DOI: 10.4153/S0008414X25101661

Inequalities for the sequences with unified form

Li-Mei Dou¹, Zhen-Yu Gao² and Larry X.W. Wang³

1,2,3 Center for Combinatorics, LPMC

Nankai University

Tianjin 300071, P. R. China

Email: 12120220002@mail.nankai.edu.cn, 21120230007@mail.nankai.edu.cn, 3wsw82@nankai.edu.cn

Abstract. We consider a class of sequence c(n) with the following asymptotic form

$$c(n) \sim \frac{C}{n^{\kappa}} \exp\left(\sum_{\lambda \in \mathcal{S}} A_{\lambda} n^{\lambda}\right) \sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{n^{\mu}} \qquad (n \to \infty).$$

We give criteria for the Turán inequality of any order, the double Turán inequality, the Laguerre inequality of any order of c(n) for sufficiently large n. We also give the companion inequalities for the Turán inequality and the Laguerre inequality of any order for c(n). As applications, we will show the numbers of commuting ℓ -tuples in S_n , the partition without sequence, the plane partition, the partition into k-gonal numbers, the finite-dimensional representations of groups $\mathfrak{su}(3)$ and $\mathfrak{so}(5)$ and the coefficients of infinite product generating functions asymptotically satisfy these inequalities. Some of them settle open problems proposed by Bringmann, Franke and Heim.

Keywords: Turán inequality, Laguerre inequality, symmetric group, plane partition, finite representation of group.

AMS Classification: 11P82, 11E45, 11M41, 05A20

1 Introduction

The main purpose of this paper is to consider sequences c(n) of real numbers of the form

$$c(n) \sim \frac{C}{n^{\kappa}} \exp\left(\sum_{\lambda \in \mathcal{S}} A_{\lambda} n^{\lambda}\right) \sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{n^{\mu}} \qquad (n \to \infty).$$
 (1.1)

Here $\kappa \in \mathbb{R}$, $\mathcal{S} \subset \mathbb{Q}^+ \cap (0,1)$ is finite, $\mathcal{T} \subset \mathbb{Q}_0^+$ is finite, C, A_{λ} , $\beta_{\mu} \in \mathbb{R}$ with $\beta_0 = 1$ if $0 \in \mathcal{T}$. This general form was introduced by Bringmann, Franke

and Heim [5], including the asymptotical expression of the numbers of the unimodal sequences [2], the strongly unimodal sequences [23], the partition without sequence [16], the plane partition [28], the partition into k-gonal numbers [3], the finite-dimensional representations of groups $\mathfrak{su}(3)$ [4] and $\mathfrak{so}(5)$ [3] and the coefficients of the infinite product generating functions [5]. Bringmann, Franke and Heim [5] proved c(n) satisfies the Turán inequality for sufficiently large n and put forward an open problem concerning with the Turán inequalities of higher order.

Recall that a real entire function

$$\psi(x) = \sum_{k=0}^{\infty} \gamma_k \frac{x^k}{k!} \tag{1.2}$$

is said to be in the Laguerre-Pólya class, denoted by $\psi(x) \in \mathcal{LP}$, if it can be represented in the form

$$\psi(x) = cx^m e^{-\alpha x^2 + \beta x} \prod_{k=1}^{\infty} (1 + x/x_k) e^{-x/x_k},$$

where c, β, x_k are real numbers, $\alpha \geq 0$, m is a nonnegative integer and $\sum x_k^{-2} < \infty$. The \mathcal{LP} class has attracted much attention in view of its connection with Riemann hypothesis.

The Riemann Ξ -function is defined as

$$\Xi(z) := \frac{1}{2} \left(-z^2 - \frac{1}{4} \right) \pi^{\frac{iz}{2} - \frac{1}{4}} \Gamma\left(-\frac{iz}{2} + \frac{1}{4} \right) \zeta\left(-iz + \frac{1}{2} \right).$$

Following [8], the Riemann Ξ -function can be written in Taylor series form as

$$F(z) := \frac{1}{8} \Xi\left(\frac{z}{2}\right) = \sum_{n=0}^{\infty} \frac{\gamma(n)}{n!} z^{2n}.$$

We say that a polynomial with real coefficients is hyperbolic if all of its zeros are real. The d-th associated Jensen polynomial with shift n of an arbitrary sequence $\{\alpha(0), \alpha(1), \alpha(2), ...\}$ of real numbers is the polynomial

$$J_{\alpha}^{d,n}(x) = \sum_{k=0}^{d} {d \choose k} \alpha_{k+n} x^{k}. \tag{1.3}$$

The hyperbolicity of degree d Jensen polynomial associated with the sequence $\{\alpha(n)\}$ is equivalent to the Turán inequality for $\{\alpha(n)\}$ of order d. Pólya and Schur proved that the Riemann hypothesis holds if and only if the function F(z) belongs to \mathcal{LP} class, i.e., having only real zeros, or equivalently, all Jensen polynomials having only real zeros.

Griffin, Ono, Rolen and Zagier [12] proved that under some conditions, the degree d Jensen polynomials associated with the sequence $\{\alpha(n)\}$ are hyperbolic for any d and sufficiently large n. In fact, they established the following theorem.

Theorem 1.1 (Griffin, Ono, Rolen and Zagier). Let $\alpha(n)$, A(n), and $\delta(n)$ be sequences of positive real numbers with $\delta(n)$ tending to zero and satisfying

$$\log\left(\frac{\alpha(n+j)}{\alpha(n)}\right) = A(n)j - \delta(n)^2j^2 + \sum_{i=3}^d g_i(n)j^i + o\left(\delta(n)^d\right) \quad as \quad n \to \infty$$

for some $d \ge 1$, all $0 \le j \le d$ and some $g_i(n) = o(\delta(n)^i)$. Then, we have

$$\lim_{n\to\infty} \left(\frac{\delta(n)^{-d}}{\alpha(n)}J_{\alpha}^{d,n}\left(\frac{\delta(n)X-1}{\exp(A(n))}\right)\right) = H_d(X)$$

uniformly for X in any compact subset of \mathbb{R} , where $H_d(X)$ are the Hermite polynomials.

Recall that a sequence $\{a_n\}_{n\geq 0}$ is called to satisfy the Turán inequality, if

$$T(a_n)$$
: $= a_n^2 - a_{n-1}a_{n+1} \ge 0$.

We say that $\{a_n\}_{n>0}$ satisfies the double Turán inequality, if

$$T(T(a_n)): = (a_n^2 - a_{n-1}a_{n+1})^2 - (a_{n-1}^2 - a_{n-2}a_n)(a_{n+1}^2 - a_na_{n+2}) \ge 0.$$

A sequence $\{a_n\}_{n\geq 1}$ is called to satisfy the Laguerre inequality of order m [26], if

$$L_m(a_n) := \frac{1}{2} \sum_{k=0}^{2m} (-1)^{k+m} {2m \choose k} a_{n+k} a_{n+2m-k} \ge 0.$$
 (1.4)

The Laguerre inequalities have profound connections to the Riemann hypothesis and the Laguerre-Pólya class, see [9], [11], [15], [21] and [22]. Recently, the Laguerre inequalities for the Maclaurin coefficients of the Riemann Ξ -function, the partition function and some celebrated sequences have been extensively studied, see [1], [7], [10], [25], [26] and [27]. Denote the sum of the terms with positive (negative, respectively) coefficients of $L_m(a_n)$ by $L_m^+(a_n)$ ($L_m^-(a_n)$, respectively). One can see that (1.4) equals to $\frac{L_m^+(a_n)}{L_m^-(a_n)} \geq 1$. It is also interested to consider the companion Laguerre inequalities, i.e., give an upper bound for $\frac{L_m^+(a_n)}{L_m^-(a_n)}$. For more recent work, see [1], [7] and [10].

In this paper, we will investigate these inequalities for c(n). This paper is organized as follows. In Section 2, we shall prove that as $n \to \infty$, c(n)

satisfies the Turán inequality of any order and the double Turán inequality. In Section 3, we will show c(n) satisfies the companion Turán inequality for sufficiently large n. In Section 4, we will show c(n) asymptotically satisfies the Laguerre inequality of any order and its companion version. In Section 5, as applications, we will show the numbers of commuting ℓ -tuples in S_n , the partition without sequence, the plane partition, the partition into k-gonal numbers, the finite-dimensional representations of groups $\mathfrak{su}(3)$ and $\mathfrak{so}(5)$ and the coefficients of infinite product generating functions asymptotically satisfy these inequalities.

2 Turán type inequalities

In this section, we will prove that as $n \to \infty$, c(n) meets the requires of the Turán inequality of any order and the double Turán inequality.

To prove that c(n) fulfills the Turán inequality of any order, we just need to verify c(n) conform to the conditions of Theorem 1.1.

Theorem 2.1. Assume that c(n) is a sequence of the form (1.1), let S: = $\{\lambda_1, \ldots, \lambda_s\}$ where $1 > \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_s > 0$ and T: = $\{\mu_1, \ldots, \mu_t\}$ where $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_t \geq 0$, κ , C, A_{λ} , $\beta_{\mu} \in \mathbb{R}$ with $\beta_0 = 1$ if $0 \in T$. If $A_{\lambda_1} > 0$, then for sufficiently large n, c(n) fulfills the Turán inequality of any order.

Proof. By the Taylor expansion of $\log x$, we have that

$$\log(x) = x - 1 - \frac{(x-1)^2}{2} + \dots + (-1)^{r-1} \frac{(x-1)^r}{r} + o(x^r), \ x \to 1. \quad (2.1)$$

From (1.1) we get

$$\log \frac{c(n+j)}{c(n)} \sim \sum_{\lambda \in \mathcal{S}} A_{\lambda} (n+j)^{\lambda} - \sum_{\lambda \in \mathcal{S}} A_{\lambda} n^{\lambda} + \log \frac{n^{\kappa}}{(n+j)^{\kappa}} + \log \frac{\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{(n+j)^{\mu}}}{\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{n^{\mu}}}.$$
(2.2)

We proceed to estimate $\sum_{\lambda \in \mathcal{S}} A_{\lambda} \left((n+j)^{\lambda} - n^{\lambda} \right)$, $\log \frac{n^{\kappa}}{(n+j)^{\kappa}}$ and $\log \frac{\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{(n+j)^{\mu}}}{\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{n^{\mu}}}$ respectively.

First, we estimate $\sum_{\lambda \in \mathcal{S}} A_{\lambda} ((n+j)^{\lambda} - n^{\lambda})$. Since

$$(n+j)^{\lambda} - n^{\lambda} = \sum_{i=1}^{N} {\lambda \choose i} n^{-i+\lambda} j^i + o(n^{-N+\lambda}) \qquad (N \ge r).$$
 (2.3)

Thus

$$\sum_{\lambda \in \mathcal{S}} A_{\lambda} \left((n+j)^{\lambda} - n^{\lambda} \right) = \sum_{\lambda \in \mathcal{S}} A_{\lambda} \sum_{i=1}^{N} {\lambda \choose i} n^{-i+\lambda} j^{i} + o(n^{-N+\lambda}) \qquad (N \ge r).$$
(2.4)

Next we turn to estimating $\log \frac{n^{\kappa}}{(n+j)^{\kappa}}$. Since

$$\frac{n^{\kappa}}{(n+j)^{\kappa}} = \sum_{i=0}^{N} {\binom{-\kappa}{i}} n^{-i} j^{i} + O(n^{-N-1}), \tag{2.5}$$

by (2.1) we obtain

$$\log \frac{n^{\kappa}}{(n+j)^{\kappa}} = \sum_{i=1}^{N} f_i(\kappa) n^{-i} j^i + O(n^{-N-1}), \tag{2.6}$$

where $f_i(\kappa) = \frac{(-1)^i \kappa}{i}$.

Finally, we only need to estimate $\log \frac{\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{(n+j)^{\mu}}}{\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{n^{\mu}}}$. Since

$$\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{n^{\mu}} = \sum_{i=1}^{t} \beta_{\mu_{i}} n^{-\mu_{i}}, \quad \sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{(n+j)^{\mu}} = \sum_{i=1}^{t} \beta_{\mu_{i}} (n+j)^{-\mu_{i}}, \tag{2.7}$$

from (2.1) we deduce that

$$\log \frac{\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{(n+j)^{\mu}}}{\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{n^{\mu}}} = \sum_{i=1}^{N} G_{i}(n)j^{i} + o(G_{N}(n))$$
 (2.8)

where $G_i(n)$ are certain polynomials of n with degree no more than -i and $|G_i(n)| \leq \frac{1}{i} \mu_1^i n^{-i}$.

Combining (2.4), (2.6) and (2.8), as $n \to \infty$ we get that

$$\log \frac{c(n+j)}{c(n)} \sim \sum_{\lambda \in \mathcal{S}} A_{\lambda} \sum_{i=1}^{N} {\lambda \choose i} n^{-i+\lambda} j^{i} + \sum_{i=1}^{N} f_{i}(\kappa) n^{-i} j^{i} + \sum_{i=1}^{N} G_{i}(n) j^{i} + o(n^{-N+\lambda})$$

$$=: \sum_{i=1}^{N} \left(\sum_{\lambda \in \mathcal{S}} B_{\lambda,i}(n) + F_{i}(n) \right) j^{i} + o(n^{-N+\lambda}), \tag{2.9}$$

where $B_{\lambda,i}(n) = A_{\lambda} {\lambda \choose i} n^{-i+\lambda}$, $F_i(n) = f_i(\kappa) n^{-i} + G_i(n)$. Employing (2.6) and (2.8), we get $|F_i(n)| \leq \frac{1}{i} (\mu_1^i + \kappa) n^{-i}$.

Let
$$A(n) = \sum_{\lambda \in \mathcal{S}} B_{\lambda,1}(n) + F_1(n)$$
, $\delta(n) = \sqrt{-\sum_{\lambda \in \mathcal{S}} B_{\lambda,2}(n) - F_2(n)}$, $g_i(n) = \sum_{\lambda \in \mathcal{S}} B_{\lambda,i}(n) + F_i(n)$ $(i \ge 3)$. Then $i \ge 3$, we get

$$\lim_{n \to \infty} \frac{g_i(n)}{\delta(n)^i} = \lim_{n \to \infty} \frac{\sum_{\lambda \in \mathcal{S}} B_{\lambda,i}(n) + F_i(n)}{\left(-\sum_{\lambda \in \mathcal{S}} B_{\lambda,2}(n) - F_2(n)\right)^{\frac{i}{2}}}$$

$$= \lim_{n \to \infty} \frac{\sum_{\lambda \in \mathcal{S}} A_{\lambda} {\lambda \choose i} n^{-i+\lambda}}{\left(-\sum_{\lambda \in \mathcal{S}} A_{\lambda} {\lambda \choose 2} n^{-2+\lambda}\right)^{\frac{i}{2}}}$$

$$= \lim_{n \to \infty} \frac{\sum_{\lambda \in \mathcal{S}} A_{\lambda} {\lambda \choose i}}{\left(-\sum_{\lambda \in \mathcal{S}} A_{\lambda} {\lambda \choose 2}\right)^{\frac{i}{2}}} n^{\lambda(1-\frac{i}{2})}$$

$$= 0$$

$$(2.10)$$

In summary, we have that c(n) satisfies the conditions of Theorem 1.1. Thus, for sufficiently large n, c(n) satisfies the Turán inequality of any order. \square

Now we turn to proving the double Turán inequality for c(n).

Theorem 2.2. For sufficiently large n, c(n) satisfies the double Turán inequality, i.e.,

$$T(T(c(n))) = (c(n)^2 - c(n-1)c(n+1))^2 - (c(n-1)^2 - c(n-2)c(n))(c(n+1)^2 - c(n)c(n+2)) \ge 0.11$$

Proof. Following the framework in the proof of Theorem 1.3 in [5], we claim that for all $\lambda \in \mathcal{S}$,

$$\exp\left(A_{\lambda}\left(2n^{\lambda} - (n+1)^{\lambda} - (n-1)^{\lambda}\right)\right) = 1 - \frac{\gamma_{\lambda,1}}{n^{2-\lambda}} + \frac{\gamma_{\lambda,1}^{2}}{2n^{4-2\lambda}} + o\left(n^{-4+2\lambda}\right)$$

where
$$\gamma_{\lambda,1} = 2A_{\lambda} {\lambda \choose 2}$$
,

$$\exp\left(A_{\lambda}\left(n^{\lambda} + (n+2)^{\lambda} - 2(n+1)^{\lambda}\right)\right) = 1 + \frac{\mu_{\lambda,1}}{n^{2-\lambda}} + \frac{\mu_{\lambda,2}}{n^{3-\lambda}} + \frac{\mu_{\lambda,1}^{2}}{2n^{4-2\lambda}} + o\left(n^{-4+2\lambda}\right)$$

where
$$\mu_{\lambda,1} = 2A_{\lambda} \begin{pmatrix} \lambda \\ 2 \end{pmatrix}$$
 and $\mu_{\lambda,2} = 6A_{\lambda} \begin{pmatrix} \lambda \\ 3 \end{pmatrix}$,

$$\exp\left(A_{\lambda}\left(n^{\lambda} + (n-2)^{\lambda} - 2(n-1)^{\lambda}\right)\right) = 1 + \frac{\omega_{\lambda,1}}{n^{2-\lambda}} + \frac{\omega_{\lambda,2}}{n^{3-\lambda}} + \frac{\omega_{\lambda,1}^2}{2n^{4-2\lambda}} + o\left(n^{-4+2\lambda}\right)$$

where
$$\omega_{\lambda,1} = 2A_{\lambda} \begin{pmatrix} \lambda \\ 2 \end{pmatrix}$$
 and $\omega_{\lambda,2} = -6A_{\lambda} \begin{pmatrix} \lambda \\ 3 \end{pmatrix}$.

Then, we get that

$$\exp\left(\sum_{\lambda \in \mathcal{S}} A_{\lambda} \left(2n^{\lambda} - (n-1)^{\lambda} - (n+1)^{\lambda}\right)\right)$$

$$= \prod_{\lambda \in \mathcal{S}} \left(1 - \frac{\gamma_{\lambda,1}}{n^{2-\lambda}} + \frac{\gamma_{\lambda,1}^{2}}{2n^{4-2\lambda}} + o\left(n^{-4+2\lambda}\right)\right)$$

$$= 1 - \frac{\gamma_{\lambda_{1},1}}{n^{2-\lambda_{1}}} - \dots - \frac{\gamma_{\lambda_{2},1}}{n^{2-\lambda_{2}}} + \frac{\gamma_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}} + o\left(n^{-4+2\lambda_{1}}\right),$$

$$\exp\left(\sum_{\lambda \in \mathcal{S}} A_{\lambda} \left(n^{\lambda} + (n+2)^{\lambda} - 2(n+1)^{\lambda}\right)\right)$$

$$= \prod_{\lambda \in \mathcal{S}} \left(1 + \frac{\mu_{\lambda,1}}{n^{2-\lambda}} + \frac{\mu_{\lambda,2}}{n^{3-\lambda}} + \frac{\mu_{\lambda,1}}{2n^{4-2\lambda}} + o\left(n^{-4+2\lambda}\right)\right)$$

$$= 1 + \frac{\mu_{\lambda_{1},1}}{n^{2-\lambda_{1}}} + \dots + \frac{\mu_{\lambda_{s},1}}{n^{2-\lambda_{s}}} + \frac{\mu_{\lambda_{1},2}}{n^{3-\lambda_{1}}} + \dots + \frac{\mu_{\lambda_{s'},2}}{n^{3-\lambda_{s'}}} + \frac{\mu_{\lambda_{1},1}}{2n^{4-2\lambda_{1}}} + o\left(n^{-4+2\lambda_{1}}\right),$$

$$\exp\left(\sum_{\lambda \in \mathcal{S}} A_{\lambda} \left(n^{\lambda} + (n-2)^{\lambda} - 2(n-1)^{\lambda}\right)\right)$$

$$= \prod_{\lambda \in \mathcal{S}} \left(1 + \frac{\omega_{\lambda,1}}{n^{2-\lambda}} + \frac{\omega_{\lambda,2}}{n^{3-\lambda}} + \frac{\omega_{\lambda,1}}{2n^{4-2\lambda}} + o\left(n^{-4+2\lambda}\right)\right)$$

$$= 1 + \frac{\omega_{\lambda_{1},1}}{n^{2-\lambda_{1}}} + \dots + \frac{\omega_{\lambda_{s},1}}{n^{2-\lambda_{s}}} + \frac{\omega_{\lambda_{1},2}}{n^{3-\lambda_{1}}} + \dots + \frac{\omega_{\lambda_{s'},2}}{n^{3-\lambda_{s'}}} + \frac{\omega_{\lambda_{1},1}}{2n^{4-2\lambda_{1}}} + o\left(n^{-4+2\lambda_{1}}\right).$$
Here $\lambda_{s'} > 2\lambda_{1} - 1$.

A direct calculation gives that for n > 1,

$$\frac{1}{n^{2\kappa}} = \frac{1}{(n-1)^{\kappa}(n+1)^{\kappa}} \left(1 + \sum_{j\geq 2} \frac{a_j}{n^j} \right),$$

$$\frac{1}{n^{\kappa}(n+2)^{\kappa}} = (n+1)^{-2\kappa} \left(1 + \sum_{j\geq 2} \frac{b_j}{n^j} \right),$$

$$\frac{1}{n^{\kappa}(n-2)^{\kappa}} = (n-1)^{-2\kappa} \left(1 + \sum_{j\geq 2} \frac{c_j}{n^j} \right).$$
(2.13)

According to (2.12) and (2.13), we have

$$T(T(c(n))) \sim C^4 \frac{\exp\left(2\sum_{\lambda\in\mathcal{S}} A_{\lambda}((n-1)^{\lambda} + (n+1)^{\lambda})\right)}{(n-1)^{2\kappa}(n+1)^{2\kappa}} \left(C'^2 - A'B'\right),$$

where

$$A' = \left(\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{(n+1)^{\mu}}\right)^2$$

$$-\left(1 + \frac{\mu_{\lambda_{1},1}}{n^{2-\lambda_{1}}} + \dots + \frac{\mu_{\lambda_{s},1}}{n^{2-\lambda_{s}}} + \frac{\mu_{\lambda_{1},2}}{n^{3-\lambda_{1}}} + \dots + \frac{\mu_{\lambda_{s'},2}}{n^{3-\lambda_{s'}}} + \frac{\mu_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}} + o\left(n^{-4+2\lambda_{1}}\right)\right)$$

$$\left(1 + O\left(n^{-2}\right)\right) \sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{n^{\mu}} \sum_{\nu \in \mathcal{T}} \frac{\beta_{\nu}}{(n+2)^{\nu}},$$

$$B' = \left(\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{(n-1)^{\mu}}\right)^{2}$$

$$-\left(1 + \frac{\omega_{\lambda_{1},1}}{n^{2-\lambda_{1}}} + \dots + \frac{\omega_{\lambda_{s},1}}{n^{2-\lambda_{s}}} + \frac{\omega_{\lambda_{1},2}}{n^{3-\lambda_{1}}} + \dots + \frac{\omega_{\lambda_{s'},2}}{n^{3-\lambda_{s'}}} + \frac{\omega_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}} + o\left(n^{-4+2\lambda_{1}}\right)\right)$$

$$\left(1 + O\left(n^{-2}\right)\right) \sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{n^{\mu}} \sum_{\nu \in \mathcal{T}} \frac{\beta_{\nu}}{(n-2)^{\nu}},$$

$$C' = \sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{(n-1)^{\mu}} \sum_{\nu \in \mathcal{T}} \frac{\beta_{\nu}}{(n+1)^{\nu}} - \left(1 - \frac{\gamma_{\lambda_{1},1}}{n^{2-\lambda_{1}}} - \dots - \frac{\gamma_{\lambda_{s},1}}{n^{2-\lambda_{s}}} - \dots + \frac{\gamma_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}} + o\left(n^{-4+2\lambda_{1}}\right)\right) \left(1 + O\left(n^{-2}\right)\right) \left(\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{n^{\mu}}\right)^{2}.$$

As $\beta_0 = 1$, we take $A \mod (o(n^{-4+2\lambda_1}))$,

$$\sum_{\substack{\mu,\nu \in \mathcal{T} \\ 0 \leq \mu + \nu \leq 4 - 2\lambda_{1}}} \frac{\beta_{\mu}\beta_{\nu}}{(n+1)^{\mu + \nu}} - \left(\sum_{\substack{\mu,\nu \in \mathcal{T} \\ 0 \leq \mu + \nu \leq 4 - 2\lambda_{1}}} \frac{\beta_{\mu}\beta_{\nu}}{n^{\mu}(n+2)^{\nu}} + \sum_{i=1}^{s} \frac{\mu_{\lambda_{i},1}}{n^{2-\lambda_{i}}} \sum_{\substack{\mu,\nu \in \mathcal{T} \\ 0 \leq \mu + \nu \leq 2 - 2\lambda_{1} + \lambda_{i}}} \frac{\beta_{\mu}\beta_{\nu}}{n^{\mu}(n+2)^{\nu}} + \sum_{i=1}^{s} \frac{\mu_{\lambda_{i},1}}{n^{2-\lambda_{i}}} + \frac{\mu_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}} \right)$$

$$= 2 \sum_{\substack{\mu \in \mathcal{T} \\ 0 \leq \mu \leq 2 - \lambda_{1}}} \beta_{\mu}^{2} \left(\frac{1}{(n+1)^{2\mu}} - \frac{1}{n^{\mu}(n+2)^{\mu}}\right) + \sum_{\substack{\mu \in \mathcal{T} \\ 0 \leq \mu < \nu \\ 1 \leq \mu + \nu \leq 4 - 2\lambda_{1}}} \beta_{\mu}\beta_{\nu} \left(\frac{2}{(n+1)^{\mu + \nu}} - \frac{1}{n^{\mu}(n+2)^{\nu}} - \frac{1}{n^{\nu}(n+2)^{\mu}}\right)$$

$$- \left(\sum_{i=1}^{s} \frac{\mu_{\lambda_{i},1}}{n^{2-\lambda_{i}}} + \sum_{i=1}^{s} \frac{\mu_{\lambda_{i},1}}{n^{2-\lambda_{i}}} \sum_{\substack{\mu,\nu \in \mathcal{T} \\ 1 \leq \mu + \nu \leq 2 - 2\lambda_{1} + \lambda_{i}}} \frac{\beta_{\mu}\beta_{\nu}}{n^{\mu}(n+2)^{\nu}} + \sum_{i=1}^{s'} \frac{\mu_{\lambda_{i},2}}{n^{3-\lambda_{i}}} + \frac{\mu_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}}\right)$$

$$= \begin{cases} -\frac{2\beta_{1}}{n^{3}} - \sum_{i=1}^{s} \frac{\mu_{\lambda_{i},1}}{n^{2-\lambda_{i}}} - 2\beta_{1} \sum_{i=1}^{s'} \frac{\mu_{\lambda_{i},1}}{n^{3-\lambda_{i}}} - \sum_{i=1}^{s'} \frac{\mu_{\lambda_{i},2}}{n^{3-\lambda_{i}}} - \frac{\mu_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}}, & 0 < \lambda_{1} \leq \frac{1}{2}, \\ -\sum_{i=1}^{s} \frac{\mu_{\lambda_{i},1}}{n^{2-\lambda_{i}}} - 2\beta_{1} \sum_{i=1}^{s'} \frac{\mu_{\lambda_{i},1}}{n^{3-\lambda_{i}}} - \sum_{i=1}^{s'} \frac{\mu_{\lambda_{i},2}}{n^{3-\lambda_{i}}} - \frac{\mu_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}}, & \frac{1}{2} < \lambda_{1} < 1. \end{cases}$$

$$(2.14)$$

Similarly,

$$B'\left(\mod(o(n^{-4+2\lambda_1}))\right) = \begin{cases} -\frac{2\beta_1}{n^3} - \sum_{i=1}^s \frac{\omega_{\lambda_i,1}}{n^{2-\lambda_i}} - 2\beta_1 \sum_{i=1}^{s'} \frac{\omega_{\lambda_i,1}}{n^{3-\lambda_i}} - \sum_{i=1}^{s'} \frac{\omega_{\lambda_i,2}}{n^{3-\lambda_i}} - \frac{\omega_{\lambda_1,1}^2}{2n^{4-2\lambda_1}}, & 0 < \lambda_1 \leq \frac{1}{2}, \\ -\sum_{i=1}^s \frac{\omega_{\lambda_i,1}}{n^{2-\lambda_i}} - 2\beta_1 \sum_{i=1}^{s'} \frac{\omega_{\lambda_i,1}}{n^{3-\lambda_i}} - \sum_{i=1}^{s'} \frac{\omega_{\lambda_i,2}}{n^{3-\lambda_i}} - \frac{\omega_{\lambda_1,1}^2}{2n^{4-2\lambda_1}}, & \frac{1}{2} < \lambda_1 < 1. \end{cases}$$

$$(2.15)$$

and

$$C'\left(\mod(o(n^{-4+2\lambda_1}))\right) = \begin{cases} \frac{2\beta_1}{n^3} + \sum_{i=1}^s \frac{\gamma_{\lambda_i,1}}{n^{2-\lambda_i}} + 2\beta_1 \sum_{i=1}^{s'} \frac{\gamma_{\lambda_i,1}}{n^{3-\lambda_i}} - \frac{\gamma_{\lambda_1,1}^2}{2n^{4-2\lambda_1}}, & 0 < \lambda_1 \leq \frac{1}{2}, \\ \sum_{i=1}^s \frac{\gamma_{\lambda_i,1}}{n^{2-\lambda_i}} + 2\beta_1 \sum_{i=1}^{s'} \frac{\gamma_{\lambda_i,1}}{n^{3-\lambda_i}} - \frac{\gamma_{\lambda_1,1}^2}{2n^{4-2\lambda_1}}, & \frac{1}{2} < \lambda_1 < 1. \end{cases}$$

Combining (2.14), (2.15) and (2.16), we get that for $0 < \lambda_1 \le \frac{1}{2}$, $C'^2 - A'B'$ can be simplified to

$$\left(\frac{2\beta_{1}}{n^{3}} + \sum_{i=1}^{s} \frac{\gamma_{\lambda_{i},1}}{n^{2-\lambda_{i}}} + 2\beta_{1} \sum_{i=1}^{s'} \frac{\gamma_{\lambda_{i},1}}{n^{3-\lambda_{i}}} - \frac{\gamma_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}}\right)^{2} - \left(-\frac{2\beta_{1}}{n^{3}} - \sum_{i=1}^{s} \frac{\mu_{\lambda_{i},1}}{n^{2-\lambda_{i}}} - 2\beta_{1} \sum_{i=1}^{s'} \frac{\mu_{\lambda_{i},1}}{n^{3-\lambda_{i}}} - \sum_{i=1}^{s'} \frac{\mu_{\lambda_{i},2}}{n^{3-\lambda_{i}}} - \frac{\mu_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}}\right) - \left(-\frac{2\beta_{1}}{n^{3}} - \sum_{i=1}^{s} \frac{\omega_{\lambda_{i},1}}{n^{2-\lambda_{i}}} - 2\beta_{1} \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},1}}{n^{3-\lambda_{i}}} - \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},2}}{n^{3-\lambda_{i}}} - \frac{\omega_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}}\right) - \left(-\frac{16A_{\lambda_{1}}^{3}}{n^{3}} - \sum_{i=1}^{s} \frac{\omega_{\lambda_{i},1}}{n^{2-\lambda_{i}}} - 2\beta_{1} \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},1}}{n^{3-\lambda_{i}}} - \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},2}}{n^{3-\lambda_{i}}} - \frac{\omega_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}}\right) - \left(-\frac{16A_{\lambda_{1}}^{3}}{n^{3}} - \sum_{i=1}^{s} \frac{\omega_{\lambda_{i},1}}{n^{2-\lambda_{i}}} - 2\beta_{1} \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},1}}{n^{3-\lambda_{i}}} - \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},2}}{n^{3-\lambda_{i}}} - \frac{\omega_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}}\right) - \left(-\frac{16A_{\lambda_{1}}^{3}}{n^{3}} - \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},1}}{n^{2-\lambda_{i}}} - 2\beta_{1} \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},1}}{n^{3-\lambda_{i}}} - \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},2}}{n^{3-\lambda_{i}}} - \frac{\omega_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}}\right) - \left(-\frac{16A_{\lambda_{1}}^{3}}{n^{3}} - \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},1}}{n^{2-\lambda_{i}}} - 2\beta_{1} \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},1}}{n^{3-\lambda_{i}}} - \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},2}}{n^{3-\lambda_{i}}} - \frac{\omega_{\lambda_{1},1}}{2n^{4-2\lambda_{1}}}\right) - \frac{\omega_{\lambda_{1},1}}{n^{3-\lambda_{1}}} - \frac{\omega_{\lambda_{1},1}}{2n^{4-2\lambda_{1}}} - \frac{\omega_{\lambda_{1},1}}{2n^{4-2\lambda_{1}}} - \frac{\omega_{\lambda_{1},1}}{2n^{4-2\lambda_{1}}}\right) - \frac{\omega_{\lambda_{1},1}}{2n^{4-2\lambda_{1}}} - \frac{\omega_{\lambda_{1},1}}{2n^{4-2\lambda_{1}}} - \frac{\omega_{\lambda_{1},1}}{2n^{4-2\lambda_{1}}} - \frac{\omega_{\lambda_{1},1}}{2n^{4-2\lambda_{1}}} - \frac{\omega_{\lambda_{1},1}}{2n^{4-2\lambda_{1}}} - \frac{\omega_{\lambda_{1},1}}{2n^{4-2\lambda_{1}}}\right) - \frac{\omega_{\lambda_{1},1}}{2n^{4-2\lambda_{1}}} - \frac{\omega_{\lambda_{1}$$

For $\frac{1}{2} < \lambda_1 < 1$, $C'^2 - A'B'$ can be simplified to

$$\left(\sum_{i=1}^{s} \frac{\gamma_{\lambda_{i},1}}{n^{2-\lambda_{i}}} + 2\beta_{1} \sum_{i=1}^{s'} \frac{\gamma_{\lambda_{i},1}}{n^{3-\lambda_{i}}} - \frac{\gamma_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}}\right)^{2} - \left(-\sum_{i=1}^{s} \frac{\mu_{\lambda_{i},1}}{n^{2-\lambda_{i}}} - 2\beta_{1} \sum_{i=1}^{s'} \frac{\mu_{\lambda_{i},1}}{n^{3-\lambda_{i}}} - \sum_{i=1}^{s'} \frac{\mu_{\lambda_{i},2}}{n^{3-\lambda_{i}}} - \frac{\mu_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}}\right) - \left(-\sum_{i=1}^{s} \frac{\omega_{\lambda_{i},1}}{n^{2-\lambda_{i}}} - 2\beta_{1} \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},1}}{n^{3-\lambda_{i}}} - \sum_{i=1}^{s'} \frac{\omega_{\lambda_{i},2}}{n^{3-\lambda_{i}}} - \frac{\omega_{\lambda_{1},1}^{2}}{2n^{4-2\lambda_{1}}}\right) - \frac{16A_{\lambda_{1}}^{3} \binom{\lambda_{1}}{2}}{n^{-6+3\lambda_{1}}} + o(n^{-6+3\lambda_{1}}).$$

Since $A_{\lambda_1} > 0$ and $0 < \lambda_1 < 1$, we conclude that

$$\operatorname{sgn}\left(-16A_{\lambda_1}^3 \left(\frac{\lambda_1}{2}\right)^3\right) = 1. \tag{2.17}$$

This completes the proof.

3 The companion Turán inequality

In this section, we will show c(n) adheres the companion Turán inequality for sufficiently large n.

Theorem 3.1. Assume that c(n) satisfies the form (1.1), then c(n) asymptotically satisfies the companion Turán inequality, i.e.,

$$c(n)^2 - \left(1 + \frac{\overline{\gamma}}{n^{2-\lambda_1}}\right)c(n+1)c(n-1) \le 0,$$
 (3.1)

where $\gamma_{\lambda_1,1}$ is defined as in Theorem 2.2 and $\overline{\gamma}$ is any real number larger than $-\gamma_{\lambda_1,1}$.

Proof. We have

$$c(n)^{2} - \left(1 + \frac{\overline{\gamma}}{n^{2-\lambda_{1}}}\right) c(n+1) c(n-1)$$

$$\sim C^{2} \frac{\exp\left(2\sum_{\lambda \in S} A_{\lambda} n^{\lambda}\right)}{n^{2\kappa}} \left(\left(\sum_{\mu \in T} \frac{\beta_{\mu}}{n^{\mu}}\right)^{2}\right)$$

$$- \left(1 + \frac{\overline{\gamma}}{n^{2-\lambda_{1}}}\right) \left(1 + \frac{\gamma_{\lambda_{1},1}}{n^{2-\lambda_{1}}} + o(n^{-2+\lambda_{1}})\right) \left(1 + O(n^{-2})\right) \sum_{\mu \in T} \frac{\beta_{\mu}}{(n+1)^{\mu}} \sum_{\nu \in T} \frac{\beta_{\nu}}{(n-1)^{\nu}}\right).$$

The sign of this is dictated by

$$\sum_{\mu,\nu \in T} \frac{\beta_{\mu} \beta_{\nu}}{n^{\mu+\nu}} - \left(1 + \frac{\overline{\gamma}}{n^{2-\lambda_{1}}}\right) \left(1 + \frac{\gamma_{\lambda_{1},1}}{n^{2-\lambda_{1}}} + o\left(n^{-2+\lambda_{1}}\right)\right) \left(1 + O\left(n^{-2}\right)\right) \sum_{\mu \in T} \frac{\beta_{\mu}}{(n+1)^{\mu}} \sum_{\nu \in T} \frac{\beta_{\nu}}{(n-1)^{\nu}}.$$

As $\beta_0 = 1$, the above formula $\mod(o(n^{-2+\lambda_1}))$ equals,

$$\sum_{\mu,\nu\in\mathcal{T}} \frac{\beta_{\mu}\beta_{\nu}}{n^{\mu+\nu}} - \left(\sum_{\mu,\nu\in\mathcal{T}} \frac{\beta_{\mu}\beta_{\nu}}{(n+1)^{\mu}(n-1)^{\nu}} + \frac{\gamma_{\lambda_{1},1}}{n^{2-\lambda_{1}}} + \frac{\overline{\gamma}}{n^{2-\lambda_{1}}}\right)$$

$$= 2 \sum_{\substack{\mu\in\mathcal{T}\\0\leq\mu\leq 1-\frac{\lambda_{1}}{2}}} \beta_{\mu}^{2} \left(\frac{1}{n^{2\mu}} - \frac{1}{(n+1)^{\mu}(n-1)^{\mu}}\right)$$

$$+ \sum_{\substack{\mu,\nu\in\mathcal{T}\\0\leq\mu<\nu\\1\leq\mu+\nu\leq 2-\lambda_{1}}} \beta_{\mu}\beta_{\nu} \left(\frac{2}{n^{\mu+\nu}} - \frac{1}{(n+1)^{\mu}(n-1)^{\nu}} - \frac{1}{(n+1)^{\nu}(n+1)^{\mu}}\right) 3.2)$$

$$- \frac{\gamma_{\lambda_{1},1}}{n^{2-\lambda_{1}}} - \frac{\overline{\gamma}}{n^{2-\lambda_{1}}}.$$

For n > 1,

$$\frac{1}{(n+1)^{\nu}(n+1)^{\mu}} = n^{-2\mu} + O\left(n^{-2\mu-2}\right)$$

and

$$\frac{1}{(n+1)^{\mu}(n-1)^{\nu}} - \frac{1}{(n+1)^{\nu}(n+1)^{\mu}} = 2n^{-\mu-\nu} \left(1 + \sum_{r>1} \frac{p_r}{n^{2r}}\right).$$

Thus (3.2) becomes

$$O(n^{-2+\lambda_1}) - \frac{\gamma_{\lambda_1,1} + \overline{\gamma}}{n^{2-\lambda_1}}.$$

When $\overline{\gamma} > -\gamma_{\lambda_1,1}$, it is obvious that (3.1) holds for sufficiently large n. \square

4 Laguerre inequalities

In this section, we demonstrate c(n) fulfills the Laguerre inequality and their companion inequality of any order. Recently, Wang and Yang [27] proved that for any r and sufficiently large n, one has $L_r(\alpha(n)) > 0$.

Theorem 4.1 (Wang and Yang). Let $\{\alpha(n)\}$, $\{\delta(n)\}$, $\{A_i(n)\}$ be sequences with $\alpha(n)$ positive, $\delta(n) \to 0^+$, $A_2(n) < 0$, $A_2(n) = \Theta(\delta(n)^t)$ and $A_{2i}(n) = o(\delta(n)^{it})$ ($i \ge 2$) for some positive t, and for -r < j < r,

$$\log\left(\frac{\alpha(n+j)}{\alpha(n)}\right) = \sum_{i=1}^{2r} A_i(n)j^i + o\left(\delta(n)^{tr}\right),\tag{4.1}$$

then for sufficiently large n,

$$L_r(\alpha(n)) = \frac{1}{2} \sum_{k=0}^{2r} (-1)^{k+r} {2r \choose k} \alpha(n+k)\alpha(n+2r-k) > 0.$$
 (4.2)

Since the conditions of Theorem 1.1 are stonger than those of Theorem 4.1, we get c(n) meets the requirements of the above Theorem from the proof of Theorem 2.1. Thus c(n) fulfills the Laguerre inequality of any order for sufficiently large n. Next we prove c(n) satisfies the companion Laguerre inequalities. First, let us recall two combinatorial identities which will be used in our proofs, see [10] and [27].

Lemma 4.2. For positive integers m and $t \leq 2m$,

$$\sum_{k=0}^{2m} (-1)^k \binom{2m}{k} (m-k)^t = \begin{cases} 0, & t < 2m, \\ (2m)!, & t = 2m. \end{cases}$$
 (4.3)

Lemma 4.3. For positive integers r,

$$\sum_{k=0}^{2r} {2r \choose k} (r-k)^2 = 2^{2r-1}r. \tag{4.4}$$

Now we are in a position to establish the companion Laguerre inequalities for c(n).

Theorem 4.4. For any fixed $r \geq 2$ and sufficiently large n, c(n) satisfies the companion Laguerre inequality of order r, i.e.,

$$\left(1 + \frac{(2r)!}{r!} 2^{1-r} (-A_{\lambda_1})^r {\lambda_1 \choose 2}^r n^{(-2+\lambda_1)(r-1)} \right) L_r^-(c(n-r)) > L_r^+(c(n-r)).$$
(4.5)

Proof. The inequality (4.5) can be rewritten as

$$\frac{(2r)!}{r!} 2^{1-r} (-A_{\lambda_1})^r {\binom{\lambda_1}{2}}^r n^{(-2+\lambda_1)(r-1)} \frac{L_r^-(c(n-r))}{c(n)^2}
> \frac{L_r^+(c(n-r))}{c(n)^2} - \frac{L_r^-(c(n-r))}{c(n)^2}
= \frac{L_r(c(n-r))}{c(n)^2}.$$
(4.6)

The right-hand side of the above inequality can be expressed as

$$\frac{L_r(c(n-r))}{c(n)^2} = \frac{1}{2} \sum_{j=0}^{2r} (-1)^{j+r} {2r \choose j} \frac{c(n-r+j)c(n+r-j)}{c(n)^2}.$$

From (2.9) we get

$$\frac{c(n+r-j)c(n-r+j)}{c(n)^2}$$

$$= \exp\left(\log\frac{c(n+r-j)}{c(n)} + \log\frac{c(n-r+j)}{c(n)}\right)$$

$$\sim \exp\left(\sum_{\lambda \in \mathcal{S}} A_{\lambda} \left((n+r-j)^{\lambda} - n^{\lambda}\right) + \log\frac{n^{\kappa}}{(n+r-j)^{\kappa}} + \log\frac{\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{(n+r-j)^{\mu}}}{\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{n^{\mu}}}\right)$$

$$+ \sum_{\lambda \in \mathcal{S}} A_{\lambda} \left((n-r+j)^{\lambda} - n^{\lambda}\right) + \log\frac{n^{\kappa}}{(n-r+j)^{\kappa}} + \log\frac{\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{(n-r+j)^{\mu}}}{\sum_{\mu \in \mathcal{T}} \frac{\beta_{\mu}}{n^{\mu}}}\right)$$

$$= \exp\left(\sum_{i=1}^{N} \left(\sum_{\lambda \in \mathcal{S}} B_{\lambda,i}(n) + F_{i}(n)\right) \left((r-j)^{i} + (r-j)^{i}(-1)^{i}\right) + o(n^{-N+\lambda})\right)$$

$$= \exp\left(2\sum_{i=1}^{N} \left(\sum_{\lambda \in \mathcal{S}} B_{\lambda,2i}(n) + F_{2i}(n)\right) (r-j)^{2i} + o(n^{-N+\lambda})\right)$$

$$= \exp\left(2\sum_{i=1}^{N} B_{2i}(n)(r-j)^{2i} + o(B_{2N}(n))\right),$$

where $B_{2i}(n)$ are certain polynomials of n with degree no more than $-2i + \lambda_1$ and the coefficient of $n^{-2i+\lambda_1}$ is $A_{\lambda_1}\begin{pmatrix} \lambda_1 \\ 2i \end{pmatrix}$.

Let

$$\phi_r(x) := \sum_{i=1}^{2r} \frac{x^i}{i!} = \exp(x) + o\left(x^{2r}\right). \tag{4.7}$$

Then as $n \to \infty$, we get

$$\frac{L_r(c(n-r))}{c(n)^2}$$

$$= \frac{1}{2} \sum_{j=0}^{2r} (-1)^{j+r} {2r \choose j} \exp\left(\sum_{i=1}^N B_{2i}(n) 2(r-j)^{2i} + o(B_{2N}(n))\right)$$

$$= \frac{1}{2} \sum_{j=0}^{2r} (-1)^{j+r} {2r \choose j} \exp\left(\sum_{i=1}^N B_{2i}(n) 2(r-j)^{2i}\right) \exp\left(o(B_{2N}(n))\right)$$

$$= \left(\frac{1}{2} \sum_{j=0}^{2r} (-1)^{j+r} {2r \choose j} \phi_r \left(\sum_{i=1}^N B_{2i}(n) 2(r-j)^{2i}\right) + o\left(B_{2N}(n)^{2Nr}\right)\right) \exp\left(o(B_{2N}(n))\right)$$

$$= \frac{1}{2} \sum_{j=0}^{2r} (-1)^{j+r} {2r \choose j} \phi_r \left(\sum_{i=1}^N B_{2i}(n) 2(r-j)^{2i}\right) + o\left(B_{2N}(n)^{2Nr}\right)$$

Now we focus on the expression

$$\frac{1}{2} \sum_{j=0}^{2r} (-1)^{j+r} {2r \choose j} \phi_r \left(\sum_{i=1}^N B_{2i}(n) 2(r-j)^{2i} \right). \tag{4.8}$$

The ϕ_r -terms can be viewed as a polynomial in $(r-j)^2$, i.e., there exist coefficients $B'_{2i}(n)$ $(0 \le i \le 2rN)$ such that

$$\phi_r \left(\sum_{i=1}^N B_{2i}(n) 2(r-j)^{2i} \right) = \sum_{i=0}^{2rN} B'_{2i}(n) (r-j)^{2i}. \tag{4.9}$$

where $B'_{2i}(n)$ are certain polynomials of n with degree no more than $(-2+\lambda_1)i$ and the coefficient of $n^{(-2+\lambda_1)i}$ is $\frac{2^iA^i_{\lambda_1}\binom{\lambda_1}{2}^i}{i!}$.

By Lemma 4.2, one can see that

$$\frac{1}{2} \sum_{j=0}^{2r} (-1)^{j+r} {2r \choose j} \phi_r \left(\sum_{i=1}^N B_{2i}(n) 2(r-j)^{2i} \right)
= \frac{1}{2} \sum_{j=0}^{2r} (-1)^{j+r} {2r \choose j} \sum_{i=0}^{2rN} B'_{2i}(n) (r-j)^{2i}
= \frac{1}{2} \sum_{i=0}^{2rN} B'_{2i}(n) \sum_{j=0}^{2r} (-1)^{j+r} {2r \choose j} (r-j)^{2i}
= \frac{1}{2} \sum_{i=r}^{2rN} B'_{2i}(n) \sum_{i=0}^{2r} (-1)^{j+r} {2r \choose j} (r-j)^{2i}.$$
(4.10)

(The sum of terms with i < r vanishes). It implies that as $n \to \infty$, we have

$$\frac{1}{2} \sum_{j=0}^{2r} (-1)^{j+r} {2r \choose j} \phi_r \left(\sum_{i=1}^N B_{2i}(n) 2(r-j)^{2i} \right)
= \frac{1}{2} B'_{2r}(n) \sum_{j=0}^{2r} (-1)^{j+r} {2r \choose j} (r-j)^{2r} + o(B'_{2r}(n))
= \frac{(2r)!}{r!} 2^{r-1} (-1)^r A^r_{\lambda_1} {\lambda_1 \choose 2}^r n^{(-2+\lambda_1)r} + o(n^{(-2+\lambda_1)r}).$$
(4.11)

On the other hand, we obtain

$$\frac{c(n+2j+1)c(n-2j-1)}{c(n)^2} \sim \exp\left(2\sum_{i=1}^n B_{2i}(n)(2j+1)^{2i} + o(B_{2N}(n))\right)$$

$$= 1 + 2A_{\lambda_1} {\lambda_1 \choose 2} (2j+1)^2 n^{-2+\lambda_1} + o(n^{-2+\lambda_1}).$$
(4.12)

Thus, by Lemma 4.3 we get

$$\begin{split} &\frac{L_r^-(c(n-r))}{c(n)^2} = \frac{1}{2} \sum_{j=-[r-1/2]}^{[r-1/2]} \binom{2r}{r+2j+1} \frac{c(n+2j+1)c(n-2j-1)}{c(n)^2} \\ &= 2^{2r-2} + \frac{1}{2} \sum_{j=-[r-1/2]}^{[r-1/2]} \binom{2r}{r+2j+1} \left(2A_{\lambda_1} \binom{\lambda_1}{2} (2j+1)^2 n^{-2+\lambda_1} + o\left(n^{-2+\lambda_1}\right) \right) \\ &= 2^{2r-2} + \frac{1}{2} A_{\lambda_1} \binom{\lambda_1}{2} n^{-2+\lambda_1} \left(2 \sum_{j=-[r-1/2]}^{[r-1/2]} \binom{2r}{r+2j+1} (2j+1)^2 \right) + o\left(n^{-2+\lambda_1}\right) \\ &= 2^{2r-2} + \frac{1}{2} A_{\lambda_1} \binom{\lambda_1}{2} n^{-2+\lambda_1} \left(\sum_{j=-[r-1/2]}^{[r-1/2]} \binom{2r}{r+2j+1} (2j+1)^2 + \sum_{j=-[r/2]}^{[r/2]} \binom{(4.13)}{2r} (2j)^2 \right) + o\left(n^{-2+\lambda_1}\right) \\ &= 2^{2r-2} + \frac{1}{2} A_{\lambda_1} \binom{\lambda_1}{2} n^{-2+\lambda_1} \sum_{j=-r}^{r} \binom{2r}{r+j} j^2 + o\left(n^{-2+\lambda_1}\right) \\ &= 2^{2r-2} + 2^{2r-2} r A_{\lambda_1} \binom{\lambda_1}{2} n^{-2+\lambda_1} + o\left(n^{-2+\lambda_1}\right). \end{split}$$

Combining (4.11) and (4.13) gives

$$\left(1 + \frac{(2r)!}{r!} 2^{1-r} (-A_{\lambda_1})^r {\lambda_1 \choose 2}^r n^{(-2+\lambda_1)(r-1)} \right) \frac{L_r^-(c(n-r))}{c(n)^2} - \frac{L_r^+(c(n-r))}{c(n)^2}
= \frac{(2r)!}{r!} 2^{r-1} (-A_{\lambda_1})^r {\lambda_1 \choose 2}^r n^{(-2+\lambda_1)(r-1)} + \frac{(2r)!}{(r-1)!} 2^{r-1} (-1)^r (A_{\lambda_1})^{r+1} {\lambda_1 \choose 2}^{r+1} n^{(-2+\lambda_1)r}
- \frac{(2r)!}{r!} 2^{r-1} (-1)^r A_{\lambda_1}^r {\lambda_1 \choose 2}^r n^{(-2+\lambda_1)r} + o(n^{(-2+\lambda_1)r})
= \frac{(2r)!}{r!} 2^{r-1} A_{\lambda_1}^r (-1)^r {\lambda_1 \choose 2}^r n^{(-2+\lambda_1)(r-1)} + o(n^{(-2+\lambda_1)(r-1)}).$$
(4.14)

In view of $\lambda_1 \in (0,1)$, we get $(-1)^r {\lambda_1 \choose 2}^r > 0$. Hence, we conclude the positivity of (4.14) as $n \to \infty$.

5 Applications

In this section, we will apply Theorem 2.1, Theorem 2.2, Theorem 3.1 and Theorem 4.4 to show that some sequences of the form c(n) satisfy the companion Turán inequality, the double Turán inequality, the Turán inequality of any order, the Laguerre inequality of any order r and its companion version.

The number of commuting ℓ -tuples in S_n . Denote by $N_{\ell}(n)$ the number of ℓ -tuples of elements in the symmetric group S_n with commuting components, normalized by the order of S_n . Notice that $N_2(n) = p(n)$, where p(n)

denotes the number of partitions of n. Bringmann, Franke and Heim [5] gave the asymptotical formulas for $N_{\ell}(n)$ for arbitrary ℓ as follows.

Theorem 5.1 (Bringmann, Franke and Heim). We have, as $n \to \infty$,

$$N_3(n) \sim \frac{e^{-\frac{\zeta'(-1)}{2} - \frac{\pi^2}{288\zeta(3)}} \zeta(3)^{\frac{11}{72}}}{2^{\frac{11}{24}} \cdot 3^{\frac{47}{72}} \cdot \pi^{\frac{11}{72}} \cdot n^{\frac{47}{72}}} \exp\left(\frac{(3\pi)^{\frac{2}{3}} \zeta(3)^{\frac{1}{3}}}{2} n^{\frac{2}{3}} - \frac{\pi^{\frac{4}{3}}}{4 \cdot 3^{\frac{2}{3}} \cdot \zeta(3)^{\frac{1}{3}}} n^{\frac{1}{3}}\right) \left(1 + \sum_{j=1}^{\infty} \frac{B_{3,j}}{n^{\frac{j}{3}}}\right)$$

for certain numbers $B_{3,i}$,

$$\begin{split} N_4(n) &\sim \frac{e^{\frac{\zeta'(-2)}{2^4}} \pi^{\frac{1}{4}} \zeta(3)^{\frac{1}{8}}}{2^{\frac{13}{8}} \cdot 3^{\frac{1}{4}} \cdot 5^{\frac{1}{8}} \cdot n^{\frac{5}{8}}} \\ &\times \exp\left(\frac{2^{\frac{7}{4}} \cdot \pi^{\frac{3}{2}} \cdot \zeta(3)^{\frac{1}{4}}}{3^{\frac{3}{2}} \cdot 5^{\frac{1}{4}}} n^{\frac{3}{4}} + A_{4,2} n^{\frac{1}{2}} + A_{4,3} n^{\frac{1}{4}} + A_{4,4}\right) \left(1 + \sum_{j=1}^{\infty} \frac{B_{4,j}}{n^{\frac{j}{4}}}\right), \\ N_5(n) &\sim \frac{e^{\frac{\zeta'(-2)}{2880}} (\pi \zeta(3) \zeta(5))^{\frac{1}{10}}}{2^{\frac{2}{5}} \cdot 3^{\frac{1}{5}} \cdot 5^{\frac{3}{5}} \cdot n^{\frac{3}{5}}} \\ &\times \exp\left(\frac{5^{\frac{4}{5}} \cdot \pi^{\frac{6}{5}} \cdot (\zeta(3) \zeta(5))^{\frac{1}{5}}}{2^{\frac{9}{5}} \cdot 3^{\frac{2}{5}}} n^{\frac{4}{5}} + A_{5,2} n^{\frac{3}{5}} + A_{5,3} n^{\frac{2}{5}} + A_{5,4} n^{\frac{1}{5}} + A_{5,5}\right) \left(1 + \sum_{j=1}^{\infty} \frac{B_{5,j}}{n^{\frac{j}{5}}}\right), \end{split}$$

with computable constants $A_{4,j}$ ($2 \le j \le 4$) and $A_{5,j}$ ($2 \le j \le 5$) and certain $B_{4,j}$ and $B_{5,j}$, and for $\ell \ge 6$,

$$N_{\ell}(n) \sim \frac{(\ell-1)!^{\frac{1}{2\ell}} \sqrt{Z_{\ell}}}{\sqrt{2\pi\ell} n^{\frac{\ell+1}{2\ell}}} \exp\left(\frac{\ell\Gamma(\ell)^{\frac{1}{\ell}} Z_{\ell}}{\ell-1} n^{\frac{\ell-1}{\ell}} + \sum_{k=2}^{\ell} A_{\ell,k} n^{\frac{\ell-k}{\ell}}\right) \left(1 + \sum_{j=1}^{\infty} \frac{B_{\ell,j}}{n^{\frac{j}{\ell}}}\right),$$

where $Z_{\ell} := (\zeta(2) \cdot \zeta(3) \cdots \zeta(\ell))^{\frac{1}{\ell}}$ for certain $A_{\ell,k}$ and $B_{\ell,j}$.

Theorem 5.1 suggests the asymptotical formulas for $N_{\ell}(n)$ satisfies the form of c(n). Combining Theorem 2.1 and Theorem 2.2, we get that for sufficiently large n, $N_{\ell}(n)$ satisfies the Turán inequality of any order and the double Turán inequality.

Theorem 5.2. For $\ell \geq 2$ and sufficiently large n, $N_{\ell}(n)$ satisfies the Turán inequality of any order and the double Turán inequality.

Set $\lambda_1 = \frac{\ell-1}{\ell}$ and $A_{\lambda_1} = \frac{\ell\Gamma(\ell)^{\frac{1}{\ell}}Z_{\ell}}{\ell-1}$. Theorem 3.1 gives that $N_{\ell}(n)$ satisfies the following companion Turán inequality.

Theorem 5.3. For $\ell \geq 2$ and sufficiently large n, we have $N_{\ell}(n)$ satisfies the companion Turán inequality, i.e.,

$$N_{\ell}(n)^2 - \left(1 + \frac{\overline{\gamma}}{n^{1 + \frac{1}{\ell}}}\right) N_{\ell}(n+1) N_{\ell}(n-1) \le 0,$$

where $\overline{\gamma}$ is any real number larger than $\frac{\Gamma(\ell)^{\frac{1}{\ell}}Z_{\ell}}{\ell}$.

Since $1 + \frac{1}{\ell} > 1$, from Theorem 5.3 we deduce that the log-convexity of $|C_{\ell,n}| = n! N_{\ell}(n)$, which give an affirmative answer to the open question (3) proposed by Bringmann, Franke and Heim in [5].

Corollary 5.4. For $\ell \geq 3$ and sufficiently large n, we have $|C_{\ell,n}|$ is log-convex.

For Laguerre inequalities, we get that $N_{\ell}(n)$ satisfies the Laguerre inequality of any order r and its companion version from Theorem 4.4.

Theorem 5.5. For $\ell \geq 2$, $r \geq 2$ and sufficiently large n, we have

$$1 < \frac{L_r^+(N_\ell(n-r))}{L_r^-(N_\ell(n-r))} < 1 + \frac{(2r)!}{r!} 2^{1-r} \left(-\frac{\ell\Gamma(\ell)^{\frac{1}{\ell}} Z_\ell}{\ell-1} \right)^r \left(\frac{\ell-1}{\ell} \right)^r n^{(-1-\frac{1}{\ell})(r-1)}.$$

The following sequences have also the asymptotical behavior of the form c(n), then we can obtain results similar to $N_{\ell}(n)$.

Partitions without sequences. The partition without sequence is the partition of n that do not contain any consecutive integers as parts. Let $p_2(n)$ denote the number of partition without sequence of n. Bringmann and Mahlburg [6] first succeeded in proving an asymptotic formula for $p_2(n)$. Mauth [16] gave the following formula and proved the log-concavity of $p_2(n)$ for $n \geq 482$,

$$p_2(n) = \frac{e^{\frac{2\pi\sqrt{n}}{3}}}{n^{\frac{3}{4}}} \left(\sum_{i=0}^{9} \frac{\beta_i}{n^{\frac{i}{4}}} + O\left(\frac{1}{n^{\frac{5}{2}}}\right) \right),$$

where β_i are constants. Note that $p_2(n)$ have the form (1.1) with $\lambda_1 = \frac{1}{2}$ and $A_{\lambda_1} = \frac{2\pi}{3}$. Hence, by the theorems above, we deduce the following result.

Theorem 5.6. For any $r \geq 2$ and sufficiently large n, $p_2(n)$ satisfies the double Turán inequality, the Turán inequality of any order, the following companion Turán inequality

$$p_2(n)^2 - \left(1 + \frac{\overline{\gamma}}{n^{\frac{3}{2}}}\right) p_2(n+1) p_2(n-1) \le 0,$$

where $\overline{\gamma}$ is any real number larger than $\frac{\pi}{6}$, the Laguerre inequality of any order r and its companion version as follow

$$1 < \frac{L_r^+(p_2(n-r))}{L_r^-(p_2(n-r))} < 1 + \frac{(2r)!}{r!} 2^{1-r} \left(-\frac{2\pi}{3}\right)^r \left(\frac{\frac{1}{2}}{2}\right)^r n^{-\frac{3}{2}(r-1)}.$$

Plane partition. A plane partition of size n is a two-dimensional array of non-negative integers $\pi_{j,k}$, for which $\sum_{j,k} \pi_{j,k} = n$, such that $\pi_{j,k} \geq \pi_{j,k+1}$ and $\pi_{j,k} \geq \pi_{j+1,k}$ for any $j,k \in N$, denote the number of plane partitions of size n by PL(n). Wright [28] proved that

$$PL(n) = \frac{C}{n^{\frac{25}{36}}} e^{A_1 n^{\frac{2}{3}}} \left(1 + \sum_{j=2}^{N+1} \frac{B_j}{n^{\frac{2(j-1)}{3}}} + O\left(n^{-\frac{2(N+1)}{3}}\right) \right),$$

where $A_1 > 0$, C and B_i are constants.

Heim, Neuhauser and Tröger [14] conjectured plane partition is log-concave and proved the conjecture for almost all n. Ono, Pujahari and Rolen [19] derived the following explicit asymptotic formula and proved that $J_{\rm PL}^{d,n}(x)$ is hyperbolic for sufficiently large n.

Theorem 5.7 (Ono, Pujahari and Rolen). If $r \in \mathbb{Z}^+$, then for every integer $n \geq \max(n_r, \ell_r, 87)$, we have

$$PL(n) = \frac{e^{c+3AN_n^2}}{2\pi} \sum_{s=0}^{r+1} \sum_{m=0}^{r+1} \frac{(-1)^m \beta_s b_{s,m} \Gamma\left(m + \frac{1}{2}\right)}{A^{m+\frac{1}{2}} N_n^{2s+2m+\frac{25}{12}}} + E_r^{\text{maj}}(n) + E^{\text{min}}(n),$$

where $|E_r^{\text{maj}}(n)| \leq \widehat{E}_r^{\text{maj}}(n)$, $N_n := \left(\frac{n}{2A}\right)^{\frac{1}{3}}$ and

$$|E^{\min}(n)| \le \exp\left(\left(3A - \frac{2}{5}\right)n^2/(2A)^{\frac{2}{3}}\right).$$

Pandey [20] found a lower bound such that $J_{\rm PL}^{d,n}(x)$ has all real roots for all $n \geq N_{\rm PL}(d)$, where

$$N_{\rm PL}(d) \le 279928 \times d(d-1) \left(6d^3(22.2)^{\frac{3(d-1)}{2}}\right)^{2d} e^{\frac{\Gamma(2d^2)}{(2\pi)^{2d+2}}}.$$

Obviously, PL(n) have the form (1.1) with $\lambda_1 = \frac{2}{3}$ and $A_{\lambda_1} = A_1$. Thus, employing the theorems above, we get the following result.

Theorem 5.8. For any $r \geq 2$ and sufficiently large n, PL(n) satisfies the double Turán inequality, the Turán inequality of any order, the following companion Turán inequality

$$PL(n)^{2} - \left(1 + \frac{\overline{\gamma}}{n^{\frac{4}{3}}}\right) PL(n+1)PL(n-1) \le 0,$$

where $\overline{\gamma}$ is any real number larger than $\frac{2A_1}{9}$, the Laguerre inequality of any order r and its companion version as follow

$$1 < \frac{L_r^+(\mathrm{PL}(n-r))}{L_r^-(\mathrm{PL}(n-r))} < 1 + \frac{(2r)!}{r!} 2^{1-r} \left(-A_1\right)^r \left(\frac{\frac{2}{3}}{2}\right)^r n^{-\frac{4}{3}(r-1)}.$$

The coefficients of infinite product generating functions. $p_d(n)$ is defined by the generating function [13]

$$\sum_{n=0}^{\infty} p_d(n) q^n := \prod_{n=1}^{\infty} (1 - q^n)^{-n^{d-1}}.$$

Note that $p_1(n) = p(n)$ and $p_2(n) = PL(n)$. Bringmann, Franke and Heim [5] provided that

$$p_d(n) \sim \frac{C}{n^b} e^{A_1 n^{\frac{d+1}{d+2}}} \left(1 + \sum_{j>1} \frac{E_{d,j}}{n^{\frac{j}{d+2}}} \right),$$

where C, A_1 , b and $E_{d,j}$ are constants. One can see that $p_d(n)$ have the form (1.1) with $\lambda_1 = \frac{d+1}{d+2}$ and $A_{\lambda_1} = A_1$. Thus, we can get the following result by the theorems above.

Theorem 5.9. For any $r \geq 2$ and sufficiently large n, $p_d(n)$ satisfies the double Turán inequality, the Turán inequality of any order, the following companion Turán inequality

$$p_d(n)^2 - \left(1 + \frac{\overline{\gamma}}{n^{1 + \frac{1}{d+2}}}\right) p_d(n+1) p_d(n-1) \le 0,$$

where $\overline{\gamma}$ is any real number larger than $\frac{A_1(d+1)}{(d+2)^2}$, the Laguerre inequality of any order r and its companion version as follow

$$1 < \frac{L_r^+(p_d(n-r))}{L_r^-(p_d(n-r))} < 1 + \frac{(2r)!}{r!} 2^{1-r} \left(-A_1\right)^r \left(\frac{\frac{d+1}{d+2}}{2}\right)^r n^{\left(-1 - \frac{1}{d+2}\right)(r-1)}.$$

Partitions into k-gonal numbers. We denote the number of partitions of n into k-gonal numbers by $p_k(n)$. We have generating function

$$\sum_{n>0} p_k(n)q^n = \prod_{n>1} \frac{1}{1 - q^{P_k(n)}},$$

where

$$P_k(n) := \frac{1}{2} ((k-2)n^2 + (4-k)n)$$

is the n-th k-gonal number. Bridges, Brindle, Bringmann and Franke [3] provided that

$$p_k(n) = \frac{C(k)e^{A(k)n^{\frac{1}{3}}}}{n^{\frac{5k-6}{6(k-2)}}} \left(1 + \sum_{j=1}^{N} \frac{B_{j,k}}{n^{\frac{j}{3}}} + O_N\left(n^{-\frac{N+1}{3}}\right)\right),$$

where C(k), A(k) and $B_{i,k}$ are constants.

Note that $p_k(n)$ have the form (1.1) with $\lambda_1 = \frac{1}{3}$ and $A_{\lambda_1} = A(k)$. Then, we can get the following result by the theorems above.

Theorem 5.10. For any $r \geq 2$ and sufficiently large n, $p_k(n)$ satisfies the double Turán inequality, the Turán inequality of any order, the companion Turán inequality

$$p_k(n)^2 - \left(1 + \frac{\overline{\gamma}}{n^{\frac{5}{3}}}\right) p_k(n+1) p_k(n-1) \le 0,$$

where $\overline{\gamma}$ is any real number larger than $\frac{2A(k)}{9}$, the Laguerre inequality of any order r and its companion version as follow

$$1 < \frac{L_r^+(p_k(n-r))}{L_r^-(p_k(n-r))} < 1 + \frac{(2r)!}{r!} 2^{1-r} \left(-A(k)\right)^r {1 \over 3 \choose 2}^r n^{-\frac{5}{3}(r-1)}.$$

The finite-dimensional representations of groups $\mathfrak{su}(3)$. The unitary group $\mathfrak{su}(3)$, whose irreducible representations $W_{j,k}$ indexed by pairs of positive integers. The numbers $r_{\mathfrak{su}(3)}(n)$ of n-dimensional representations, have the generating function

$$\sum_{n\geq 0} r_{\mathfrak{su}(3)}(n)q^n = \prod_{j,k>1} \frac{1}{1 - q^{\frac{jk(j+k)}{2}}},$$

with $r_{\mathfrak{su}(3)}(0) := 1$. In [24], Romik proved that, as $n \to \infty$,

$$r_{\mathfrak{su}(3)}(n) \sim \frac{C_0}{n^{\frac{3}{5}}} \exp\left(A_1 n^{\frac{2}{5}} + A_2 n^{\frac{3}{10}} + A_3 n^{\frac{1}{5}} + A_4 n^{\frac{1}{10}}\right),$$

with explicit constants C_0 , A_1 , A_2 , A_3 , A_4 expressible in terms of zeta and gamma values. Romik asked for lower order terms in the asymptotical expansion of $r_{\mathfrak{su}(3)}(n)$. Bringmann and Franke [4] showed the following form of $r_{\mathfrak{su}(3)}(n)$.

Theorem 5.11 (Bringmann and Franke). As $n \to \infty$, for any $N \in \mathbb{N}$,

$$r_{\mathfrak{su}(3)}(n) = \frac{C_0}{n^{\frac{3}{5}}} e^{A_1 n^{\frac{2}{5}} + A_2 n^{\frac{3}{10}} + A_3 n^{\frac{1}{5}} + A_4 n^{\frac{1}{10}}} \left(1 + \sum_{j=1}^{N} \frac{C_j}{n^{\frac{j}{10}}} + O_N \left(n^{-\frac{N}{10} - \frac{3}{80}} \right) \right),$$

where the constants C_j do not depend on N and n and can be calculated explicitly.

Note that $r_{\mathfrak{su}(3)}(n)$ have the form (1.1) with $\lambda_1 = \frac{2}{5}$ and $A_{\lambda_1} = A_1$. Hence, we can deduce the following result by the theorems above.

Theorem 5.12. For any $r \geq 2$ and sufficiently large n, $r_{\mathfrak{su}(3)}(n)$ satisfies the double Turán inequality, the Turán inequality of any order, the companion Turán inequality

$$r_{\mathfrak{su}(3)}(n)^2 - \left(1 + \frac{\overline{\gamma}}{n^{\frac{8}{5}}}\right) r_{\mathfrak{su}(3)}(n+1) r_{\mathfrak{su}(3)}(n-1) \le 0,$$

where $\overline{\gamma}$ is any real number larger than $\frac{6A_1}{25}$, the Laguerre inequality of any order r and its companion version

$$1 < \frac{L_r^+(r_{\mathfrak{su}(3)}(n-r))}{L_r^-(r_{\mathfrak{su}(3)}(n-r))} < 1 + \frac{(2r)!}{r!} 2^{1-r} \left(-A_1\right)^r \left(\frac{\frac{2}{5}}{2}\right)^r n^{-\frac{8}{5}(r-1)}.$$

The finite-dimensional representations of groups $\mathfrak{so}(5)$. This framework generalizes to other groups. For example, one can investigate the *Witten zeta function* for $\mathfrak{so}(5)$, which is (for more background to this function, see [17] and [18])

$$\zeta_{\mathfrak{so}(5)}(s) \colon = \sum_{\varphi} \frac{1}{\dim(\varphi)^s} = 6^s \sum_{n,m \ge 1} \frac{1}{m^s n^s (m+n)^s (m+2n)^s},$$

where the φ are running through the finite-dimensional irreducible representations of $\mathfrak{so}(5)$. Bridges, Brindle, Bringmann and Franke [3] showed the following form of $r_{\mathfrak{so}(5)}(n)$.

Theorem 5.13 (Bridges, Brindle, Bringmann and Franke). As $n \to \infty$, for any $N \in \mathbb{N}$,

$$r_{\mathfrak{so}(5)}(n) = \frac{C}{n^{\frac{7}{12}}} e^{A_1 n^{\frac{1}{3}} + A_2 n^{\frac{2}{9}} + A_3 n^{\frac{1}{9}} + A_4} \left(1 + \sum_{j=2}^{N+1} \frac{B_j}{n^{\frac{j-1}{9}}} + O_N\left(n^{-\frac{N+1}{9}}\right) \right)$$

where C, A_1 , A_2 , A_3 , A_4 and B_j are constants.

Bringmann, Franke and Heim [5] have proved that $r_{\mathfrak{su}(3)}(n)$ and $r_{\mathfrak{so}(5)}(n)$ asymptotically satisfy the Turán inequality. Note that $r_{\mathfrak{so}(5)}(n)$ have the form (1.1) with $\lambda_1 = \frac{1}{3}$ and $A_{\lambda_1} = A_1$. Thus, we can get the following result by the theorems above.

Theorem 5.14. For any $r \geq 2$ and sufficiently large n, $r_{\mathfrak{so}(5)}(n)$ satisfies the double Turán inequality, the Turán inequality of any order, the following companion Turán inequality

$$r_{\mathfrak{so}(5)}(n)^2 - \left(1 + \frac{\overline{\gamma}}{n^{\frac{5}{3}}}\right) r_{\mathfrak{so}(5)}(n+1) r_{\mathfrak{so}(5)}(n-1) \le 0,$$

where $\overline{\gamma}$ is any real number larger than $\frac{2A_1}{9}$, the Laguerre inequality of any order r and its companion version

$$1 < \frac{L_r^+(r_{\mathfrak{so}(5)}(n-r))}{L_r^-(r_{\mathfrak{so}(5)}(n-r))} < 1 + \frac{(2r)!}{r!} 2^{1-r} \left(-A_1\right)^r {1 \over 3 \choose 2}^r n^{-\frac{5}{3}(r-1)}.$$

Acknowledgments. This work was supported by the National Science Foundation of China (grant number 12171254).

References

- [1] K. Banerjee, Invariants of the quartic binary form and proofs of Chen's conjectures on inequalities for the partition function and the Andrews' spt function, Res. Math. Sci., 12 (1) (2025).
- [2] W. Bridges and K. Bringmann, Log-concavity for unimodal sequences, Res. Number Theory, 10 (6) (2023).
- [3] W. Bridges, B. Brindle, K. Bringmann and J. Franke, Asymptotic expansions for partitions generated by infinite products, Math. Ann., 390 (2024), 2593–2632.
- [4] K. Bringmann and J. Franke, An asymptotic formula for the number of n-dimensional representations of $\mathfrak{su}(3)$, Rev. Mat. Ibero., 39 (5) (2023), 1599–1640.
- [5] K. Bringmann, J. Franke and B. Heim, Asymptotics of commuting l-tuples in symmetric groups and log-concavity, Res. Number Theory, 10 (83) (2024).
- [6] K. Bringmann and K. Mahlburg, An extension of the Hardy-Ramanujan Circle Method and applications to partitions without sequences, Amer. J. Math., 133 (4) (2011), 1157–1178.
- [7] W.Y.C. Chen, The spt-function of Andrews. Surveys in combinatorics 2017, 141–203, London Math. Soc. Lecture Note Ser., 440, Cambridge Univ. Press, Cambridge, 2017.
- [8] G. Csordas, T.S. Norfolk and R.S. Varga, The Riemann hypothesis and the Turán inequalities, Trans. Amer. Math. Soc., 296 (2) (1986), 521–541.
- [9] G. Csordas and A. Vishnyakova, The generalized Laguerre inequalities and functions in the Laguerre-Pólya class, Cent. Eur. J. Math., 11 (9) (2013), 1643–1650.
- [10] L.-M. Dou, L.X.W. Wang and N.N.Y.Yang, Unified coefficients for the reversed inequalities associated with \mathcal{LP} class, submitted.
- [11] G. Gasper, Positivity and special functions, Proceedings of an Advanced Seminar Sponsored by the Mathematics Research Center, the University of Wisconsin-Madison, March 31-April 2, (1975), 375–433.
- [12] M. Griffin, K. Ono, L. Rolen and D. Zagier, Jensen polynomials for the Riemann zeta function and other sequences, Proc. Nat. Acad. Sci. USA, 116 (23) (2019), 11103–11110.

- [13] B. Heim and M. Neuhauser, Log-concavity of infinite product generating functions, Res. Number Theory, 8 (53) (2022), 1–14.
- [14] B. Heim, M. Neuhauser and R. Tröger, Inequalities for plane partitions, Ann. Comb., 27(1) (2023), 87–108.
- [15] E. Laguerre, Oeuvres, vol.1, (Paris: Gaauthier-Villars, 1989).
- [16] L. Mauth, Log-concavity for partitions without sequences, arXiv:2306.07459.
- [17] K. Matsumoto, On Mordell-Tornheim and other multiple zeta-functions, in Proceedings of the Session in Analytic Number Theory and Diophantine Equations, Bonner Math. Schriften, 360 (2003), 17.
- [18] K. Matsumoto and H. Tsumura, On Witten multiple Zeta-functions associated with semisimple Lie algebras I, Ann. Inst. Fourier, Grenoble 56 (5) (2006), 1457–1504.
- [19] K. Ono, S. Pujahari and L. Rolen, Turán inequalities for the plane partition function. Adv. Math., 409 (2022), 108692.
- [20] B.V. Pandey, Higher Turán inequalities for the plane partition function, Res. Number Theory, 10 (69) (2024).
- [21] M.L. Patrick, Some inequalities concerning Jacobi polynomials, SIAM J. Math. Anal., 2 (2) (1971), 213–220.
- [22] M.L. Patrick, Extensions of inequalities of the Laguerre and Turán type. Pacific J. Math., 44 (2) (1973), 675–682.
- [23] R. Rhoades, Asymptotics for the number of strongly unimodal sequences, Int. Math. Res. Notices., 3 (2014), 700–719.
- [24] D. Romik, On the number of n-dimensional representations of $\mathfrak{su}(3)$, the Bernoulli numbers, and the Witten zeta function, Acta Arith., 180(2), (2017), 111–159.
- [25] I. Wagner, On a new class of Lagueree-Pólya type functions with applications in number theory, Pacific J. Math., 320 (2022), 177–192.
- [26] L.X.W. Wang and E.Y.Y. Yang, Laguerre inequalities for discrete sequences, Adv. Appl. Math., 139 (2022), 120357.
- [27] L.X.W. Wang and N.N.Y. Yang, Laguerre inequalities and complete monotonicity for the Riemann Xi-function and the partition function, Trans. Amer. Math. Soc., 377 (2024), 4703–4725.

[28] E.M. Wright, Asymptotic partition formulae. I. Plane partitions. Q. J. Math., Oxf. Ser., 2 (1931), 177–189.