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Abstract. We consider a class of sequence c¢(n) with the following asymp-
totic form

c(n) ~ % exp <Z A,\n’\> Z % (n — 00).

AES neT

We give criteria for the Turan inequality of any order, the double Turan in-
equality, the Laguerre inequality of any order of ¢(n) for sufficiently large
n. We also give the companion inequalities for the Turan inequality and
the Laguerre inequality of any order for ¢(n). As applications, we will show
the numbers of commuting ¢-tuples in .5, the partition without sequence,
the plane partition, the partition into k-gonal numbers, the finite-dimensional
representations of groups su(3) and so(5) and the coefficients of infinite prod-
uct generating functions asymptotically satisfy these inequalities. Some of
them settle open problems proposed by Bringmann, Franke and Heim.
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1 Introduction

The main purpose of this paper is to consider sequences ¢(n) of real numbers
of the form

c(n) ~ % exp (Z A,\n’\> Z % (n — 00). (1.1)

AeS pneT

Here k € R, S C Q" N (0,1) is finite, 7 C Qg is finite, C, Ay, 8, € R with
Bo = 1if 0 € T. This general form was introduced by Bringmann, Franke
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and Heim [5], including the asymptotical expression of the numbers of the
unimodal sequences [2], the strongly unimodal sequences [23], the partition
without sequence [16], the plane partition [28], the partition into k-gonal
numbers [3], the finite-dimensional representations of groups su(3) [4] and
s0(5) [3] and the coeflicients of the infinite product generating functions [5].
Bringmann, Franke and Heim [5] proved ¢(n) satisfies the Turdn inequality
for sufficiently large n and put forward an open problem concerning with the
Turan inequalities of higher order.

Recall that a real entire function
9@ =D wh (12)
k=0

is said to be in the Laguerre-Pélya class, denoted by ¢ (x) € LP, if it can be
represented in the form

o0

Y(x) = cgMe o Tz H (1+ x/xy) e_“"/x’“,

k=1

where ¢, 3, xp are real numbers, a > 0, m is a nonnegative integer and
S x;? < co. The LP class has attracted much attention in view of its
connection with Riemann hypothesis.

The Riemann =-function is defined as

1 1 iz ' 1 1
=(z) = 5 (—22 — Z_L) m5al (—% + Z_L) ¢ (—iz + 5) :

Following [8], the Riemann Z-function can be written in Taylor series form

o= 32(5) - 5 20

n=0

We say that a polynomial with real coefficients is hyperbolic if all of its
zeros are real. The d-th associated Jensen polynomial with shift n of an
arbitrary sequence {a(0), a(1), a(2), ...} of real numbers is the polynomial

JE(x) = zd: (Z) Qpyn . (1.3)

k=0

The hyperbolicity of degree d Jensen polynomial associated with the sequence
{a(n)} is equivalent to the Turan inequality for {«(n)} of order d. Pdlya and
Schur proved that the Riemann hypothesis holds if and only if the function
F(z) belongs to LP class, i.e., having only real zeros, or equivalently, all
Jensen polynomials having only real zeros.
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Griffin, Ono, Rolen and Zagier [12] proved that under some conditions,
the degree d Jensen polynomials associated with the sequence {a(n)} are
hyperbolic for any d and sufficiently large n. In fact, they established the
following theorem.

Theorem 1.1 (Griffin, Ono, Rolen and Zagier). Let a(n), A(n), and é(n)
be sequences of positive real numbers with §(n) tending to zero and satisfying

log(%):/l() +Zgl n)j'+o(6(n)?) as n— oo

for some d > 1, all 0 < j < d and some g;(n) = o(d(n)*). Then, we have

s (i (ot ) ) = 10

uniformly for X in any compact subset of R, where Hy(X) are the Hermite
polynomials.

Recall that a sequence {a,},>0 is called to satisfy the Turdn inequality,
if
T(an): = ap® — p_1an41 > 0.

We say that {a, },>0 satisfies the double Turan inequality, if
T(T(an)): = (an2 - arhlanJrl)2 - (an712 - anf2an)(an+12 — Qplpi2) > 0.

A sequence {a,},>1 is called to satisfy the Laguerre inequality of order
m [26], if

2m
1 2m
Lm(an) = = E <—1)k+m( k )an+kan+2mk 2 O (14)

The Laguerre inequalities have profound connections to the Riemann hypoth-
esis and the Laguerre-Pdlya class, see [9], [11], [15], [21] and [22]. Recently,
the Laguerre inequalities for the Maclaurin coefficients of the Riemann =-
function, the partition function and some celebrated sequences have been
extensively studied, see [1], [7], [10], [25], [26] and [27]. Denote the sum
of the terms with positive (negative, respectively) coefficients of L m(an) by

L} (ay) (L, (ay,), respectively). One can see that (1.4) equals to E“"; > 1.

It is also interested to consider the companion Laguerre 1nequaht1es i.e., give
L (an)
Li(an)’

In this paper, we will investigate these inequalities for ¢(n). This paper
is organized as follows. In Section 2, we shall prove that as n — oo, ¢(n)

an upper bound for For more recent work, see [1], [7] and [10].
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satisfies the Turan inequality of any order and the double Turan inequality.
In Section 3, we will show ¢(n) satisfies the companion Turdn inequality for
sufficiently large n. In Section 4, we will show ¢(n) asymptotically satisfies
the Laguerre inequality of any order and its companion version. In Section 5,
as applications, we will show the numbers of commuting /-tuples in .5,,, the
partition without sequence, the plane partition, the partition into k-gonal
numbers, the finite-dimensional representations of groups su(3) and so(5)
and the coefficients of infinite product generating functions asymptotically
satisfy these inequalities.

2 Turan type inequalities

In this section, we will prove that as n — oo, ¢(n) meets the requires of the
Turan inequality of any order and the double Turan inequality.

To prove that ¢(n) fulfills the Turdn inequality of any order, we just need
to verify ¢(n) conform to the conditions of Theorem 1.1.

Theorem 2.1. Assume that c¢(n) is a sequence of the form (1.1), let S: =
{A, .. Asfwhere 1 > N > X > - > A >0andT: ={u,...,u} where
1> e > o> >0, k, C, Ay, By € Rwith By =140 T. If Ay, >0,
then for sufficiently large n, c¢(n) fulfills the Turdn inequality of any order.

Proof. By the Taylor expansion of log x, we have that

—1)? — 1)
log(z) =2 —1— % +-- 4 (_1)7«—1M +o(z"), x = 1. (2.1)
r
From (1.1) we get
K Z nB—H
10gMN2Axn+j ZAA” +log n' +log HET(;j)u'
c(n) AeS AeS (n+j) #GTn_ﬁ
(2.2)
S
We proceed to estimate Y, g Ax ((n + 7)* — n?), I n+])“ and log %
RET nk
respectively. )
First, we estimate >, ¢ Ax ((n 4+ j)* — n*). Since
o
(n+j)—n*=Y" () A L o(n TN (N > ). (2.3)
i
i=1
Thus
ZA)\ (n+ ) ZA,\Z( > n~TA 5 o(nm N (N >r).
AeS AeS =l
(2.4)
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. Since

08 7
i( ) O(n™ N1, (2.5)

Next we turn to estimating lo

I{

by (2.1) we obtain

. N
n .
log — = filk)nT +Om N, 2.6
gy~ ) () (2.6
where f;(k) = (_1#
. . ZHGT(niig)u .
Finally, we only need to estimate log =——"z>~. Since
HET ni
Sy S-S et @D
:uz 7 n+] 1223 )
neT neT i=1
from (2.1) we deduce that
2T
log SKET (nt)" *J ZG n)j' + o(Gn(n)) (2.8)

Z;},GT nk
where G;(n) are certain polynomials of n with degree no more than —i and
Giln)| < tpin-
Combining (2.4), (2.6) and (2.8), as n — oo we get that

1 n+] ZA Z() —i+A z_'_Zfz nljl‘f‘ZG j+0 —N+)\)

/\eS =1
=: Z (Z Byi(n) + E(n)) 3t o(n™ N, (2.9)
i—1 \)es

where B) ;(n) = AA( )n="A Fi(n) = fi(k)n~"+G;(n). Employing (2.6) and
(2.8), we get | Fi(n)| < (1} TRt

Let A(n) = > \cs Baa(n) + Fi(n) = V= 2es Bra(n) — Fx(n),
gi(n) = > \es Bri(n) + Fi(n) (i > 3). Then i >3, we get
lim 9i(n) — lim D ses Bri(n) + Fi(n)

e 0(n)t ne (L5 B (n) — Fy(n))?

Z)\ESA)‘(Z)n_H_/\ _
(2) —24A)3 (2.10)
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In summary, we have that ¢(n) satisfies the conditions of Theorem 1.1. Thus,
for sufficiently large n, ¢(n) satisfies the Turdn inequality of any order. [

Now we turn to proving the double Turan inequality for ¢(n).

Theorem 2.2. For sufficiently large n, c(n) satisfies the double Turdn in-
equality, i.e.,
T(T(c(n))) = (c(n)* = c(n — De(n +1))?
= (en = 1)* = cln = 2)e(m)(e(n +1)* = cln)e(n +2)) 3Py

Proof. Following the framework in the proof of Theorem 1.3 in [5], we claim
that for all A € S,

2
exp (A (20" = (n+ 1) = (n=1)")) = 1 - ;Ai + 27:2’_1% + o (n ")

where 7)1 = 24, (;),

2
exp (A,\ (nA + (n + 2)>\ —2(n+ 1)>\)) _ 1_i_7/;02/\_,1/\_i_7,1;?_,2A+2r;‘;>112A Yo (n*4+2)‘)

where py1 = 24, <2> and f1) 2 = 64, (;),

2
exp (A (1 (0= 2" =200 1)) = 142204 222 Aoy oteny

where wy ; = 24, (;) and wy s = —6A4, (;)
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Then, we get that

exp (Z Ay (2 = (n—=1)*— (n+ 1)’\)>

AES
7 7"
Al Al —4+42)
_H >+ 42,\+0(n " )
n 2nt-
AES
v o "
ALl A2yl Ayl _
=l-— 5~ T an T oo +o(nTh),
n=—M n=r2 - 2ptTEM

exp (Z Ay (n’\ +(n+2)*-2(n+ 1))‘))

AES
_ H <1+ M1 i X2 i N?\,l +o(n_4+2’\)>
- 2—A 3—A 4-2)

Aes n n 2n (2.12)
S X SV W Y RS N R 1 +o (n )
o n2—M n2—Xs n3—XM n3—Xs InA—2M1 ’

exp (Z Ay (n*+(n—=2)*—2(n— 1)A)>

AES
_ 1 Wi,1 Wx,2 wg\,l —442)
= + n2—A + n3—A + 9pA—2X +o(n )
AES
2
o Wi ,1 Wi, 1 Wi ,2 W2 Wil —4+2)

1+ : +.”+n2*’\s+n3*>‘1+'”+n3—>‘s’+2n4*2>‘1+0(n 1)'
Here )\S/ > 2\ — 1.

A direct calculation gives that for n > 1,

1 1 a;
— = 1 — 1,
n?*  (n—1)f(n+ 1)~ ( +;nﬂ>
Ly 1+Zﬁ (2.13)
nf(n + 2)r = ni |’ '
1 C;
— = (n-1)*(1 .
w0 (1 53)
According to (2.12) and (2.13), we have
exp (2 A((n—=D N+ (n+1)*
T(T(C(ﬂ))) ~ O p( Z/\ES )\<( ) ( ) )) (Cl2 - A/B,),

(n— 1)%(n + 1)
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2
/Mh a1 | a2 Fxg 2 Foxg 1 —4+2)
(1 L an T o e o ()

Grom?) 2 DMy n+2

ueT
ﬂ 2
B = ;(n —ul)/‘
- (1+ DL el L S (‘“”l))
. 8 8,
(1+0( 2));;ﬁyeT<n_2>v’

! _ B,u 61/
¢ _Z(n—1)u;(n+1)v

neT

ez e) (o (X

n2—)\1 nQ—AS 2”4 2)\1
;LE’T

As [y = 1, we take A mod (O(n—4+2m)>,

Z ﬁuﬁu . Z ﬂ#ﬁu + zs: X1 Z 5uﬂv
Loy (L P U G ) e R o nk(n+2)¥
0<pu+r<4—2X, 0<p+r<4—2)\ 0<p4rv<2—2X\14+X;
> Hx;,2 'uil,l
+ n3_)‘i 2n4—2)\1
i=1
1 1 2 1 1
=92 2 — _ _
= (v o) P (7~ wrr ~ we )
0<p<2—X, 0<p<v
1<pfr<d—2x,
! 2
S n i Hag1 Z BBy 2 . M, 1
— nZ—Ai - n2—Ai . i (n + 2)¥ — n3—Ai | opd—2x
1<t sa 0+ A
25 °\ i X, 13,1 1
P = 512 Z “ga 0SSy
= - / ’ (214)
" pi, 1 X1 ~ fin 2 “Al 1 1
- n2—xi 261 n3—Xxi n3—Xi  opd-2x;’ 5 < A <L
i=1 i=1 i=1
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Similarly,

281 = Wi W), 1 w3, 1 1
_ﬁ_znz—/\i_Qﬁlz Z N n4—12'\1’ 0<)‘1§§’
B'( mod (o(n~*t2M))) = , =t , =1
- Wiyl C WA;,1 . WX;,2 w/\ 1 1
B Dy vl T W v i o vl e ve 5 <M<l
i=1 i=1 i=1
(2.15)
and
! 2
281 | = Mt ~ Tl Va1 1
e > o+ 26 5n  gpian <M =g,
C’( mod (O(n—4+2)\1))> — i=1 =1
s ~ s’ ~ 72 1
Ayl i, 1 A1,l
n2—AXi +26 n3—Xi  9pA—2\’ 2 <A <L
=1 =1
(2.16)

Combining (2.14), (2.15) and (2.16), we get that for 0 < A\; < 3, C? — A'B’
can be simplified to

2
s’ 2
251 +Z %1,1 .y Tl Mg
1 N3\ 9pd-2xn
=1
s s’ s 2
26 x, 1 Y Jor Pa2 Mg
n3 n2—Xi 1 n3—Xi n3—X  9pA—2x
=1 =1 =1
s s’ s’ 2
25 W1 28 W1 Wi;,2 Wiy, 1
n3 2 : n2—Xi 1 2 : n3—Xi } : n3—X  9pA—2x
i=1 i=1 i=1
3
1643, (%)
I A —6+3X1
= pe—T + o(n ).
For % <M <1,0"%— A'B can be simplified to
s s’ ) 2
ry)\z,l + 2ﬁ f}/)\l,l _ 7A171
E : n2—Xi 1 2 : n3—X  9pA-2x
i=1 i=1
s s’ ! 2
_ M1 28 Mg a2 Haa
2 :n2—)\ 1 n3—Xi n3—X  9pA—2x
= i=1 i=1
s s’ s wz
. W,\Z,1 ﬁ Wi; 1 . W);,2 . 1,1
E :nz i 1 2 :n?’ i 2 :ns—,\i InA—2x1
i=1 i=1 i=1
3
1643, (7))
_ —6+3X1
R — v + o(n ).
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Since Ay, > 0 and 0 < A\; < 1, we conclude that

sgn (—16A§1 (2 )3) ~ 1. (2.17)

This completes the proof. n

3 The companion Turan inequality

In this section, we will show ¢(n) adheres the companion Turdn inequality
for sufficiently large n.

Theorem 3.1. Assume that c¢(n) satisfies the form (1.1), then c(n) asymp-
totically satisfies the companion Turdn inequality, i.e.,

o(n)? — < an) c(n+1)e(n—1) <0, (3.1)

where vy, 1 @s defined as in Theorem 2.2 and 7 is any real number larger than
_7)\1,1 .

Proof. We have

¢(n)® — (1 + n27’\1) c(n+1)c(n—1)
o 2P (22 5es Anr) <Z @)2

peT

bl Va1 _
_<1+n2/\1)<1+n21’\1+0<n 2+>\1)> (1+0(n Z n+1 Ze;

The sign of this is dictated by

w,veT

10
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As By = 1, the above formula mod (0(n‘2+)‘1)) equals,

Buﬁu 6uﬁu a1 7
Z nhtv szeT (n+ 1)H(n— 1) + n2-M * n2-M

wvET

=2 >y lﬁ(%ﬁ‘(n+n&n—1W)

HET
0<M<l——

2 1 1 3.2)
) Bb (nw T =1y T 1)~>

wveT
0<u<v
1<pfv<e—n

_ Ya1,1 0l

n2fA1 anAl'

For n > 1,
1

(n+ 1)(n + )

=n" 4+ 0 (n7?)

and

L 1 v pr
(n+Dr(n—17 (n+1)(n+1)» =2n <1+Z )

r>1

Thus (3.2) becomes

O<n—2+>\1) . 7>\1721_;\‘_1 7
n

When 7 > —~y, 1, it is obvious that (3.1) holds for sufficiently large n. [
4 Laguerre inequalities
In this section, we demonstrate ¢(n) fulfills the Laguerre inequality and their

companion inequality of any order. Recently, Wang and Yang [27] proved
that for any r and sufficiently large n, one has L, (a(n)) > 0.

Theorem 4.1 (Wang and Yang). Let {a(n)}, {0(n)}, {Ai(n)} be sequences
with a(n) positive, 6(n) — 0%, Ay(n) < 0, As(n) = O(5(n)") and Ay(n) =
0(6(n)*) (i > 2) for some positive t, and for —r < j <,

1Og< n+1) ZA n)jt + o0 (5(n)") (4.1)

then for sufficiently large n,
L.(a(n)) = 1 Z(—l)k” (i)a(n + k)a(n +2r — k) > 0. (4.2)

11
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Since the conditions of Theorem 1.1 are stonger than those of Theorem
4.1, we get ¢(n) meets the requirements of the above Theorem from the proof
of Theorem 2.1. Thus ¢(n) fulfills the Laguerre inequality of any order for
sufficiently large n. Next we prove c(n) satisfies the companion Laguerre
inequalities. First, let us recall two combinatorial identities which will be
used in our proofs, see [10] and [27].

Lemma 4.2. For positive integers m and t < 2m,
2m
2m 0 t<2m
—1)* — k=< ’ 4.3
kz:;( ) ( k )(m ) {(Qm)!, t=2m. (4:3)

Lemma 4.3. For positive integers r,

2r

3 (3 Jor-wr =2 -

k=0

Now we are in a position to establish the companion Laguerre inequalities
for ¢(n).

Theorem 4.4. For any fixed r > 2 and sufficiently large n, c¢(n) satisfies the
companion Laguerre inequality of order r, i.e.,

(1 L gy (Al)rmwlxrﬂ) Lo (c(n—1)) > L (c(n —1)).

r! 2
(4.5)
Proof. The inequality (4.5) can be rewritten as

(2r)! 1, A( A (a1 Lr (e — 1))

Oy () neren BEESD

Li(c(n=r)) Ly (c(n—r))
> ()2 ()2 (4.6)
Life(n—1))

c(n)?

The right-hand side of the above inequality can be expressed as

Lile(n =r)) _ 1§~ e (2 eln=r+g)en+r =)
) 22( 1) () :

= j c(n)?
From (2.9) we get
cn+r—7jcn—r+j7)
c(n)?

12
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:exp 1ng + ]ng
c(n) c(n)
n" T G gE
. S n+r—j)H
~ exp ZA,\((n+r—])’\—n’\)—i—log—,ﬁ—i—log £ 3
AeS (n+r—j) pET it
n/{ Tﬁ—f‘
. n—r4j)H
+ZAA((H—T+J)A—HA)+10gm+10g Ll
AES J RET nk

= exp Z <Z By.i(n) + F,(n)) ((r =) + (r = ) (=1)") + o(nN*)

AeS

=exp 2Z<ZB>\21 +F2z )) (r_j)Zi—'_O(n_N—H\)

i=1 AES

=:exp 22321 (r—j) +0(B2N(n>> )

where By;(n) are certain polynomials of n with degree no more than —2i+ \;
and the coefficient of n=2% is Ay, (;1 )

Let .
Or(w) =D = exp(a) +o () (4.7)
Then as n — 0o, we get
Ly(c(n — 1))
c(n)?
:% ;( 1)7+r (2;) exp 2 Bo;i(n)2(r — 7)* + o(Ban(n ))
:% j:O( AN (2;) exp ;B%(”)Q(T —j)* ) exp (o(Ban(n))
= (% jZ(J( 7 (2]7“) Or <,Zl Bay;i(n)2(r — 7)? ) +o (B2N< )QNT)> exp (o(Ban(n))
=5 20 (7)o (Z Balw)2(r - i) ) +0(Ban(n)

13
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Now we focus on the expression

3w (e (Z Ba(n)2(r - j)?i) . (1)

J=0

The ¢,-terms can be viewed as a polynomial in (r — j)?, i.e., there exist
coefficients Bj,(n) (0 < i < 2rN) such that

Oy (Z Bsi(n)2(r — j) ) ZB (r —7)? (4.9)

where By, (n) are certain polynomials of n with degree no more than (—2+AX, )i
2145 ()

and the coefficient of n(~2tM)i ig L

By Lemma 4.2, one can see that

% i(—lw (2]) ¢ & Bai(n)2(r — j>2f>

:_Z J+T<QT)ZB (r — )2

oy (4.10)
=525 Z e () -
3 oSS (-

(The sum of terms with i < r vanishes). It implies that as n — oo, we have

%i( W( )@(ZB& 2(r — §) )

J=0

:%Bér(”) > (= (2?”> (r = §)* + o(Bh,(n)) (4.11)

j=0 J

2 A\
(Tr) or— 1( )TAKI < 21> n(—2+)\1)7“ +o (n(—2+)\1)7') '

On the other hand, we obtain

c(n+2j +Cl()n)(2n -2j-1) ~ exp <2 Z Bai(n)(2j + 1)* + o( Ban(n )))

A
= 1+24, ( 21> (2 +1)*n > 0 (n721). (4.12)

14
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Thus, by Lemma 4.3 we get

_ [r—1/2] . .
L (c(n—7)) 1 2r cn+2j+1ec(n—25—-1)
BT FO Y (R

2 : 2
c(n) =T\ +25+1 c(n)
p o Al
__02r—2 - . 2 —24+)\1 —24+A1
=2y g ) (r+2j+1> <2A>\1<2>(2]+1)n +o<n )>
Jj=—[r—1/2]
1 (n \ r o \
_o2r—2 | 1 —2+\; : 2 240
=2 +2A,\1<2>n 2' E <r+2j—|—1>(2]+1) —1—0(11 )
j=—Ir—1/2]
r—1/2) r/2) (413
_ 1 A\ 2r ) 2r ) _
_o2r—2 | 14 2+ M1 Z 97 4 1)2 Z 97)2 2+
"2 M(Q)n iy NP2 e oy N T2 ) +O<n )
j==lr— j==Ir

1 AL : o
_92r=2 4 —2+) ( 2+A1)
+3 >\1<2>n j; i i*+o
022 | 924 <)\21>n_2+/\1 +o (n—2+>\1) '

Combining (4.11) and (4.13) gives

(
(1 N (27“) Bl (21) 24— 1>) L, (ZEZ); r) _ Li(zgz)g r)

2!, Ar)” @2n)! . A\
_ or —A ) (=24X1)(r-1) or 1 “1)"(A r+1 (=2+X1)r
gty () Ay "

2r)! A\
. ( T) 27”1(_1)1"14?1(21) n(—2H20)r +O(n(*2+>\1)7“) (414)

(27“) ) g IA; (_1)7' ()‘1) n(—2+>\1)(r—1) +0(n(—2+>\1)(r—1)>‘
1

In view of Ay € (0,1), we get (—I)T()‘Ql)r > 0. Hence, we conclude the

positivity of (4.14) as n — oc. ]

5 Applications

In this section, we will apply Theorem 2.1, Theorem 2.2, Theorem 3.1 and
Theorem 4.4 to show that some sequences of the form c(n) satisfy the com-
panion Turan inequality, the double Turan inequality, the Turan inequality of
any order, the Laguerre inequality of any order r and its companion version.

The number of commuting /-tuples in S,. Denote by Ny(n) the number
of (-tuples of elements in the symmetric group S,, with commuting compo-
nents, normalized by the order of S,,. Notice that Ny(n) = p(n), where p(n)
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denotes the number of partitions of n. Bringmann, Franke and Heim [5] gave
the asymptotical formulas for N,(n) for arbitrary ¢ as follows.

Theorem 5.1 (Bringmann, Franke and Heim). We have, as n — oo,

— l71

=1 1 2 1 4
e ) 2884(3) 7] 3m)3((3)3 2 T3 1 B
Ny(n) ~ 2 €8 )7 exp <( )2C( i —2(3)1”3> <1+Z
. 3

224 -372 STT2 -T2

for certain numbers Bs ;,

d(=2) 1
e 24 4

3)%

I
—~

j=1 4
(=2 1
£S5 (¢ (3)(5)
N5(n) 3 1 ( 3 3
25 .35 -55 - ns
4 X

with computable constants Ay j (2 <j <4)and As; (2 <j <5) and certain
B, ; and Bs ;, and for £ > 6,

(—1)2y/Z (r(0)t ‘ : X\ By,
Ng(n)w(\/Q_)gzl/l_gexp< ﬁ() kg: é) <1+Z—Zj>a

TTEN, 2¢

where Zy = (C(2) - ((3) -+~ C(0))T for certain Ay and By ;.

Theorem 5.1 suggests the asymptotical formulas for N,(n) satisfies the
form of ¢(n). Combining Theorem 2.1 and Theorem 2.2, we get that for
sufficiently large n, Ny(n) satisfies the Turdn inequality of any order and the
double Turan inequality.

Theorem 5.2. For { > 2 and sufficiently large n, Ny(n) satisfies the Turdan
wnequality of any order and the double Turdn inequality.

Set A = 51 and Ay, w Theorem 3.1 gives that N,(n) satisfies
the following compamon Turan mequahty.

Theorem 5.3. For ¢ > 2 and sufficiently large n, we have Ny(n) satisfies
the companion Turdn inequality, 1.e.,

Ny(n)? — <1+nZ£)Ng(n+1)Ng(n—1) 0,
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1
— . NG
where 7 is any real number larger than —=7=*.

Since 1 + % > 1, from Theorem 5.3 we deduce that the log-convexity of
|Con| = nINy(n), which give an affirmative answer to the open question (3)
proposed by Bringmann, Franke and Heim in [5].

Corollary 5.4. For { > 3 and sufficiently large n, we have |Cy,| is log-
convez.

For Laguerre inequalities, we get that N,(n) satisfies the Laguerre in-
equality of any order r and its companion version from Theorem 4.4.

Theorem 5.5. For { > 2, r > 2 and sufficiently large n, we have

L (Ne(n — 1)) @r)! -, £F(£) Zy LLTI ' ~1-13)(r-1
S e T B ( 1 ) (2)”( o,

The following sequences have also the asymptotical behavior of the form
c(n), then we can obtain results similar to Ny(n).

Partitions without sequences. The partition without sequence is the
partition of n that do not contain any consecutive integers as parts. Let
p2(n) denote the number of partition without sequence of n. Bringmann
and Mahlburg [6] first succeeded in proving an asymptotic formula for py(n).
Mauth [16] gave the following formula and proved the log-concavity of pa(n)

for n > 482,
e (= B
o= (B0 7))

where f3; are constants. Note that ps(n) have the form (1.1) with A; = 3 and
Ay = %’T Hence, by the theorems above, we deduce the following result.

.u \

Theorem 5.6. For any r > 2 and sufficiently large n, pa(n) satisfies the
double Turdan inequality, the Turdn inequality of any order, the following
companion Turdn inequality

palo? = (1475 ) -+ Dl = 1) <0

s

where 7 is any real number larger than g,
order r and its companion version as follow

the Laguerre inequality of any
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Plane partition. A plane partition of size n is a two-dimensional array of
non-negative integers ;, for which Zj,k 7k = n, such that m;, > ;1
and 7, > w1 for any j,k € N, denote the number of plane partitions of
size n by PL(n). Wright [28] proved that

N+1
C 2 B; (N+1)
PL(n) = et (1 D= (e >) |
T 36 =2 n 3

where A; > 0, C' and B; are constants.

Heim, Neuhauser and Troger [14] conjectured plane partition is log-concave
and proved the conjecture for almost all n. Ono, Pujahari and Rolen [19]
derived the following explicit asymptotic formula and proved that Jgf(x) is
hyperbolic for sufficiently large n.

Theorem 5.7 (Ono, Pujahari and Rolen). If r € Z*, then for every integer
n > max(n,, ., 87), we have

e NG Sn G (S D)™ Bbaml (4 5)

PL(n) = o ZZ 25+2m+ 22

1
5=0 m=0 A™ts Ny,

+ B (n) + E™(n),

where |EZ(n)| < Eo*i(n), N, := (£)} and

[SM[N)

el < esp ( (34 2) w2/2)

)

Pandey [20] found a lower bound such that J%"(x) has all real roots for
all n > Npr,(d), where

3(d—1) \ 2d r(2d?)
Npr(d) < 279928 x d(d — 1) (6d3(22.2) : ) T

Obviously, PL(n) have the form (1.1) with A; = 2 and A,, = A;. Thus,
employing the theorems above, we get the following result.

Theorem 5.8. For any r > 2 and sufficiently large n, PL(n) satisfies the
double Turdan inequality, the Turdn inequality of any order, the following
companion Turdn inequality

PL(n)* — (1 + nlé) PL(n + 1)PL(n — 1) <0,
2A;1

where 7 is any real number larger than =g*, the Laguerre inequality of any

order r and its companion version as follow

LI (PL(n — 1)) 2r)! 1, P (3) i
1<L;(PL(n—r))<1+ 2 (—Ay) (2) n~s0=b),
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The coefficients of infinite product generating functions. py(n) is
defined by the generating function [13]

> pa(n)g™: = [ (1 =g
n=0 n=1

Note that p;(n) = p(n) and pa(n) = PL(n). Bringmann, Franke and Heim
[5] provided that

C dt1 B -
)~ G (13 B ),
" j>1 et

where C, Ay, b and E,; are constants. One can see that py(n) have the form

(1.1) with Ay = g% and Ay, = A;. Thus, we can get the following result by

the theorems above.

Theorem 5.9. For any r > 2 and sufficiently large n, py(n) satisfies the
double Turan inequality, the Turdn inequality of any order, the following
companion Turdn inequality

pa(n)? — (1 +

) pa(n + 1)pg(n —1) <0,

1
n't@z

where 7 is any real number larger than A(d+])

the Laguerre inequality of

(d+2)%
any order r and its companion version as follow
+ d+1N\ "
1< Lr (pd(n - T)) <1+ (2r)!21—r (_A1>T d+2 n(*lfﬁ)(T*U'
L-(pa(n—1)) d 2

Partitions into k-gonal numbers. We denote the number of partitions of
n into k-gonal numbers by pi(n). We have generating function

n 1
n>0 n>1
where

Pu(n) = % ((k—2)n® + (4 — k)n)

is the n-th k-gonal number. Bridges, Brindle, Bringmann and Franke [3]
provided that

O (k)eAkmn’ N B. .
pr(n) = ()% 1+ Z JJ’-k + On (n_%) ,
j

1, 6(k—2) - ns

where C'(k), A(k) and Bj, are constants.

Note that py(n) have the form (1.1) with A\; = 3 and A, = A(k). Then,
we can get the following result by the theorems above.
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Theorem 5.10. For any r > 2 and sufficiently large n, pp(n) satisfies the
double Turdn inequality, the Turdn inequality of any order, the companion
Turdn inequality

pu(n)’ - (1 T ls) pu(n+ Dpe(n — 1) <0,

ns3

where ¥ is any real number larger than %(k), the Laguerre inequality of any

order r and its companion version as follow

1< L;r(pk(n - T)) <1+ (2r)!21—r (—A(l{i))r <%>Tn—g(r—1)‘

Ly (p(n — 1)) r! 2

The finite-dimensional representations of groups su(3). The unitary
group su(3), whose irreducible representations W, ; indexed by pairs of pos-
itive integers. The numbers r4,3)(n) of n-dimensional representations, have
the generating function

. 1
E Tsu(3) (n)q" = | | JkG+R) )
2

n>0 G k>1 l—q
with 74y(3)(0) := 1. In [24], Romik proved that, as n — oo,

3

C
Tsu(3)(n) ~ —g exp (Am% + Aynio + A3n% + A4nT10) ’

ns
with explicit constants Cy, A, Ay, A3, Ay expressible in terms of zeta and
gamma values. Romik asked for lower order terms in the asymptotical ex-
pansion of 7g,3)(n). Bringmann and Franke [4] showed the following form of
Tsu() (1)

Theorem 5.11 (Bringmann and Franke). As n — oo, for any N € N,

N
Co 2 3 i L C; N _ 3
& + _N_3
7“su(S)(n) = 3eAln5J“42n1 FAsns +Aan 1+ E ] + On (n ? 80) )
—' ni
—1

3 J
ns

where the constants C; do not depend on N and n and can be calculated
explicitly.

Note that reys) (n) have the form (1.1) with A, = 2 and A, = 4. Hence,
we can deduce the following result by the theorems above.

Theorem 5.12. For any r > 2 and sufficiently large n, ros)(n) satisfies the
double Turdn inequality, the Turdn inequality of any order, the companion
Turdn inequality

Tsu(3) (n)2 - (1 + lg) T'su(3) (n + 1)T5u(3)(n - 1) <0,

n
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6A1

5=-, the Laguerre inequality of any

where 7 is any real number larger than
order v and its companion version

Lf (Tﬁu(3) (n - T)) (QT) 1— <2 s
1< <14 ot (=AY 5) n=sr=1),
L (reus)(n —1)) 7! (=4 2

The finite-dimensional representations of groups so(5). This frame-
work generalizes to other groups. For example, one can investigate the Witten
zeta function for so(5), which is (for more background to this function, see
[17] and [18])

s 1
o) Z dlm =0 Z mns(m +n)*(m + 2n)s’

n,m>1

where the ¢ are running through the finite-dimensional irreducible represen-
tations of s0(5). Bridges, Brindle, Bringmann and Franke [3] showed the
following form of 74,(5)(n).

Theorem 5.13 (Bridges, Brindle, Bringmann and Franke). As n — oo, for

any N € N,
N+1
C 1 2 1
7"50(5)(71) == _l€A1n3+A2n§+A3n§+A4 <1 + Z + ON ( N;l))
niz ~ n 9

where C, Ay, Ay, Az, Ay and B; are constants.

Bringmann, Franke and Heim [5] have proved that 74,s3)(n) and res)(n)
asymptotically satisfy the Turan inequality. Note that rs(5)(n) have the form
(1.1) with A\; = 3 and A\, = A;. Thus, we can get the following result by
the theorems above.

Theorem 5.14. For any v > 2 and sufficiently large n, rei)(n) satisfies
the double Turdn inequality, the Turdn inequality of any order, the following
companion Turdan inequality

f)/
Tao(s) () = (1+ )Tao<s><n+1>na<5><n—1) <0,

5
3

where 7 is any real number larger than % the Laguerre inequality of any

order v and its companion version

L+(T5 (5) (n — 7”)) (27“) 1— INT 5
1< 2= 14220 (A" (3 ) n30,
= Lr_(rsa(5)(n - T)) T 7! ( 1> (2> "
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