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Abstract. We consider a class of sequence c(n) with the following asymp-
totic form

c(n) ∼ C

nκ
exp

(∑
λ∈S

Aλn
λ

)∑
µ∈T

βµ
nµ

(n→ ∞).

We give criteria for the Turán inequality of any order, the double Turán in-
equality, the Laguerre inequality of any order of c(n) for sufficiently large
n. We also give the companion inequalities for the Turán inequality and
the Laguerre inequality of any order for c(n). As applications, we will show
the numbers of commuting ℓ-tuples in Sn, the partition without sequence,
the plane partition, the partition into k-gonal numbers, the finite-dimensional
representations of groups su(3) and so(5) and the coefficients of infinite prod-
uct generating functions asymptotically satisfy these inequalities. Some of
them settle open problems proposed by Bringmann, Franke and Heim.
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1 Introduction

The main purpose of this paper is to consider sequences c(n) of real numbers
of the form

c(n) ∼ C

nκ
exp

(∑
λ∈S

Aλn
λ

)∑
µ∈T

βµ
nµ

(n→ ∞). (1.1)

Here κ ∈ R, S ⊂ Q+ ∩ (0, 1) is finite, T ⊂ Q+
0 is finite, C, Aλ, βµ ∈ R with

β0 = 1 if 0 ∈ T . This general form was introduced by Bringmann, Franke
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and Heim [5], including the asymptotical expression of the numbers of the
unimodal sequences [2], the strongly unimodal sequences [23], the partition
without sequence [16], the plane partition [28], the partition into k-gonal
numbers [3], the finite-dimensional representations of groups su(3) [4] and
so(5) [3] and the coefficients of the infinite product generating functions [5].
Bringmann, Franke and Heim [5] proved c(n) satisfies the Turán inequality
for sufficiently large n and put forward an open problem concerning with the
Turán inequalities of higher order.

Recall that a real entire function

ψ(x) =
∞∑
k=0

γk
xk

k!
(1.2)

is said to be in the Laguerre-Pólya class, denoted by ψ(x) ∈ LP , if it can be
represented in the form

ψ(x) = cxme−αx2+βx

∞∏
k=1

(1 + x/xk) e
−x/xk ,

where c, β, xk are real numbers, α ≥ 0, m is a nonnegative integer and∑
x−2
k < ∞. The LP class has attracted much attention in view of its

connection with Riemann hypothesis.

The Riemann Ξ-function is defined as

Ξ(z) :=
1

2

(
−z2 − 1

4

)
π

iz
2
− 1

4Γ

(
−iz

2
+

1

4

)
ζ

(
−iz + 1

2

)
.

Following [8], the Riemann Ξ-function can be written in Taylor series form
as

F (z) :=
1

8
Ξ
(z
2

)
=

∞∑
n=0

γ(n)

n!
z2n.

We say that a polynomial with real coefficients is hyperbolic if all of its
zeros are real. The d-th associated Jensen polynomial with shift n of an
arbitrary sequence {α(0), α(1), α(2), ...} of real numbers is the polynomial

Jd,n
α (x) =

d∑
k=0

(
d

k

)
αk+nx

k. (1.3)

The hyperbolicity of degree d Jensen polynomial associated with the sequence
{α(n)} is equivalent to the Turán inequality for {α(n)} of order d. Pólya and
Schur proved that the Riemann hypothesis holds if and only if the function
F (z) belongs to LP class, i.e., having only real zeros, or equivalently, all
Jensen polynomials having only real zeros.
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Griffin, Ono, Rolen and Zagier [12] proved that under some conditions,
the degree d Jensen polynomials associated with the sequence {α(n)} are
hyperbolic for any d and sufficiently large n. In fact, they established the
following theorem.

Theorem 1.1 (Griffin, Ono, Rolen and Zagier). Let α(n), A(n), and δ(n)
be sequences of positive real numbers with δ(n) tending to zero and satisfying

log

(
α(n+ j)

α(n)

)
= A(n)j − δ(n)2j2 +

d∑
i=3

gi(n)j
i + o

(
δ(n)d

)
as n→ ∞

for some d ≥ 1, all 0 ≤ j ≤ d and some gi(n) = o (δ(n)i). Then, we have

lim
n→∞

(
δ(n)−d

α(n)
Jd,n
α

(
δ(n)X − 1

exp(A(n))

))
= Hd(X)

uniformly for X in any compact subset of R, where Hd(X) are the Hermite
polynomials.

Recall that a sequence {an}n≥0 is called to satisfy the Turán inequality,
if

T (an) : = an
2 − an−1an+1 ≥ 0.

We say that {an}n≥0 satisfies the double Turán inequality, if

T (T (an)) : = (an
2 − an−1an+1)

2 − (an−1
2 − an−2an)(an+1

2 − anan+2) ≥ 0.

A sequence {an}n≥1 is called to satisfy the Laguerre inequality of order
m [26], if

Lm(an) :=
1

2

2m∑
k=0

(−1)k+m

(
2m

k

)
an+kan+2m−k ≥ 0. (1.4)

The Laguerre inequalities have profound connections to the Riemann hypoth-
esis and the Laguerre-Pólya class, see [9], [11], [15], [21] and [22]. Recently,
the Laguerre inequalities for the Maclaurin coefficients of the Riemann Ξ-
function, the partition function and some celebrated sequences have been
extensively studied, see [1], [7], [10], [25], [26] and [27]. Denote the sum
of the terms with positive (negative, respectively) coefficients of Lm(an) by

L+
m(an) (L

−
m(an), respectively). One can see that (1.4) equals to L+

m(an)

L−
m(an)

≥ 1.

It is also interested to consider the companion Laguerre inequalities, i.e., give

an upper bound for L+
m(an)

L−
m(an)

. For more recent work, see [1], [7] and [10].

In this paper, we will investigate these inequalities for c(n). This paper
is organized as follows. In Section 2, we shall prove that as n → ∞, c(n)
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satisfies the Turán inequality of any order and the double Turán inequality.
In Section 3, we will show c(n) satisfies the companion Turán inequality for
sufficiently large n. In Section 4, we will show c(n) asymptotically satisfies
the Laguerre inequality of any order and its companion version. In Section 5,
as applications, we will show the numbers of commuting ℓ-tuples in Sn, the
partition without sequence, the plane partition, the partition into k-gonal
numbers, the finite-dimensional representations of groups su(3) and so(5)
and the coefficients of infinite product generating functions asymptotically
satisfy these inequalities.

2 Turán type inequalities

In this section, we will prove that as n → ∞, c(n) meets the requires of the
Turán inequality of any order and the double Turán inequality.

To prove that c(n) fulfills the Turán inequality of any order, we just need
to verify c(n) conform to the conditions of Theorem 1.1.

Theorem 2.1. Assume that c(n) is a sequence of the form (1.1), let S : =
{λ1, . . . , λs} where 1 > λ1 ≥ λ2 ≥ · · · ≥ λs > 0 and T : = {µ1, . . . , µt} where
µ1 ≥ µ2 ≥ · · · ≥ µt ≥ 0, κ, C, Aλ, βµ ∈ R with β0 = 1 if 0 ∈ T . If Aλ1 > 0,
then for sufficiently large n, c(n) fulfills the Turán inequality of any order.

Proof. By the Taylor expansion of log x, we have that

log(x) = x− 1− (x− 1)2

2
+ · · ·+ (−1)r−1 (x− 1)r

r
+ o(xr), x→ 1. (2.1)

From (1.1) we get

log
c(n+ j)

c(n)
∼
∑
λ∈S

Aλ(n+ j)λ −
∑
λ∈S

Aλn
λ + log

nκ

(n+ j)κ
+ log

∑
µ∈T

βµ

(n+j)µ∑
µ∈T

βµ

nµ

.

(2.2)

We proceed to estimate
∑

λ∈S Aλ

(
(n+ j)λ − nλ

)
, log nκ

(n+j)κ
and log

∑
µ∈T

βµ
(n+j)µ∑

µ∈T
βµ
nµ

respectively.

First, we estimate
∑

λ∈S Aλ

(
(n+ j)λ − nλ

)
. Since

(n+ j)λ − nλ =
N∑
i=1

(
λ

i

)
n−i+λji + o(n−N+λ) (N ≥ r). (2.3)

Thus∑
λ∈S

Aλ

(
(n+ j)λ − nλ

)
=
∑
λ∈S

Aλ

N∑
i=1

(
λ

i

)
n−i+λji + o(n−N+λ) (N ≥ r).

(2.4)
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Next we turn to estimating log nκ

(n+j)κ
. Since

nκ

(n+ j)κ
=

N∑
i=0

(
−κ
i

)
n−iji +O(n−N−1), (2.5)

by (2.1) we obtain

log
nκ

(n+ j)κ
=

N∑
i=1

fi(κ)n
−iji +O(n−N−1), (2.6)

where fi(κ) =
(−1)iκ

i
.

Finally, we only need to estimate log
∑

µ∈T
βµ

(n+j)µ∑
µ∈T

βµ
nµ

. Since

∑
µ∈T

βµ
nµ

=
t∑

i=1

βµi
n−µi ,

∑
µ∈T

βµ
(n+ j)µ

=
t∑

i=1

βµi
(n+ j)−µi , (2.7)

from (2.1) we deduce that

log

∑
µ∈T

βµ

(n+j)µ∑
µ∈T

βµ

nµ

=
N∑
i=1

Gi(n)j
i + o(GN(n)) (2.8)

where Gi(n) are certain polynomials of n with degree no more than −i and
|Gi(n)| ≤ 1

i
µi
1n

−i.

Combining (2.4), (2.6) and (2.8), as n→ ∞ we get that

log
c(n+ j)

c(n)
∼
∑
λ∈S

Aλ

N∑
i=1

(
λ

i

)
n−i+λji +

N∑
i=1

fi(κ)n
−iji +

N∑
i=1

Gi(n)j
i + o(n−N+λ)

=:
N∑
i=1

(∑
λ∈S

Bλ,i(n) + Fi(n)

)
ji + o(n−N+λ),

(2.9)

where Bλ,i(n) = Aλ

(
λ
i

)
n−i+λ, Fi(n) = fi(κ)n

−i+Gi(n). Employing (2.6) and
(2.8), we get |Fi(n)| ≤ 1

i
(µi

1 + κ)n−i.

Let A(n) =
∑

λ∈S Bλ,1(n) + F1(n), δ(n) =
√
−
∑

λ∈S Bλ,2(n)− F2(n),
gi(n) =

∑
λ∈S Bλ,i(n) + Fi(n) (i ≥ 3). Then i ≥ 3, we get

lim
n→∞

gi(n)

δ(n)i
= lim

n→∞

∑
λ∈S Bλ,i(n) + Fi(n)(

−
∑

λ∈S Bλ,2(n)− F2(n)
) i

2

= lim
n→∞

∑
λ∈S Aλ

(
λ
i

)
n−i+λ

(−
∑

λ∈S Aλ

(
λ
2

)
n−2+λ)

i
2

= lim
n→∞

∑
λ∈S Aλ

(
λ
i

)
(−
∑

λ∈S Aλ

(
λ
2

)
)

i
2

nλ(1− i
2
)

=0.

(2.10)
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In summary, we have that c(n) satisfies the conditions of Theorem 1.1. Thus,
for sufficiently large n, c(n) satisfies the Turán inequality of any order.

Now we turn to proving the double Turán inequality for c(n).

Theorem 2.2. For sufficiently large n, c(n) satisfies the double Turán in-
equality, i.e.,

T (T (c(n))) = (c(n)2 − c(n− 1)c(n+ 1))2

− (c(n− 1)2 − c(n− 2)c(n))(c(n+ 1)2 − c(n)c(n+ 2)) ≥ 0.(2.11)

Proof. Following the framework in the proof of Theorem 1.3 in [5], we claim
that for all λ ∈ S,

exp
(
Aλ

(
2nλ − (n+ 1)λ − (n− 1)λ

))
= 1− γλ,1

n2−λ
+

γ2λ,1
2n4−2λ

+ o
(
n−4+2λ

)
where γλ,1 = 2Aλ

(
λ

2

)
,

exp
(
Aλ

(
nλ + (n+ 2)λ − 2(n+ 1)λ

))
= 1+

µλ,1

n2−λ
+
µλ,2

n3−λ
+

µ2
λ,1

2n4−2λ
+o
(
n−4+2λ

)
where µλ,1 = 2Aλ

(
λ

2

)
and µλ,2 = 6Aλ

(
λ

3

)
,

exp
(
Aλ

(
nλ + (n− 2)λ − 2(n− 1)λ

))
= 1+

ωλ,1

n2−λ
+
ωλ,2

n3−λ
+

ω2
λ,1

2n4−2λ
+o
(
n−4+2λ

)
where ωλ,1 = 2Aλ

(
λ

2

)
and ωλ,2 = −6Aλ

(
λ

3

)
.
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Then, we get that

exp

(∑
λ∈S

Aλ

(
2nλ − (n− 1)λ − (n+ 1)λ

))

=
∏
λ∈S

(
1− γλ,1

n2−λ
+

γ2λ,1
2n4−2λ

+ o
(
n−4+2λ

))
= 1− γλ1,1

n2−λ1
− · · · − γλ2,1

n2−λ2
+

γ2λ1,1

2n4−2λ1
+ o

(
n−4+2λ1

)
,

exp

(∑
λ∈S

Aλ

(
nλ + (n+ 2)λ − 2(n+ 1)λ

))

=
∏
λ∈S

(
1 +

µλ,1

n2−λ
+
µλ,2

n3−λ
+

µ2
λ,1

2n4−2λ
+ o

(
n−4+2λ

))
= 1 +

µλ1,1

n2−λ1
+ · · ·+ µλs,1

n2−λs
+
µλ1,2

n3−λ1
+ · · ·+

µλs′ ,2

n3−λs′
+

µ2
λ1,1

2n4−2λ1
+ o

(
n−4+2λ1

)
,

exp

(∑
λ∈S

Aλ

(
nλ + (n− 2)λ − 2(n− 1)λ

))

=
∏
λ∈S

(
1 +

ωλ,1

n2−λ
+
ωλ,2

n3−λ
+

ω2
λ,1

2n4−2λ
+ o

(
n−4+2λ

))
= 1 +

ωλ1,1

n2−λ1
+ · · ·+ ωλs,1

n2−λs
+
ωλ1,2

n3−λ1
+ · · ·+

ωλs′ ,2

n3−λs′
+

ω2
λ1,1

2n4−2λ1
+ o

(
n−4+2λ1

)
.

(2.12)

Here λs′ > 2λ1 − 1.

A direct calculation gives that for n > 1,

1

n2κ
=

1

(n− 1)κ(n+ 1)κ

(
1 +

∑
j≥2

aj
nj

)
,

1

nκ(n+ 2)κ
= (n+ 1)−2κ

(
1 +

∑
j≥2

bj
nj

)
,

1

nκ(n− 2)κ
= (n− 1)−2κ

(
1 +

∑
j≥2

cj
nj

)
.

(2.13)

According to (2.12) and (2.13), we have

T (T (c(n))) ∼ C4 exp
(
2
∑

λ∈S Aλ((n− 1)λ + (n+ 1)λ)
)

(n− 1)2κ(n+ 1)2κ
(
C ′2 − A′B′) ,

where

A′ =

(∑
µ∈T

βµ
(n+ 1)µ

)2

7
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−
(
1 +

µλ1,1

n2−λ1
+ · · ·+ µλs,1

n2−λs
+
µλ1,2

n3−λ1
+ · · ·+

µλs′ ,2

n3−λs′
+

µ2
λ1,1

2n4−2λ1
+ o

(
n−4+2λ1

))
(
1 +O

(
n−2
))∑

µ∈T

βµ
nµ

∑
ν∈T

βν
(n+ 2)ν

,

B′ =

(∑
µ∈T

βµ
(n− 1)µ

)2

−
(
1 +

ωλ1,1

n2−λ1
+ · · ·+ ωλs,1

n2−λs
+
ωλ1,2

n3−λ1
+ · · ·+

ωλs′ ,2

n3−λs′
+

ω2
λ1,1

2n4−2λ1
+ o

(
n−4+2λ1

))
(
1 +O

(
n−2
))∑

µ∈T

βµ
nµ

∑
ν∈T

βν
(n− 2)ν

,

C ′ =
∑
µ∈T

βµ
(n− 1)µ

∑
ν∈T

βν
(n+ 1)ν

−
(
1− γλ1,1

n2−λ1
− · · · − γλs,1

n2−λs
− · · ·+

γ2λ1,1

2n4−2λ1
+ o

(
n−4+2λ1

)) (
1 +O

(
n−2
))(∑

µ∈T

βµ
nµ

)2

.

As β0 = 1, we take A mod (o(n−4+2λ1)),

∑
µ,ν∈T

0≤µ+ν≤4−2λ1

βµβν

(n+ 1)µ+ν
−

 ∑
µ,ν∈T

0≤µ+ν≤4−2λ1

βµβν

nµ(n+ 2)ν
+

s∑
i=1

µλi,1

n2−λi

∑
µ,ν∈T

0≤µ+ν≤2−2λ1+λi

βµβν

nµ(n+ 2)ν

+

s′∑
i=1

µλi,2

n3−λi
+

µ2
λ1,1

2n4−2λ1


= 2

∑
µ∈T

0≤µ≤2−λ1

β2
µ

(
1

(n+ 1)2µ
− 1

nµ(n+ 2)µ

)
+

∑
µ∈T

0≤µ<ν
1≤µ+ν≤4−2λ1

βµβν

(
2

(n+ 1)µ+ν
− 1

nµ(n+ 2)ν
− 1

nν(n+ 2)µ

)

−

 s∑
i=1

µλi,1

n2−λi
+

s∑
i=1

µλi,1

n2−λi

∑
µ,ν∈T

1≤µ+ν≤2−2λ1+λi

βµβν

nµ(n+ 2)ν
+

s′∑
i=1

µλi,2

n3−λi
+

µ2
λ1,1

2n4−2λ1



=


− 2β1

n3
−

s∑
i=1

µλi,1

n2−λi
− 2β1

s′∑
i=1

µλi,1

n3−λi
−

s′∑
i=1

µλi,2

n3−λi
−

µ2
λ1,1

2n4−2λ1
, 0 < λ1 ≤ 1

2
,

−
s∑

i=1

µλi,1

n2−λi
− 2β1

s′∑
i=1

µλi,1

n3−λi
−

s′∑
i=1

µλi,2

n3−λi
−

µ2
λ1,1

2n4−2λ1
,

1

2
< λ1 < 1.

(2.14)
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Similarly,

B′ ( mod (o(n−4+2λ1))
)
=


− 2β1

n3
−

s∑
i=1

ωλi,1

n2−λi
− 2β1

s′∑
i=1

ωλi,1

n3−λi
−

s′∑
i=1

ωλi,2

n3−λi
−

ω2
λ1,1

2n4−2λ1
, 0 < λ1 ≤ 1

2
,

−
s∑

i=1

ωλi,1

n2−λi
− 2β1

s′∑
i=1

ωλi,1

n3−λi
−

s′∑
i=1

ωλi,2

n3−λi
−

ω2
λ1,1

2n4−2λ1
,

1

2
< λ1 < 1.

(2.15)

and

C ′
(

mod (o(n−4+2λ1))
)
=


2β1
n3

+
s∑

i=1

γλi,1

n2−λi
+ 2β1

s′∑
i=1

γλi,1

n3−λi
−

γ2λ1,1

2n4−2λ1
, 0 < λ1 ≤

1

2
,

s∑
i=1

γλi,1

n2−λi
+ 2β1

s′∑
i=1

γλi,1

n3−λi
−

γ2λ1,1

2n4−2λ1
,

1

2
< λ1 < 1.

(2.16)

Combining (2.14), (2.15) and (2.16), we get that for 0 < λ1 ≤ 1
2
, C ′2 −A′B′

can be simplified to(
2β1
n3

+
s∑

i=1

γλi,1

n2−λi
+ 2β1

s′∑
i=1

γλi,1

n3−λi
−

γ2λ1,1

2n4−2λ1

)2

−(
−2β1
n3

−
s∑

i=1

µλi,1

n2−λi
− 2β1

s′∑
i=1

µλi,1

n3−λi
−

s′∑
i=1

µλi,2

n3−λi
−

µ2
λ1,1

2n4−2λ1

)
(
−2β1
n3

−
s∑

i=1

ωλi,1

n2−λi
− 2β1

s′∑
i=1

ωλi,1

n3−λi
−

s′∑
i=1

ωλi,2

n3−λi
−

ω2
λ1,1

2n4−2λ1

)

= −
16A3

λ1

(
λ1

2

)3
n−6+3λ1

+ o(n−6+3λ1).

For 1
2
< λ1 < 1, C ′2 − A′B′ can be simplified to(

s∑
i=1

γλi,1

n2−λi
+ 2β1

s′∑
i=1

γλi,1

n3−λi
−

γ2λ1,1

2n4−2λ1

)2

−(
−

s∑
i=1

µλi,1

n2−λi
− 2β1

s′∑
i=1

µλi,1

n3−λi
−

s′∑
i=1

µλi,2

n3−λi
−

µ2
λ1,1

2n4−2λ1

)
(
−

s∑
i=1

ωλi,1

n2−λi
− 2β1

s′∑
i=1

ωλi,1

n3−λi
−

s′∑
i=1

ωλi,2

n3−λi
−

ω2
λ1,1

2n4−2λ1

)

= −
16A3

λ1

(
λ1

2

)3
n−6+3λ1

+ o(n−6+3λ1).
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Since Aλ1 > 0 and 0 < λ1 < 1, we conclude that

sgn

(
−16A3

λ1

(
λ1

2

)3)
= 1. (2.17)

This completes the proof.

3 The companion Turán inequality

In this section, we will show c(n) adheres the companion Turán inequality
for sufficiently large n.

Theorem 3.1. Assume that c(n) satisfies the form (1.1), then c(n) asymp-
totically satisfies the companion Turán inequality, i.e.,

c(n)2 −
(
1 +

γ

n2−λ1

)
c(n+ 1)c(n− 1) ≤ 0, (3.1)

where γλ1,1 is defined as in Theorem 2.2 and γ is any real number larger than
−γλ1,1.

Proof. We have

c (n)2 −
(
1 +

γ

n2−λ1

)
c (n+ 1) c (n− 1)

∼ C2 exp
(
2
∑

λ∈S Aλn
λ
)

n2κ

(∑
µ∈T

βµ
nµ

)2

−
(
1 +

γ

n2−λ1

)(
1 +

γλ1,1

n2−λ1
+ o

(
n−2+λ1

)) (
1 +O

(
n−2
))∑

µ∈T

βµ
(n+ 1)µ

∑
ν∈T

βν
(n− 1)ν

.
The sign of this is dictated by∑
µ,ν∈T

βµβν
nµ+ν

−
(
1 +

γ

n2−λ1

)(
1 +

γλ1,1

n2−λ1
+ o

(
n−2+λ1

)) (
1 +O

(
n−2
))∑

µ∈T

βµ
(n+ 1)µ

∑
ν∈T

βν
(n− 1)ν

.
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As β0 = 1, the above formula mod
(
o(n−2+λ1)

)
equals,

∑
µ,ν∈T

βµβν
nµ+ν

−

(∑
µ,ν∈T

βµβν
(n+ 1)µ(n− 1)ν

+
γλ1,1

n2−λ1
+

γ

n2−λ1

)

= 2
∑
µ∈T

0≤µ≤1−λ1
2

β2
µ

(
1

n2µ
− 1

(n+ 1)µ(n− 1)µ

)

+
∑
µ,ν∈T
0≤µ<ν

1≤µ+ν≤2−λ1

βµβν

(
2

nµ+ν
− 1

(n+ 1)µ(n− 1)ν
− 1

(n+ 1)ν(n+ 1)µ

)

− γλ1,1

n2−λ1
− γ

n2−λ1
.

(3.2)

For n > 1,
1

(n+ 1)ν(n+ 1)µ
= n−2µ +O

(
n−2µ−2

)
and

1

(n+ 1)µ(n− 1)ν
− 1

(n+ 1)ν(n+ 1)µ
= 2n−µ−ν

(
1 +

∑
r≥1

pr
n2r

)
.

Thus (3.2) becomes

O(n−2+λ1)− γλ1,1 + γ

n2−λ1
.

When γ > −γλ1,1, it is obvious that (3.1) holds for sufficiently large n.

4 Laguerre inequalities

In this section, we demonstrate c(n) fulfills the Laguerre inequality and their
companion inequality of any order. Recently, Wang and Yang [27] proved
that for any r and sufficiently large n, one has Lr(α(n)) > 0.

Theorem 4.1 (Wang and Yang). Let {α(n)}, {δ(n)}, {Ai(n)} be sequences
with α(n) positive, δ(n) → 0+, A2(n) < 0, A2(n) = Θ(δ(n)t) and A2i(n) =
o(δ(n)it) (i ≥ 2) for some positive t, and for −r < j < r,

log

(
α(n+ j)

α(n)

)
=

2r∑
i=1

Ai(n)j
i + o

(
δ(n)tr

)
, (4.1)

then for sufficiently large n,

Lr(α(n)) =
1

2

2r∑
k=0

(−1)k+r

(
2r

k

)
α(n+ k)α(n+ 2r − k) > 0. (4.2)
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Since the conditions of Theorem 1.1 are stonger than those of Theorem
4.1, we get c(n) meets the requirements of the above Theorem from the proof
of Theorem 2.1. Thus c(n) fulfills the Laguerre inequality of any order for
sufficiently large n. Next we prove c(n) satisfies the companion Laguerre
inequalities. First, let us recall two combinatorial identities which will be
used in our proofs, see [10] and [27].

Lemma 4.2. For positive integers m and t ≤ 2m,

2m∑
k=0

(−1)k
(
2m

k

)
(m− k)t =

{
0, t < 2m,

(2m)!, t = 2m.
(4.3)

Lemma 4.3. For positive integers r,

2r∑
k=0

(
2r

k

)
(r − k)2 = 22r−1r. (4.4)

Now we are in a position to establish the companion Laguerre inequalities
for c(n).

Theorem 4.4. For any fixed r ≥ 2 and sufficiently large n, c(n) satisfies the
companion Laguerre inequality of order r, i.e.,(

1 +
(2r)!

r!
21−r(−Aλ1)

r

(
λ1
2

)r

n(−2+λ1)(r−1)

)
L−
r (c(n− r)) > L+

r (c(n− r)).

(4.5)

Proof. The inequality (4.5) can be rewritten as

(2r)!

r!
21−r(−Aλ1)

r

(
λ1
2

)r

n(−2+λ1)(r−1)L
−
r (c(n− r))

c(n)2

>
L+
r (c(n− r))

c(n)2
− L−

r (c(n− r))

c(n)2

=
Lr(c(n− r))

c(n)2
.

(4.6)

The right-hand side of the above inequality can be expressed as

Lr(c(n− r))

c(n)2
=

1

2

2r∑
j=0

(−1)j+r

(
2r

j

)
c(n− r + j)c(n+ r − j)

c(n)2
.

From (2.9) we get

c(n+ r − j)c(n− r + j)

c(n)2
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=exp

(
log

c(n+ r − j)

c(n)
+ log

c(n− r + j)

c(n)

)

∼ exp

∑
λ∈S

Aλ

(
(n+ r − j)λ − nλ

)
+ log

nκ

(n+ r − j)κ
+ log

∑
µ∈T

βµ

(n+r−j)µ∑
µ∈T

βµ

nµ

+
∑
λ∈S

Aλ((n− r + j)λ − nλ) + log
nκ

(n− r + j)κ
+ log

∑
µ∈T

βµ

(n−r+j)µ∑
µ∈T

βµ

nµ


=exp

 N∑
i=1

(∑
λ∈S

Bλ,i(n) + Fi(n)

)(
(r − j)i + (r − j)i(−1)i

)
+ o(n−N+λ)


=exp

2
N∑
i=1

(∑
λ∈S

Bλ,2i(n) + F2i(n)

)
(r − j)2i + o(n−N+λ)


=: exp

2
N∑
i=1

B2i(n)(r − j)2i + o(B2N(n))

,
where B2i(n) are certain polynomials of n with degree no more than −2i+λ1

and the coefficient of n−2i+λ1 is Aλ1

(
λ1

2i

)
.

Let

ϕr(x) :=
2r∑
i=1

xi

i!
= exp(x) + o

(
x2r
)
. (4.7)

Then as n→ ∞, we get

Lr(c(n− r))

c(n)2

=
1

2

2r∑
j=0

(−1)j+r

(
2r

j

)
exp

(
N∑
i=1

B2i(n)2(r − j)2i + o(B2N(n)

)

=
1

2

2r∑
j=0

(−1)j+r

(
2r

j

)
exp

(
N∑
i=1

B2i(n)2(r − j)2i

)
exp (o(B2N(n))

=

(
1

2

2r∑
j=0

(−1)j+r

(
2r

j

)
ϕr

(
N∑
i=1

B2i(n)2(r − j)2i

)
+ o

(
B2N(n)

2Nr
))

exp (o(B2N(n))

=
1

2

2r∑
j=0

(−1)j+r

(
2r

j

)
ϕr

(
N∑
i=1

B2i(n)2(r − j)2i

)
+ o (B2N(n)) .
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Now we focus on the expression

1

2

2r∑
j=0

(−1)j+r

(
2r

j

)
ϕr

(
N∑
i=1

B2i(n)2(r − j)2i

)
. (4.8)

The ϕr-terms can be viewed as a polynomial in (r − j)2, i.e., there exist
coefficients B′

2i(n) (0 ≤ i ≤ 2rN) such that

ϕr

(
N∑
i=1

B2i(n)2(r − j)2i

)
=

2rN∑
i=0

B′
2i(n)(r − j)2i. (4.9)

where B′
2i(n) are certain polynomials of n with degree no more than (−2+λ1)i

and the coefficient of n(−2+λ1)i is
2iAi

λ1
(λ12 )

i

i!
.

By Lemma 4.2, one can see that

1

2

2r∑
j=0

(−1)j+r

(
2r

j

)
ϕr

(
N∑
i=1

B2i(n)2(r − j)2i

)

=
1

2

2r∑
j=0

(−1)j+r

(
2r

j

) 2rN∑
i=0

B′
2i(n)(r − j)2i

=
1

2

2rN∑
i=0

B′
2i(n)

2r∑
j=0

(−1)j+r

(
2r

j

)
(r − j)2i

=
1

2

2rN∑
i=r

B′
2i(n)

2r∑
j=0

(−1)j+r

(
2r

j

)
(r − j)2i.

(4.10)

(The sum of terms with i < r vanishes). It implies that as n→ ∞, we have

1

2

2r∑
j=0

(−1)j+r

(
2r

j

)
ϕr

(
N∑
i=1

B2i(n)2(r − j)2i

)

=
1

2
B′

2r(n)
2r∑
j=0

(−1)j+r

(
2r

j

)
(r − j)2r + o (B′

2r(n))

=
(2r)!

r!
2r−1(−1)rAr

λ1

(
λ1
2

)r

n(−2+λ1)r + o
(
n(−2+λ1)r

)
.

(4.11)

On the other hand, we obtain

c(n+ 2j + 1)c(n− 2j − 1)

c(n)2
∼ exp

(
2

n∑
i=1

B2i(n)(2j + 1)2i + o(B2N(n))

)

= 1 + 2Aλ1

(
λ1
2

)
(2j + 1)2n−2+λ1 + o

(
n−2+λ1

)
. (4.12)
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Thus, by Lemma 4.3 we get

L−
r (c(n− r))

c(n)2
=

1

2

[r−1/2]∑
j=−[r−1/2]

(
2r

r + 2j + 1

)
c(n+ 2j + 1)c(n− 2j − 1)

c(n)2

=22r−2 +
1

2

[r−1/2]∑
j=−[r−1/2]

(
2r

r + 2j + 1

)(
2Aλ1

(
λ1

2

)
(2j + 1)2n−2+λ1 + o

(
n−2+λ1

))

=22r−2 +
1

2
Aλ1

(
λ1

2

)
n−2+λ1

2

[r−1/2]∑
j=−[r−1/2]

(
2r

r + 2j + 1

)
(2j + 1)2

+ o
(
n−2+λ1

)

=22r−2 +
1

2
Aλ1

(
λ1

2

)
n−2+λ1

 [r−1/2]∑
j=−[r−1/2]

(
2r

r + 2j + 1

)
(2j + 1)2 +

[r/2]∑
j=−[r/2]

(
2r

r + 2j

)
(2j)2

+ o
(
n−2+λ1

)

=22r−2 +
1

2
Aλ1

(
λ1

2

)
n−2+λ1

r∑
j=−r

(
2r

r + j

)
j2 + o

(
n−2+λ1

)
=22r−2 + 22r−2rAλ1

(
λ1

2

)
n−2+λ1 + o

(
n−2+λ1

)
.

(4.13)

Combining (4.11) and (4.13) gives(
1 +

(2r)!

r!
21−r(−Aλ1)

r

(
λ1
2

)r

n(−2+λ1)(r−1)

)
L−
r (c(n− r))

c(n)2
− L+

r (c(n− r))

c(n)2

=
(2r)!

r!
2r−1(−Aλ1)

r

(
λ1
2

)r

n(−2+λ1)(r−1) +
(2r)!

(r − 1)!
2r−1(−1)r(Aλ1)

r+1

(
λ1
2

)r+1

n(−2+λ1)r

− (2r)!

r!
2r−1(−1)rAr

λ1

(
λ1
2

)r

n(−2+λ1)r + o(n(−2+λ1)r)

=
(2r)!

r!
2r−1Ar

λ1
(−1)r

(
λ1
2

)r

n(−2+λ1)(r−1) + o(n(−2+λ1)(r−1)).

(4.14)

In view of λ1 ∈ (0, 1), we get (−1)r
(
λ1

2

)r
> 0. Hence, we conclude the

positivity of (4.14) as n→ ∞.

5 Applications

In this section, we will apply Theorem 2.1, Theorem 2.2, Theorem 3.1 and
Theorem 4.4 to show that some sequences of the form c(n) satisfy the com-
panion Turán inequality, the double Turán inequality, the Turán inequality of
any order, the Laguerre inequality of any order r and its companion version.

The number of commuting ℓ-tuples in Sn. Denote by Nℓ(n) the number
of ℓ-tuples of elements in the symmetric group Sn with commuting compo-
nents, normalized by the order of Sn. Notice that N2(n) = p(n), where p(n)
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denotes the number of partitions of n. Bringmann, Franke and Heim [5] gave
the asymptotical formulas for Nℓ(n) for arbitrary ℓ as follows.

Theorem 5.1 (Bringmann, Franke and Heim). We have, as n→ ∞,

N3(n) ∼
e
− ζ′(−1)

2
− π2

288ζ(3) ζ(3)
11
72

2
11
24 · 3

47
72 · π

11
72 · n

47
72

exp

(
(3π)

2
3 ζ(3)

1
3

2
n

2
3 − π

4
3

4 · 3
2
3 · ζ(3)

1
3

n
1
3

)1 +

∞∑
j=1

B3,j

n
j
3


for certain numbers B3,j,

N4(n) ∼
e

ζ′(−2)
24 π

1
4 ζ(3)

1
8

2
13
8 · 3

1
4 · 5

1
8 · n

5
8

× exp

(
2

7
4 · π

3
2 · ζ(3)

1
4

3
3
2 · 5

1
4

n
3
4 +A4,2n

1
2 +A4,3n

1
4 +A4,4

)1 +

∞∑
j=1

B4,j

n
j
4

 ,

N5(n) ∼
e

ζ′(−2)
2880 (πζ(3)ζ(5))

1
10

2
2
5 · 3

1
5 · 5

3
5 · n

3
5

× exp

(
5

4
5 · π

6
5 · (ζ(3)ζ(5))

1
5

2
9
5 · 3

2
5

n
4
5 +A5,2n

3
5 +A5,3n

2
5 +A5,4n

1
5 +A5,5

)1 +

∞∑
j=1

B5,j

n
j
5

 ,

with computable constants A4,j (2 ≤ j ≤ 4) and A5,j (2 ≤ j ≤ 5) and certain
B4,j and B5,j, and for ℓ ≥ 6,

Nℓ(n) ∼
(ℓ− 1)!

1
2ℓ

√
Zℓ√

2πℓn
ℓ+1
2ℓ

exp

(
ℓΓ(ℓ)

1
ℓZℓ

ℓ− 1
n

ℓ−1
ℓ +

ℓ∑
k=2

Aℓ,kn
ℓ−k
ℓ

)(
1 +

∞∑
j=1

Bℓ,j

n
j
ℓ

)
,

where Zℓ := (ζ(2) · ζ(3) · · · ζ(ℓ)) 1
ℓ for certain Aℓ,k and Bℓ,j.

Theorem 5.1 suggests the asymptotical formulas for Nℓ(n) satisfies the
form of c(n). Combining Theorem 2.1 and Theorem 2.2, we get that for
sufficiently large n, Nℓ(n) satisfies the Turán inequality of any order and the
double Turán inequality.

Theorem 5.2. For ℓ ≥ 2 and sufficiently large n, Nℓ(n) satisfies the Turán
inequality of any order and the double Turán inequality.

Set λ1 = ℓ−1
ℓ

and Aλ1 = ℓΓ(ℓ)
1
ℓ Zℓ

ℓ−1
. Theorem 3.1 gives that Nℓ(n) satisfies

the following companion Turán inequality.

Theorem 5.3. For ℓ ≥ 2 and sufficiently large n, we have Nℓ(n) satisfies
the companion Turán inequality, i.e.,

Nℓ(n)
2 −

(
1 +

γ

n1+ 1
ℓ

)
Nℓ(n+ 1)Nℓ(n− 1) ≤ 0,
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where γ is any real number larger than Γ(ℓ)
1
ℓ Zℓ

ℓ
.

Since 1 + 1
ℓ
> 1, from Theorem 5.3 we deduce that the log-convexity of

|Cℓ,n| = n!Nℓ(n), which give an affirmative answer to the open question (3)
proposed by Bringmann, Franke and Heim in [5].

Corollary 5.4. For ℓ ≥ 3 and sufficiently large n, we have |Cℓ,n| is log-
convex.

For Laguerre inequalities, we get that Nℓ(n) satisfies the Laguerre in-
equality of any order r and its companion version from Theorem 4.4.

Theorem 5.5. For ℓ ≥ 2, r ≥ 2 and sufficiently large n, we have

1 <
L+
r (Nℓ(n− r))

L−
r (Nℓ(n− r))

< 1 +
(2r)!

r!
21−r

(
−ℓΓ(ℓ)

1
ℓZℓ

ℓ− 1

)r (
ℓ−1
ℓ

2

)r

n(−1− 1
ℓ
)(r−1).

The following sequences have also the asymptotical behavior of the form
c(n), then we can obtain results similar to Nℓ(n).

Partitions without sequences. The partition without sequence is the
partition of n that do not contain any consecutive integers as parts. Let
p2(n) denote the number of partition without sequence of n. Bringmann
and Mahlburg [6] first succeeded in proving an asymptotic formula for p2(n).
Mauth [16] gave the following formula and proved the log-concavity of p2(n)
for n ≥ 482,

p2(n) =
e

2π
√
n

3

n
3
4

(
9∑

i=0

βi

n
i
4

+O

(
1

n
5
2

))
,

where βi are constants. Note that p2(n) have the form (1.1) with λ1 =
1
2
and

Aλ1 =
2π
3
. Hence, by the theorems above, we deduce the following result.

Theorem 5.6. For any r ≥ 2 and sufficiently large n, p2(n) satisfies the
double Turán inequality, the Turán inequality of any order, the following
companion Turán inequality

p2(n)
2 −

(
1 +

γ

n
3
2

)
p2(n+ 1)p2(n− 1) ≤ 0,

where γ is any real number larger than π
6
, the Laguerre inequality of any

order r and its companion version as follow

1 <
L+
r (p2(n− r))

L−
r (p2(n− r))

< 1 +
(2r)!

r!
21−r

(
−2π

3

)r (1
2

2

)r

n− 3
2
(r−1).
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Plane partition. A plane partition of size n is a two-dimensional array of
non-negative integers πj,k, for which

∑
j,k πj,k = n, such that πj,k ≥ πj,k+1

and πj,k ≥ πj+1,k for any j, k ∈ N , denote the number of plane partitions of
size n by PL(n). Wright [28] proved that

PL(n) =
C

n
25
36

eA1n
2
3

(
1 +

N+1∑
j=2

Bj

n
2(j−1)

3

+O
(
n− 2(N+1)

3

))
,

where A1 > 0, C and Bj are constants.

Heim, Neuhauser and Tröger [14] conjectured plane partition is log-concave
and proved the conjecture for almost all n. Ono, Pujahari and Rolen [19]
derived the following explicit asymptotic formula and proved that Jd,n

PL (x) is
hyperbolic for sufficiently large n.

Theorem 5.7 (Ono, Pujahari and Rolen). If r ∈ Z+, then for every integer
n ≥ max(nr, ℓr, 87), we have

PL(n) =
ec+3AN2

n

2π

r+1∑
s=0

r+1∑
m=0

(−1)mβsbs,mΓ
(
m+ 1

2

)
Am+ 1

2N
2s+2m+ 25

12
n

+ Emaj
r (n) + Emin(n),

where |Emaj
r (n)| ≤ Êmaj

r (n), Nn := ( n
2A
)
1
3 and

|Emin(n)| ≤ exp

((
3A− 2

5

)
n2/(2A)

2
3

)
.

Pandey [20] found a lower bound such that Jd,n
PL (x) has all real roots for

all n ≥ NPL(d), where

NPL(d) ≤ 279928× d(d− 1)
(
6d3(22.2)

3(d−1)
2

)2d
e

Γ(2d2)

(2π)2d+2 .

Obviously, PL(n) have the form (1.1) with λ1 = 2
3
and Aλ1 = A1. Thus,

employing the theorems above, we get the following result.

Theorem 5.8. For any r ≥ 2 and sufficiently large n, PL(n) satisfies the
double Turán inequality, the Turán inequality of any order, the following
companion Turán inequality

PL(n)2 −
(
1 +

γ

n
4
3

)
PL(n+ 1)PL(n− 1) ≤ 0,

where γ is any real number larger than 2A1

9
, the Laguerre inequality of any

order r and its companion version as follow

1 <
L+
r (PL(n− r))

L−
r (PL(n− r))

< 1 +
(2r)!

r!
21−r (−A1)

r

(
2
3

2

)r

n− 4
3
(r−1).
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The coefficients of infinite product generating functions. pd(n) is
defined by the generating function [13]

∞∑
n=0

pd(n)q
n : =

∞∏
n=1

(1− qn)−nd−1

.

Note that p1(n) = p(n) and p2(n) = PL(n). Bringmann, Franke and Heim
[5] provided that

pd(n) ∼
C

nb
eA1n

d+1
d+2

(
1 +

∑
j≥1

Ed,j

n
j

d+2

)
,

where C, A1, b and Ed,j are constants. One can see that pd(n) have the form
(1.1) with λ1 =

d+1
d+2

and Aλ1 = A1. Thus, we can get the following result by
the theorems above.

Theorem 5.9. For any r ≥ 2 and sufficiently large n, pd(n) satisfies the
double Turán inequality, the Turán inequality of any order, the following
companion Turán inequality

pd(n)
2 −

(
1 +

γ

n1+ 1
d+2

)
pd(n+ 1)pd(n− 1) ≤ 0,

where γ is any real number larger than A1(d+1)
(d+2)2

, the Laguerre inequality of
any order r and its companion version as follow

1 <
L+
r (pd(n− r))

L−
r (pd(n− r))

< 1 +
(2r)!

r!
21−r (−A1)

r

(
d+1
d+2

2

)r

n(−1− 1
d+2

)(r−1).

Partitions into k-gonal numbers. We denote the number of partitions of
n into k-gonal numbers by pk(n). We have generating function∑

n≥0

pk(n)q
n =

∏
n≥1

1

1− qPk(n)
,

where

Pk(n) :=
1

2

(
(k − 2)n2 + (4− k)n

)
is the n-th k-gonal number. Bridges, Brindle, Bringmann and Franke [3]
provided that

pk(n) =
C(k)eA(k)n

1
3

n
5k−6
6(k−2)

(
1 +

N∑
j=1

Bj,k

n
j
3

+ON

(
n−N+1

3

))
,

where C(k), A(k) and Bj,k are constants.

Note that pk(n) have the form (1.1) with λ1 =
1
3
and Aλ1 = A(k). Then,

we can get the following result by the theorems above.
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Theorem 5.10. For any r ≥ 2 and sufficiently large n, pk(n) satisfies the
double Turán inequality, the Turán inequality of any order, the companion
Turán inequality

pk(n)
2 −

(
1 +

γ

n
5
3

)
pk(n+ 1)pk(n− 1) ≤ 0,

where γ is any real number larger than 2A(k)
9

, the Laguerre inequality of any
order r and its companion version as follow

1 <
L+
r (pk(n− r))

L−
r (pk(n− r))

< 1 +
(2r)!

r!
21−r (−A(k))r

(
1
3

2

)r

n− 5
3
(r−1).

The finite-dimensional representations of groups su(3). The unitary
group su(3), whose irreducible representations Wj,k indexed by pairs of pos-
itive integers. The numbers rsu(3)(n) of n-dimensional representations, have
the generating function∑

n≥0

rsu(3)(n)q
n =

∏
j,k≥1

1

1− q
jk(j+k)

2

,

with rsu(3)(0) := 1. In [24], Romik proved that, as n→ ∞,

rsu(3)(n) ∼
C0

n
3
5

exp
(
A1n

2
5 + A2n

3
10 + A3n

1
5 + A4n

1
10

)
,

with explicit constants C0, A1, A2, A3, A4 expressible in terms of zeta and
gamma values. Romik asked for lower order terms in the asymptotical ex-
pansion of rsu(3)(n). Bringmann and Franke [4] showed the following form of
rsu(3)(n).

Theorem 5.11 (Bringmann and Franke). As n→ ∞, for any N ∈ N,

rsu(3)(n) =
C0

n
3
5

eA1n
2
5+A2n

3
10+A3n

1
5+A4n

1
10

(
1 +

N∑
j=1

Cj

n
j
10

+ON

(
n−N

10
− 3

80

))
,

where the constants Cj do not depend on N and n and can be calculated
explicitly.

Note that rsu(3)(n) have the form (1.1) with λ1 =
2
5
and Aλ1 = A1. Hence,

we can deduce the following result by the theorems above.

Theorem 5.12. For any r ≥ 2 and sufficiently large n, rsu(3)(n) satisfies the
double Turán inequality, the Turán inequality of any order, the companion
Turán inequality

rsu(3)(n)
2 −

(
1 +

γ

n
8
5

)
rsu(3)(n+ 1)rsu(3)(n− 1) ≤ 0,
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where γ is any real number larger than 6A1

25
, the Laguerre inequality of any

order r and its companion version

1 <
L+
r (rsu(3)(n− r))

L−
r (rsu(3)(n− r))

< 1 +
(2r)!

r!
21−r (−A1)

r

(
2
5

2

)r

n− 8
5
(r−1).

The finite-dimensional representations of groups so(5). This frame-
work generalizes to other groups. For example, one can investigate theWitten
zeta function for so(5), which is (for more background to this function, see
[17] and [18])

ζso(5)(s) : =
∑
φ

1

dim(φ)s
= 6s

∑
n,m≥1

1

msns(m+ n)s(m+ 2n)s
,

where the φ are running through the finite-dimensional irreducible represen-
tations of so(5). Bridges, Brindle, Bringmann and Franke [3] showed the
following form of rso(5)(n).

Theorem 5.13 (Bridges, Brindle, Bringmann and Franke). As n→ ∞, for
any N ∈ N,

rso(5)(n) =
C

n
7
12

eA1n
1
3+A2n

2
9+A3n

1
9+A4

(
1 +

N+1∑
j=2

Bj

n
j−1
9

+ON

(
n−N+1

9

))

where C, A1, A2, A3, A4 and Bj are constants.

Bringmann, Franke and Heim [5] have proved that rsu(3)(n) and rso(5)(n)
asymptotically satisfy the Turán inequality. Note that rso(5)(n) have the form
(1.1) with λ1 = 1

3
and Aλ1 = A1. Thus, we can get the following result by

the theorems above.

Theorem 5.14. For any r ≥ 2 and sufficiently large n, rso(5)(n) satisfies
the double Turán inequality, the Turán inequality of any order, the following
companion Turán inequality

rso(5)(n)
2 −

(
1 +

γ

n
5
3

)
rso(5)(n+ 1)rso(5)(n− 1) ≤ 0,

where γ is any real number larger than 2A1

9
, the Laguerre inequality of any

order r and its companion version

1 <
L+
r (rso(5)(n− r))

L−
r (rso(5)(n− r))

< 1 +
(2r)!

r!
21−r (−A1)

r

(
1
3

2

)r

n− 5
3
(r−1).
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