimations of the
friction coefficient resulting from viscosity uncertainty).

6. Conclusion
This article presents a steady-state isothermal flow model for transmission pipelines

calculated in two ways. The first approach of an approximate nature led us to the well-
known DW equation. By using a precise approach based on the appropriate calculation
of the mean pressure in the pipe, we derived a precise steady-state model (PM).

We also presented two, multiplicative and additive ways of assessing the differences
between the considered models. We showed that for higher pressure differences the
DW equation underestimates the pressure drop. Moreover, we have proved that the
error of the DW model is independent of the geometric factor of the pipe and
that only the pressure difference affects this error (i.e. the difference between the
estimates of the model). Obviously, as usual in such cases, one should remember the
assumptions regarding the incompressibility of the fluid and the isothermal nature of
the flow process.

We note that the assumption in our considerations that the coefficient of friction is
constant can be practically solved by online estimation. In consequence, any possible
discrepancies in its constancy can be compensated on an ongoing basis by using the
estimated coefficient of friction (which will then also represent a certain overall fit
factor of the model).

Since the concept of the friction factor is extremely important and widely used
in practice, many explicit formulas have been proposed that approximate the implicit
formula of Colebrook (a few of which are those of Swamee and Jain, Haaland, Brkić,
Romeo, Rao and Buzzelli). However, to date, no sufficiently accurate and explicit
formula has been developed. Note that our result is just of this type. We should also
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FIGURE 13. Generic function κ(ξ) along with the parameters of the two experiments.

note that our methodology for solving the problem of implicitness of the Colebrook
pattern can also be applied to other analytic forms of the friction factor relationships
(having, however, one of the following equivalent forms: λ= f (u

√
λ), λ= f (q

√
λ) or

λ= f (Re
√
λ)).

Four methods of estimating the friction coefficient were presented in support of
our considerations. The effect of the pressure difference on the estimated mean
flow velocity was assessed. Two sets of experimental data were used to show the
suitability of our proposals in various applications. Certainly, the possibility of using
the procedure for estimating the coefficient of friction should be further investigated.

It is worth noting that the derivation of a constant flow does not include any
calculations in the discrete domain (neither in space nor in time), and is based only
on the assumption that time derivatives of pressure and flow reach zero values. Due
to the above, the solutions obtained are completely unambiguous and we can say that
they describe the actual steady state (within the accepted theory).

Note also that for gases, ν can be treated as the velocity of sound and roughly
considered a constant parameter. In the case of liquids, this assumption is generally
not correct, as indicated in the discussion of this phenomenon in appendix A.

The obtained results of the steady-state flow process model can be used, for
example: (i) for online estimation of the coefficient of friction; (ii) in the pipeline
design process, when the unknown parameters are adapted to the required flow
assumptions; and (iii) in model-based LDI systems.

It is also worth noting that the presented experiments consisted of two parts:
(i) stationary flow without leakage and (ii) stationary flow with leakage. Of course,
between these two phases, there is a short transient state, which, however, does not
matter from the point of view of the diagnostic system application.
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Appendix A. Note on sound speed and bulk modulus
As mentioned earlier, under some circumstances the factor ν given in (3.5) can

be related to the speed of sound in fluids. Note, however, that this approximate
interpretation, applied by Isermann (1982) (see also Isermann (1984) and White
(1986)) when deriving the base model (2.1)–(2.2), is only suitable for ideal
incompressible gas flows.

In general, using the Newton–Laplace formula (Wang et al. 2017) with the bulk
modulus K, the velocity of sound in fluids can be given as

ν =

√
K
ρ
. (A 1)

For all fluids the isentropic bulk modulus K can be defined as (White 1986)

K = ρ
∂p
∂ρ
, (A 2)

which used in (A 1) leads to

ν =

√
∂p
∂ρ
. (A 3)

To simplify the discussion below, let us focus on the expression ∂p/∂ρ, separately for
gases and liquids.

A.1. Gaseous media
At high temperatures and low pressures, all gases comply with the perfect gas law
(White 1986), using the universal gas constant R:

p= ρRT. (A 4)

Assuming that R and T are approximately constant and independent of density and
pressure, we can determine the derivative

∂p
∂ρ
≈ RT. (A 5)

According to (A 4), RT = p/ρ, and we can conclude that the following approximation
applies: ∂p/∂ρ ≈ p/ρ. It can thus be seen that for gases at low pressure and high
temperatures the following approximate rule applies:

K ≈ p. (A 6)

Another way to justify approximation (A 6) is based on the definition of the bulk
modulus using a heat capacity factor γ :

K = γ p. (A 7)
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For perfect gases in isothermal conditions γ = 1, whereas in general γ is greater
than 1. What is more, the bulk modulus used in (A 1) to calculate the ‘sound velocity’
occurs under the square root function, so the γ ∼= 1 effect is additionally suppressed,
which means we can write the following:

ν =

√
∂p
∂ρ
=

√
K
ρ
≈

√
p
ρ
, (A 8)

which also leads to the previously determined approximation

K ≈ p. (A 9)

Both methods, in the case of the isothermal and incompressible flow of gases, lead
to the speed of sound (3.5) in gaseous media. In general, however, the coefficient ν
can only be treated as a surrogate of sound speed; it is expressed in units of speed,
but should not be identified with the speed of sound in fluids.

Note that the approximate equality p/ρ = ∂p/∂ρ is a special case of the Clairaut
equation, with the linear solution p(ρ) = Cρ for the constant C = RT (see (A 4) or
White (1986)), which can be referred to a gas phase characteristic of relatively low
pressure and relatively high temperature (relative to a critical point). Then it is certain
that the pressure changes linearly with the density, p/ρ = C, and also ∂p/∂ρ = C.
In addition, in the general case of monotonic relationships in a vicinity of zero,
the high pressure-to-density ratio (p/ρ) also produces a large derivative there. It is
instructive to see that at low pressure in the range of 1–100 bar the ratio p/ρ is
about 105–107 (m2 s−2), while ∂p/∂ρ (square of actual sound velocity) is also in a
similar range of 104–106 (m2 s−2).

A.2. Liquid media
The above approximation (∂p/∂ρ ≈ p/ρ, and therefore K ≈ p) can be used for
incompressible fluid flows only at very high pressures (from 1000 to 100 000 (bar),
depending on the fluid). In practice, therefore, we cannot use it for liquids. This
statement can easily be justified by the fact that bulk moduli for liquids have the
same order of magnitude (108–1010 (Pa)). Therefore, for the above approximation
(K ≈ p) to be met, such very large pressures would be necessary.

It is also worth noting that in the case of liquids we do not have such a
high pressure-to-density ratio p/ρ (it roughly reaches values in the range of
102–104 (m2 s−2)), while ∂p/∂ρ (which should not be identified with the square
of sound speed) has much higher values (in the range of 106–107 (m2 s−2)). This
means that in the case of liquids both quantities are definitely different (and not
comparable).

Note that this consideration does not invalidate the correctness of the underlying
discussion and pressure ranges used in this work, because the factor ν shown in (3.5)
does not need to be related to the speed of sound.

Appendix B. Note on compressibility
In general, the assumption of incompressibility of the analysed experimental case

is associated with a practical limitation imposed on the flow velocity, for instance.
According to White (1986), the flow is considered incompressible if the Mach number
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is less than 0.3. Note that this boundary is not the exact point at which fluid behaviour
drastically changes its nature, but rather a rational, practice-based indicator that allows
one to distinguish when to use the appropriate model (this value is also approximate:
for example Durst (2008) sets it to 0.2). Therefore, one has to take into account that
there are cases when an incompressible fluid appears to be weakly compressible.

It is interesting to compare the model (3.6) in the following rearranged form:

ρ2u2
= ρ

p2
i − p2

o

pλ
L
D

(B 1)

with the isothermal stationary compressible flow equation (White 1986):

G2
=

ρ(p2
i − p2

o)

p
(
λ

L
D
+ 2 ln(ξ)

) , (B 2)

where G=ρu. The difference between these two equations is in the expression 2 ln(ξ).
For ξ located in a small vicinity of 1, the logarithm is close to 0. On the other hand,
as the pressure factor increases, this term becomes more significant (in relation to
λ(L/D)); it thus cannot be ignored, and one should consider compressibility effects.
Furthermore, when we use the Taylor series expansion for this logarithm expression,
whose centre is ξ = 1, i.e. 2 ln(ξ)≈ (ξ − 1)+ R(ξ), after cutting the remainder R(.),
we get an easy-to-analyse form:

G2
=

ρ(p2
i − p2

o)

p
(
λ

L
D
+ 2(ξ − 1)

) . (B 3)

To sum up: when ξ approaches 1, this expression can be omitted, but as ξ increases,
it becomes significant, and the flow should be considered compressible.

Note that figures 1–6 relate to various fluids, but not without restrictions. They are,
for example, theoretical in the sense that not all of their scope (domain) is appropriate
for the incompressible flow under consideration.

To get a quantitative view on the issue of the limiting pressure ratio differentiating
incompressible from compressible flow, let us consider two cases of pipelines, for
gas and liquid. To see the difference, in both cases the average velocity will be
calculated using both equations, for the incompressible fluid (3.12), with the mean
pressure calculated using the PM, and the compressible fluid (B 2), respectively.

Certainly, these calculations are rough, and therefore the results are also approximate.
In both cases, the mean pressure will be calculated using the integral average (3.11).
For simplicity, it is assumed that there is atmospheric pressure at the outlet: po=1 bar.

B.1. Gaseous media
For gaseous media, we use the following parameters related to the flow of compressed
natural gas through a relatively short pipe: ρ = 0.8 (kg m−3), L = 100 (m), D =
0.2 (m), λ = 0.03, ν = 300 (m s−1) (sound speed is only used here to calculate the
Mach number). In this experimental setting, the Mach number is 0.3 at ξ = pi/po =

2.16, when using the compressible flow equation, while the incompressible formula
results in ξ = 2.07.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

13
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.131


Improved model of isothermal and incompressible fluid flow 891 A5-25

For the same fluid we can simulate flow through a long pipe characterized by the
following parameters: L= 100 (km), D= 1 (m), λ= 0.03. In this experimental setting,
the Mach number equal to 0.3 is obtained at ξ = pi/po= 132.6 based on compressible
flow, and at ξ = 132.1 while using incompressible flow. It is worth noting that the
above simple analysis does not take into account the change in density or speed of
sound due to the increase in pressure, and that the obtained critical pressure ratios are
similarly high.

B.2. Liquid media
The above examples of long and short pipes can also be converted for liquid media.

Let us first consider the example of a short pipe for the transport of liquefied natural
gas characterized by the following parameters: ρ = 468 (kg m−3), L= 100 (m), D=
0.2 (m), λ = 0.03, ν = 920 (m s−1) (again, the speed of sound is used here only
to calculate the Mach number). For this experimental setting, the critical pressure
ratio causing the Mach number to be 0.3 is enormous: ξ = 3568 and ξ = 3575 for
incompressible and compressible flows, respectively.

In the case of a long pipe with parameters L= 100 (km), D= 1 (m), λ= 0.03, the
Mach number is 0.3 only at the unusually huge ξ ∼= 700 000 for both equations (the
difference between the corresponding high ratios is practically insignificant).

The above cases show that for liquids or long pipelines, the pressure ratio would
have to be very high to fall within the compressibility range. In turn, for gases
and short pipes, the flow becomes compressible at a relatively low pressure ratio.
This analysis is approximate, but shows the difference between liquid and gaseous
media in terms of compressibility. It can also be seen that the difference between
the cases of long and short pipes is due to the factor λ(L/D), which is one of the
main determinants of whether a pipe can be considered long or not. Another factor
affecting critical ξ is the ratio of density to mean pressure.
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