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Form Domains and Eigenfunction
Expansions for Differential Equations with
Eigenparameter Dependent Boundary
Conditions

Paul Binding and Branko Ćurgus

Abstract. Form domains are characterized for regular 2n-th order differential equations subject to

general self-adjoint boundary conditions depending affinely on the eigenparameter. Corresponding

modes of convergence for eigenfunction expansions are studied, including uniform convergence of the

first n− 1 derivatives.

1 Introduction

We shall consider the eigenvalue problem

L( f ) =

n∑

j=0

(−1) j(p j f ( j))( j)
= λr f on [a, b],(1.1)

subject to self-adjoint boundary conditions of the form

[
D

M

]
b( f ) = λ

[
0
N

]
b( f ),(1.2)

where
[

D
M

]
,
[

0
N

]
are 2n× 4n matrices and b( f ) is the vector with components

f (a), f ′(a), . . . , f (n−1)(a), f (b), f ′(b), . . . , f (n−1)(b),

f [n](a), . . . , f [2n−1](a), f [n](b), . . . , f [2n−1](b).

For the definition of the quasi-derivatives f [ j] and how they are used to give meaning

to the expression L( f ) in (1.1), even if the coefficients p j are not smooth functions,
see [18], [20], [24] . Note that by definition f [k]

= f (k), k = 0, 1, . . . , n and L( f ) :=
f [2n]. The methods of this paper use self-adjoint operators which are bounded from
below and the only restrictions on the coefficients are that 1/pn, pn−1, . . . , p0, r are

real integrable on [a, b] and pn (resp. r) is positive (resp. nonzero) almost everywhere.
Many authors have studied problems of this type, the Sturm-Liouville case (with
n = 1 and separated boundary conditions) being the most commonly treated. See,
e.g., [12], [13], [14], [23] and their references.
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It is known that such problems may be cast in the form A f = λ f for a suitable self-
adjoint operator A in a Hilbert (or Krein, depending on the signs of the coefficients)

space H. Usually H takes the form L2([a, b], r) ⊕ C
k where L2([a, b], r) is a Krein

space if r changes sign in [a, b] and the (in general indefinite) inner product on C
k is

given by an invertible self-adjoint matrix. Eigenfunction expansions have provided a
frequent topic of interest, and several authors have demonstrated for positive r that

their L2(r) convergence can be improved to uniform convergence for elements of
dom(A), cf. [12], [14]. For Sturm-Liouville problems Hinton [15] took the further
step of showing that uniform convergence holds even in the form domain fdom(A),
(which coincides with dom(A1/2) if A > 0).

Hinton also characterized fdom(A) in a special case, and recently Binding and
Browne have completed this characterization for all possible Sturm-Liouville prob-
lems with separated boundary conditions [4]. Our goal here is twofold. First, we ex-

tend the explicit form domain characterization to general (not necessarily separated)
self-adjoint boundary conditions for 2n-th order problems. For given boundary con-
ditions, we show that the form domain, and its natural topology, depend only on the
leading coefficient pn. In our opinion the methods of the cited authors would lead

to considerable complication, and we have instead adopted a unified abstract treat-
ment of the problem. Second, we show in a direct fashion that convergence of the
eigenfunction expansions is always stronger than uniform. In fact we characterize
this convergence precisely, and we give conditions for it to coincide with convergence

in the Sobolev type space W n
2 ⊕ C

k. In particular we extend some results of Dijksma
[12] (in the case of linear boundary conditions) and Hinton [15] who discusses sec-
ond order problems with separated boundary conditions. Sobolev space convergence
is established for more general problems by Shkalikov [21] and Tretter [22], but they

assume smoother coefficients.

Our plan is as follows. The conditions on (1.1) and (1.2) are specified precisely,
and the abstract framework is set up for definite and indefinite problems, in Sec-

tions 2 and 3 respectively. In particular, an operator A0 in H0 = L2(r) and an associ-

ated operator Ã in H̃ = L2(r) ⊕ C
k are constructed from the λ-dependent problem.

The operator A0, which corresponds to a problem with λ-independent boundary
conditions, is well understood. Section 4 contains the form domain characterization
in terms of pn and certain “essential” boundary conditions. In the Sturm-Liouville

case our formulae are different from (but equivalent to) those of [4]. In Section 5 we
discuss the topology of convergence in the form domain generated by A, and uniform
convergence of the first n− 1 derivatives is deduced as a corollary.

2 Hilbert Space Constructions

In this section we present an abstract framework for the problem (1.1)–(1.2). We
start with the familiar positive definite case. The indefinite case will then be treated
using results from the positive definite case.

Throughout we consider subspaces and operators in direct sums of inner product
(Hilbert or Krein) spaces. We consistently use the following notation. If (H j , 〈·, ·〉 j),

j = 1, 2 are inner product spaces, we denote by (H̃, 〈·, ·〉) their direct sum, that is

https://doi.org/10.4153/CJM-2002-043-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-043-6


1144 Paul Binding and Branko Ćurgus

H̃ := H0 ⊕H1 〈 f , g〉 := 〈 f0, g0〉0 + 〈 f1, g1〉1,

f =

[
f0

f1

]
, g =

[
g0

g1

]
∈ H̃, f j , g j ∈ H j , j = 0, 1.

We also use the following convention. If L ⊂ H0, we will also write L ⊂ H̃, identify-
ing the set L with the set L⊕0. Similarly, we will consider an operator V : H0 → H0

also as an operator in H̃ meaning that

V :

[
f0

0

]
7−→

[
V f0

0

]
.(2.1)

We begin with a closed symmetric operator T0 with defect index (d, d), d < +∞,
in a Hilbert space (H0, 〈·, ·〉0). By abbreviation we shall say that T0 has (finite) defect

d. Throughout, we assume symmetric operators to be densely defined with finite de-
fects. Let b be a boundary mapping for T0, that is b : dom(T∗0 )→ C

2d is a surjective
linear mapping and ker(b) = dom(T0). (As usual, ∗ will denote the adjoint opera-
tor). It follows that there exists an invertible self-adjoint 2d × 2d matrix Q (which

we shall call the concomitant matrix of b) with d positive and d negative eigenvalues,
such that the abstract form of the Lagrange’s identity becomes

〈T∗0 f0, g0〉 − 〈 f0,T
∗
0 g0〉 = ib(g0)∗Qb( f0), f0, g0 ∈ dom(T∗0 ).(2.2)

At first we will assume that all boundary conditions include λ so that our abstract
eigenvalue problem takes the form

T∗0 f0 = λ f0, f0 ∈ dom(T∗0 ),(2.3)

Mb( f0) = λNb( f0),(2.4)

where M and N are d × 2d matrices. We will study the above eigenvalue problem

within the framework of the vector space H0 ⊕ C
d with a suitable inner product. Let

∆ be an arbitrary d×d matrix and denote by C
d
∆

the space C
d with the inner product

〈x, y〉1 := y∗∆x, for x, y ∈ C
d. We consider this general form of inner product on

C
d only until Proposition 2.1 below. Following Proposition 2.1, we will assume∆ to

be an invertible self-adjoint d× d matrix.

We define an operator B̃ which is associated with the problem (2.3)–(2.4) in the

following way. Let

(H̃, 〈·, ·〉) = (H0, 〈·, ·〉0)⊕ C
d
∆,

that is, with inner product given by

〈 f , g〉 := 〈 f0, g0〉0 + g∗1∆ f1,

f =

[
f0

f1

]
, g =

[
g0

g1

]
∈ H̃, f0, g0 ∈ H0, f1, g1 ∈ C

d
∆.
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Define

dom(B̃) =

{
f =

[
f0

f1

]
∈ H̃ : f0 ∈ dom(T∗0 ), f1 = Nb( f0)

}
(2.5)

and put

B̃ f = B̃

[
f0

Nb( f0)

]
:=

[
T∗0 f0

Mb( f0)

]
, f ∈ dom(B̃).(2.6)

Note that symmetry of B̃ (which depends on M, N and Q) in the inner product
〈·, ·〉 (which depends on∆) forces relations between M, N , Q, and∆. The following
proposition (whose “if” part is known [12], [17] in the case of differential operators)

makes these relations precise in the abstract case.

Proposition 2.1 In the above notation, the operator B̃ defined by (2.5)–(2.6) is sym-

metric in (H̃, 〈·, ·〉) if and only if the following conditions are satisfied:

MQ−1M∗ = NQ−1N∗ = 0,(2.7)

iMQ−1N∗ is an invertible, self-adjoint matrix and

∆ =
1

i
(MQ−1N∗)−1.(2.8)

Proof First note that if (2.7) is true, then the equality

[
M

N

]
Q−1

[
M

N

]∗
=

[
0 MQ−1N∗

(MQ−1N∗)∗ 0

]
(2.9)

holds. Clearly, the matrix on the left hand side of (2.9) is invertible if and only if the

matrix
[
M N

]T
is so and the matrix on the right hand side of (2.9) is invertible if

and only if MQ−1N∗ is so. Therefore, if (2.7) holds, the matrix MQ−1N∗ is invertible

if and only if the matrix
[
M N

]T
is invertible.

It follows from the definitions of b, Q, B̃ and C
d
∆

that

〈B̃ f , g〉 − 〈 f , B̃g〉

= 〈T∗0 f0, g0〉0 − 〈 f0,T
∗
0 g0〉0 + 〈Mb( f0),Nb(g0)〉1 − 〈Nb( f0),Mb(g0)〉1

= ib(g0)∗Qb( f0) + b(g0)∗N∗∆Mb( f0)− b(g0)∗M∗∆Nb( f0)

= b(g0)∗(iQ + N∗∆M −M∗∆N)b( f0).

(2.10)

Since dom(T∗0 ) equals the projection of dom(B̃) onto H0 and the mapping b :

dom(T∗0 )→ C
2d is onto, it follows from (2.10) that B̃ is symmetric if and only if

iQ = M∗∆N − N∗∆M,
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or, equivalently, if and only if

Q =

[
M

N

]∗ [
0 −i∆

i∆ 0

] [
M

N

]
.(2.11)

We conclude that if B̃ is symmetric, then (2.11) holds, and, since Q is invertible all
square matrices in (2.11) must be invertible and (2.11) can be rewritten as

[
0 −i∆−1

i∆−1 0

]
=

[
M

N

]
Q−1

[
M

N

]∗
=

[
MQ−1M∗ MQ−1N∗

NQ−1M∗ NQ−1N∗

]
.(2.12)

Clearly (2.12) is equivalent to (2.7) and (2.8).
Conversely, if MQ−1N∗ is invertible and (2.7)–(2.8) hold, then (2.12) and (2.11)

hold, and therefore B̃ is symmetric in (H̃, 〈·, ·〉).

Remark 2.2 Proposition 2.1 implies that if B̃ is symmetric with respect to the inner

product 〈·, ·〉 on H̃, then (H̃, 〈·, ·〉) must be a Krein space which is a direct orthogonal
sum of a Hilbert space (H0, 〈·, ·〉0) and the finite dimensional Krein space C

d
∆

.

Corollary 2.3 Assume that the operator B̃ defined by (2.5)–(2.6) is symmetric in

(H̃, 〈·, ·〉) and that

∆ =
1

i
(MQ−1N∗)−1 is positive definite.(2.13)

Then B̃ is a self-adjoint operator in the Hilbert space (H̃, 〈·, ·〉).

Proof By Proposition 2.1 (H̃, 〈·, ·〉) is a Hilbert space, the equalities (2.7) hold and
we can use all the equalities derived in the proof of Proposition 2.1. Assume that

g =
[
g0 g1

]T
∈ H̃ is orthogonal to dom(B̃). Then, since dom(T0)⊕{0} ⊂ dom(B̃)

and dom(T0) is dense in H0, we conclude that g0 = 0. Therefore, g∗1∆Nb( f0) = 0
for all f0 ∈ dom(T∗0 ). As b : dom(T∗0 )→ C

2d is onto,∆ is invertible, and the rows of
N are linearly independent, it follows that g1 = 0. Thus, g = 0 and therefore dom(B̃)

is dense in H̃.

Since the operator B̃ defined by (2.5)–(2.6) is evidently closed, to prove that it

is self-adjoint we only need to show that ker(B̃ ± iĨ) = {0}. Let f =
[ f0

Nb( f0)

]
∈

ker(B̃− iĨ). Then

T∗0 f0 = i f0,(2.14)

Mb( f0) = iNb( f0).(2.15)

Using (2.14) we have

b( f0)∗Qb( f0) =
1

i

(
〈T∗0 f0, f0〉0 − 〈 f0,T

∗
0 f0〉0

)
= 2〈 f0, f0〉0 ≥ 0.(2.16)
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An application of (2.11) and (2.15) leads to

b( f0)∗Qb( f0) = b( f0)∗
[

M

N

]∗ [
0 −i∆

i∆ 0

] [
M

N

]
b( f0)

=

[
iNb( f0)

Nb( f0)

]∗ [
0 −i∆

i∆ 0

] [
iNb( f0)

Nb( f0)

]

= −2
(

Nb( f0)
)∗
∆Nb( f0) ≤ 0.

(2.17)

The inequalities (2.16) and (2.17) imply that f0 = 0 and therefore f = 0. Similarly,
ker(B̃ + iĨ) = {0}.

Since our original eigenvalue problem (1.1)–(1.2) might include boundary condi-
tions that do not include λ we need the following extension of Corollary 2.3. In this
case the symmetric operator T0 arises as an extension of another symmetric operator

Tm.

Theorem 2.4 Let Tm be a closed symmetric operator with defect m in a Hilbert space

(H0, 〈·, ·〉0), let b : dom(T∗m)→ C
2m be a boundary mapping for Tm with concomitant

matrix Q.

Let d be an integer with 0 < d < m and let M and N be d×2m matrices which satisfy

(2.7) and (2.13). Let D be a (m − d)× 2m matrix such that DQ−1D∗ = DQ−1M∗ =

DQ−1N∗ = 0 and such that the (m + d)× 2m matrix
[

D
M
N

]
has maximal rank m + d.

Then the operator B̃ defined by

dom(B̃) =

{
f =

[
f0

f1

]
∈ H̃ : f0 ∈ dom(T∗m),Db( f0) = 0, f1 = Nb( f0)

}
,(2.18)

and

B̃ f = B̃

[
f0

Nb( f0)

]
:=

[
T∗m f0

Mb( f0)

]
, f ∈ dom(B̃)(2.19)

is self-adjoint in the Hilbert space (H̃, 〈·, ·〉).

Proof It follows from [9, Lemma 3.4] and the assumptions about D, M and N , that

the restriction T0 of T∗m defined on

dom(T0) =



 f ∈ dom(T∗m) :




D

M

N


 b( f ) = 0



(2.20)

is a symmetric extension of Tm with defect d and that the domain of its adjoint is

dom(T∗0 ) = { f ∈ dom(T∗m) : Db( f ) = 0}.(2.21)
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By [9, Lemma 3.5], b0 =
[

M
N

]
b|dom(T∗0 ) is a boundary mapping for T0 and its con-

comitant matrix is

([
M

N

]
Q−1

[
M

N

]∗)−1

=

[
0 (NQ−1M∗)−1

(MQ−1N∗)−1 0

]
.

By (2.21), the definition of B̃ in the present theorem can be rewritten in the form
(2.5)–(2.6):

dom(B̃) =

{
f =

[
f0

f1

]
∈ H̃ : f0 ∈ dom(T∗0 ), f1 =

[
0 I
]

b0( f0)

}
,

and

B̃ f = B̃

[
f0[

0 I
]

b0( f0)

]
=

[
T∗0 f0[

I 0
]

b0( f0)

]
, f ∈ dom(B̃).

Since the matrices
[
0 I
]

(cf. N in (2.5)) and
[
I 0
]

(cf. M in (2.6)) satisfy all the con-

ditions of Proposition 2.1, Corollary 2.3 implies that B̃ is self-adjoint in the Hilbert

space H0 ⊕ C
d
∆

, where

∆ =
1

i

([
I 0
] [M

N

]
Q−1

[
M

N

]∗ [
0 I
]∗
)−1

=
1

i
(MQ−1N∗)−1.

Remark 2.5 The operator B̃ defined by (2.18)–(2.19) is associated with the eigen-

value problem

T∗m f0 = λ f0, f0 ∈ dom(T∗m),(2.22)
[

D

M

]
b( f0) = λ

[
0
N

]
b( f0).(2.23)

The following proposition and its corollary are included for the reader’s conve-
nience.

Proposition 2.6 Let (H̃, 〈·, ·〉) be the direct sum of two Hilbert spaces (H0, 〈·, ·〉0)
and (H1, 〈·, ·〉1). Assume that dim(H1) = d < +∞. Let Tm be a closed symmetric

operator in (H0, 〈·, ·〉0) with defect m. Let B0 be a self-adjoint extension of Tm in H0.

Let B̃ be a self-adjoint extension of Tm in H̃. Then the operators B0 and B̃ have the same

essential spectrum.

Proof Let λ ∈ C \ R. Denote by B̃0 the direct sum of B0 and the zero operator on

H1. Then B̃0 is self-adjoint in (H̃, 〈·, ·〉) and λ ∈ ρ(B̃0)∩ ρ(B̃). The restrictions of B̃0

and B̃ to dom(Tm)⊕{0} coincide and dom(Tm)⊕{0} has codimension d+m < +∞
in both dom(B̃0) and dom(B̃). Therefore

(B̃0 − λI)−1 − (B̃− λI)−1

is a finite rank operator. Now the statement of the proposition follows from [16,
Theorem IV.5.35].
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Corollary 2.7 Under the conditions of Proposition 2.6, the operator B̃ is bounded from

below in H̃ if and only if Tm is bounded from below in H0. The operator B̃ has discrete

spectrum if and only if B0 has discrete spectrum.

Next we give an abstract foundation for the characterization of form domains of

the operators associated with the eigenvalue problem (1.1)–(1.2) to be presented in
Section 4. Let S be a self-adjoint operator which is bounded below in a Hilbert space
(H, 〈·, ·〉) and let α ≥ 0 be such that the operator S + αI is uniformly positive. Then
the completion of dom(S) with respect to the positive definite form 〈(S + αI) ·, ·〉 is

called the form domain of S and it is denoted by fdom(S). The space fdom(S) does
not depend on the special choice of α and it coincides with dom(|S|1/2). The form
〈(S+αI) ·, ·〉 extends to fdom(S) by continuity to a form which we denote by 〈·, ·〉S+αI .
The space

(
fdom(S), 〈·, ·〉S+αI

)
is a Hilbert space with dom(S) as a dense subspace.

Lemma 2.8 Let T0 be a closed, symmetric operator with defect d, bounded below in

a Hilbert space (H0, 〈·, ·〉0). Let (H1, 〈·, ·〉1) be an d-dimensional Hilbert space and

denote by (H̃, 〈·, ·〉) the direct sum of the Hilbert spaces (H j , 〈·, ·〉 j), j = 1, 2. Let

M and N be d × 2d matrices which satisfy (2.7) and (2.13). Let B̃ be a self-adjoint

extension of T0 in H̃ defined by (2.5) and (2.6). Let B0 be a self-adjoint extension of T0

in H0 defined on

dom(B0) := { f0 ∈ dom(T∗0 ) : Nb( f0) = 0}.

Then dom(B0) ⊂ dom(B̃) and the dimension of the factor space dom(B̃)/ dom(B0)
is d. There exist φ1, . . . , φd ∈ dom(B̃) which are linearly independent over dom(B0),

such that the form domain fdom(B̃) of B̃ is given by

fdom(B̃) = fdom(B0)+̇ span{φ1, . . . , φd}.

Proof Since we assume that T0 is bounded below by Corollary 2.7 both operators
B0 and B̃ are bounded below. Therefore, there exists α > 0 such that the shifted

operators T0 + αI, B0 + αI and B̃ + αĨ are uniformly positive. Since the domains and
form domains remain unchanged under this shift, there is no loss of generality if we
assume that all operators T0, B0, B̃ are uniformly positive.

By the definition of B0, for f0 ∈ dom(B0) we have Nb( f0) = 0. Therefore,

f0 =
[

f0

0

]
=

[
f0

Nb( f0)

]
∈ dom(B̃). In fact, dom(B̃) ∩ dom(T∗0 ) = dom(B0) (recall

the identification (2.1)). The vectors
[

g
j
0

Nb(g
j
0 )

]
∈ dom(B̃), j = 1, . . . , q are linearly

independent modulo dom(B0) if and only if the vectors Nb(g
j
0), j = 1, . . . , q, are

linearly independent. Since b : dom(T∗0 ) → C
2d is surjective and since we assume

that the d × 2d matrix N has full rank, there exist g1
0 , . . . , g

d
0 ∈ dom(T∗0 ) such that

Nb(g
j
0), j = 1, . . . , q are linearly independent. Therefore

dim
(

dom(B̃)/ dom(B0)
)
= d.(2.24)
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Clearly dim
(

dom(B0)/ dom(T0)
)
= d. As B0 is one-to-one and onto H0 and T0 is

one-to-one, the codimension of the range of T0 in H0 equals d. Therefore

dim
(

ker(T∗0 )
)
= d. Let φ1

0, . . . , φ
d
0 form a basis of ker(T∗0 ). Since the null space

of the uniformly positive operator B0 is trivial, the vectors Nb(φ1
0), . . . ,Nb(φd

0) are

linearly independent. Consequently, the vectors φ j :=
[
φ

j
0

Nb(φ
j
0)

]
, j = 1, . . . , d are

linearly independent. Together with (2.24) this implies

dom(B̃) = dom(B0)+̇ span{φ1, . . . , φd}.

The vectors φ1, . . . , φd are orthogonal to dom(B0) with respect to the form 〈B̃ ·, ·〉.
Indeed, with f0 ∈ dom(B0) and j ∈ {1, . . . , d},

〈
B̃

[
φ

j
0

Nb(φ
j
0)

]
,

[
f0

0

]〉
=

〈[
T∗0 φ

j
0

Mb(φ
j
0)

]
,

[
f0

0

]〉
=

〈[
0

Mb(φ
j
0)

]
,

[
f0

0

]〉
= 0.

Clearly the restriction of the operator B̃ to dom(B0)v does not coincide with B0. In

fact, it follows from the invertibility of the matrix
[
M N

]T
that the largest subset of

dom(B0) on which B̃ coincides with T∗0 is dom(T0). Despite this, it turns out that the
form 〈B̃ ·, ·〉 when restricted to dom(B0) coincides with the form 〈B0 ·, ·〉0. Indeed,
for f0, g0 ∈ dom(B0),

〈
B̃

[
f0

0

]
,

[
g0

0

]〉
=

〈[
T∗0 f0

Mb( f0)

]
,

[
g0

0

]〉
= 〈T∗0 f0, g0〉0 = 〈B0 f0, g0〉0.

It follows that the completion of dom(B̃) with respect to the form 〈B̃ ·, ·〉 completes

dom(B0) to fdom(B0) and the finite dimensional space span{φ1, . . . , φd} remains
unchanged under this completion. Therefore

fdom(B̃) = fdom(B0)+̇ span{φ1, . . . , φd}.

3 Krein Space Constructions

In order to study indefinite eigenvalue problems of the form (1.1)–(1.2), the above
constructions are carried out instead in a Krein space. Recall that (K, [·, ·]) is a
Krein space if K is a complex vector space, [·, ·] is an indefinite inner product on
K and there exists a direct, [·, ·]-orthogonal decomposition K = K+[+̇]K− such

that (K±,±[·, ·]) are Hilbert spaces. For such a decomposition the corresponding
fundamental symmetry is a linear operator J defined by J(x+ + x−) := x+ − x−, and
the corresponding Hilbert space inner product on K is 〈u, v〉 := [ Ju, v], u, v ∈ K.
The topology induced on K by this Hilbert space inner product is independent of

the choice of K±. The definitions of symmetric, self-adjoint and positive oper-
ators in a Krein space parallel those in a Hilbert space, see the monographs [1]
and [5]. For applications of Krein space operator theory to eigenvalue problems
see [13]. We say that a closed symmetric operator S in the Krein space (K, [·, ·])
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has a (finite) defect d if there exists a self-adjoint extension A of S in K such that
d = dim

(
dom(A)/ dom(S)

)
< +∞. This is equivalent to the fact that the operator

B := JA is a self-adjoint extension of the closed symmetric operator T := JS in the
Hilbert space (K, 〈·, ·〉), that is, the operator T has defect d, see [10, Section 1.1].

Let Sm be a closed symmetric operator with defect m in a Krein space (K0, [·, ·]0),
let J0 be a fundamental symmetry on K0 and let 〈 f , g〉0 = [ J0 f , g]0 be the corre-

sponding Hilbert space inner product. Then Tm = J0Sm is closed symmetric oper-
ator with defect m in the Hilbert space (K0, 〈·, ·〉0). Clearly dom(Tm) = dom(Sm).
By S[∗]

m we denote the adjoint of Sm in (K0, [·, ·]0), so S[∗]
m = J0T∗m, where T∗m is the

adjoint of Tm in (K0, 〈·, ·〉0). Since dom(T∗m) = dom(S[∗]
m ), any boundary mapping

for Tm is a boundary mapping for Sm. Let b be a boundary mapping for Sm, with Q

as the corresponding concomitant matrix, as in Section 2. Our abstract eigenvalue
problem is now

S[∗]
m f0 = λ f0, f0 ∈ dom(S[∗]

m ),(3.1)
[

D

M

]
b( f0) = λ

[
0
N

]
b( f0),(3.2)

where M and N are d× 2m matrices, 0 < d ≤ m, and D is a (m− d)× 2m matrix of
full rank. Note that (3.1) is equivalent to T∗m f0 = λ J0 f0. Let

(K̃, [·, ·]) = (K0, [·, ·]0)⊕ C
d
∆

so the inner product on K̃ is given by

[ f , g] := [ f0, g0]0 + g∗1∆
−1 f1,

f =

[
f0

f1

]
, g =

[
g0

g1

]
∈ K̃, f0, g0 ∈ K0, f1, g1 ∈ C

d.

Then an operator Ã can be associated with the problem (3.1)–(3.2) in K0 ⊕ C
d
∆

in

the following way. Let

dom(Ã) =

{
f =

[
f0

f1

]
∈ K̃ : f0 ∈ dom(S[∗]

m ),Db( f0) = 0, f1 = Nb( f0)

}
(3.3)

and define

Ã f = Ã

[
f0

Nb( f0)

]
:=

[
S[∗]

m f0

Mb( f0)

]
, for f ∈ dom(Ã).(3.4)

Theorem 3.1 Let Sm be a closed symmetric operator with defect m in a Krein space

(K0, [·, ·]0). Let b : dom(S[∗]
m )→ C

2m be a boundary mapping for Sm with concomitant

matrix Q. Let d be an integer with 0 < d ≤ m and assume that M and N are d × 2m

matrices which satisfy (2.7), that the matrix MQ−1N∗ is invertible and that

∆ =
1

i
(MQ−1N∗)−1 is self-adjoint and invertible.(3.5)
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Let D be a (m − d) × 2m matrix such that DQ−1D∗ = DQ−1M∗ = DQ−1N∗ = 0

and such that the (m + d)× 2m matrix
[

D
M
N

]
has maximal rank m + d. Then the space

(K̃, [·, ·]) = (K0, [·, ·]0)⊕C
d
∆

is a Krein space and the operator Ã defined by (3.3)–(3.4)
is self-adjoint.

The operator

J̃ :=

[
J0 0
0 sgn(∆)

]
,(3.6)

where sgn(∆) = |∆|−1
∆, is a fundamental symmetry on the Krein space (K̃, [·, ·]).

Proof The claims that K0⊕C
d
∆

is a Krein space and that J̃ is a fundamental symme-

try are clear. The operator Tm = J0Sm and the matrices D, N and sgn(∆)M satisfy all
the conditions of Theorem 2.4 and the operator B̃ from that theorem equals the oper-
ator J̃Ã in the present theorem. By Theorem 2.4, J̃Ã is self-adjoint and consequently

Ã is self-adjoint.

Remark 3.2 The operator B̃ := J̃Ã is associated with the positive definite eigen-
value problem

J0S[∗]
m f0 = λ f0, f0 ∈ dom(S[∗]

m ),(3.7)
[

D

sgn(∆)M

]
b( f0) = λ

[
0
N

]
b( f0),(3.8)

which is studied in Section 2 in the direct sum of the Hilbert spaces (K0, 〈·, ·〉0) and
C

d
|∆|. The eigenvalue problem (3.7)–(3.8) will be called the definite (or Hilbert space)

eigenvalue problem associated with the indefinite (or Krein space) eigenvalue prob-
lem (3.1)–(3.2).

In the next result we collect some spectral properties of the operator Ã which
can be deduced from special conditions on the symmetric operator Tm. These spe-

cial conditions are fulfilled by symmetric differential operators associated with (1.1)
under our basic assumptions on the coefficients. For properties of quasi-uniformly
positive operators on Hilbert and Krein spaces we refer to [2] and [11] respectively.

Theorem 3.3 Let Sm be a symmetric operator which is bounded below in the Krein

space (K0, [·, ·]0). Assume that the operator Tm = J0Sm has a self-adjoint extension

with discrete spectrum in the Hilbert space (H0, 〈·, ·〉0). Then

(a) The operator Ã defined by (3.3)–(3.4) is quasi-uniformly positive (and therefore

definitizable) with discrete spectrum in the Krein space (K̃, [·, ·]).

(b) Each eigenvalue of Ã has finite algebraic multiplicity.

(c) The algebraic eigenspaces corresponding to real distinct eigenvalues of Ã are mutu-

ally orthogonal in the Krein space (K̃, [·, ·]).

https://doi.org/10.4153/CJM-2002-043-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-043-6


Form Domains and Eigenfunction Expansions 1153

(d) All but finitely many eigenvalues of Ã are semisimple, real and have the property

that λ[φ, φ] > 0 for all nonzero eigenvectors φ corresponding to λ.

(e) The linear span of the algebraic eigenspaces of Ã is dense in K̃.

Proof Let J̃ be the fundamental symmetry on (K̃, [·, ·]) defined in (3.6) and let
B0 be a self-adjoint extension of Tm with discrete spectrum in the Hilbert space
(H0, 〈·, ·〉0). Since Tm is bounded below so is B0. Corollary 2.7 implies that the

operator B̃ is bounded below and has discrete spectrum in (H̃, 〈·, ·〉). It follows from

[11, Proposition 1.4] that Ã is quasi-uniformly positive and has discrete spectrum in

(K̃, [·, ·]). The statements (b) and (d) follow from [11, Proposition 1.6]. The state-
ment (c) follows from [5, Theorem II.3.3] and (e) follows from [19, Propositions 5.1
and 5.2].

Remark 3.4 More information about the number of eigenvalues which do not have
the three properties listed in Theorem 3.3 (d) and other spectral properties of defini-
tizable operators can be found in [11], [13], [19].

We illustrate the constructions so far with the example of a Sturm-Liouville prob-
lem with separated λ-dependent boundary conditions.

Example 3.5 Let n = 1 and consider the problem

−(py ′) ′ + qy = λry on [0, 1],(3.9)

subject to

(λa0 + b0)y(0) = (λc0 + d0)(py ′)(0)

(λa1 + b1)y(1) = (λc1 + d1)(py ′)(1).
(3.10)

We assume that 1/p, q, r are integrable over [0, 1], with p > 0 a.e. and that the
boundary conditions are nontrivial, that is, (a j , b j , c j , d j) 6= (0, 0, 0, 0), j = 0, 1.
To distinguish those boundary conditions in (3.10) that are genuinely λ-dependent
(corresponding to M and N in (1.2)) we introduce the set Λ ⊆ {0, 1} so that j ∈ Λ
if and only if (a j , c j) 6= (0, 0). For j ∈ Λ we assume

δ j =

∣∣∣∣
a j b j

c j d j

∣∣∣∣ 6= 0.

We define the operator T0 in the Hilbert or Krein space L2([0, 1], r) by

T0 : f 7→ `( f ) :=
1

r

(
−(p f ′) ′ + q f

)

for

f ∈ dom(T0) :=

{
f ∈ Dmax :

b j f ( j) = d j(p f ′)( j), j = 0, 1,
a j f ( j) = c j(p f ′)( j), j ∈ Λ

}
,
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where

Dmax = { f ∈ L2([0, 1], r) : f , p f ′ ∈ AC[0, 1], `( f ) ∈ L2([0, 1], r)}.

It follows from the methods of [20] (or [24]) that T0 is a closed symmetric operator

with defect index (µ, µ), that is with defect µ, as required for the abstract problem
(2.3)–(2.4). Here µ is the number of elements in Λ. It turns out that the domain of
the adjoint of T0 is given by

dom(T∗0 ) := { f ∈ Dmax : b j f ( j) = d j(p f ′)( j), j /∈ Λ},

so the operator T∗0 includes only the λ-independent boundary conditions in (3.10),

corresponding to D in (1.2). If Λ is empty, then T0 is self-adjoint. Otherwise T0

is a symmetric operator in L2([0, 1], r). For the problem (3.9)–(3.10) the boundary

mapping is defined by b( f ) =
[

f (0) f (1) (p f ′)(0) (p f ′)(1)
]T

defined for all

f ∈ Dmax. From (2.2) we calculate the concomitant matrix of b to be

Q = i




0 0 −1 0
0 0 0 1
1 0 0 0

0 −1 0 0


 .

The boundary conditions (3.10) then take the form (1.2) if we set

M =
[
b0 0 −d0 0

]
, N =

[
−a0 0 c0 0

]
if Λ = {0},

M =
[
0 b1 0 −d1

]
, N =

[
0 −a1 0 c1

]
if Λ = {1},

M =

[
b0 0 −d0 0
0 b1 0 −d1

]
, N =

[
−a0 0 c0 0

0 −a1 0 c1

]
if Λ = {0, 1}.

We easily verify (2.7) and that

∆ = (−1) j−1δ j if Λ = { j} and

∆ =

[
−δ0 0

0 δ1

]
if Λ = {0, 1}

satisfies (3.5). Thus K̃ = L2([0, 1], r)⊕ C
µ
∆

is a Hilbert space if r and∆ are positive.

If not, then K̃ is in general a Krein space and the definite problem associated with

(3.9)–(3.10) is

−(py ′) ′ + qy = λ|r|y on [0, 1],(3.11)

subject to
(
λa0 − sgn(δ0)b0

)
y(0) =

(
λc0 − sgn(δ0)d0

)
(py ′)(0)

(
λa1 + sgn(δ1)b1

)
y(1) =

(
λc1 + sgn(δ1)d1

)
(py ′)(1)

(3.12)

which is considered in the Hilbert space H̃ = L2([a, b], |r|) ⊕ C
µ
|∆|. It follows from

well known spectral properties of the problem (3.11)–(3.12) (see e.g., [15]) that The-

orem 3.3 applies to the operator Ã associated with the indefinite problem (3.9)–(3.10)

in the Krein space L2([0, 1], r)⊕ C
µ
∆

.
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4 Form Domains of Operators in L2([a, b], r)⊕ C
d
∆

Let (K, [·, ·]) be a Krein space, let J be a fundamental symmetry on K, 〈x, y〉 :=

[ Jx, y] the Hilbert space inner product associated with J and let ‖x‖ := 〈x, x〉1/2 be
a norm on K. Let A be a self-adjoint operator which is bounded below in a Krein
space (K, [·, ·]), so there exists a real number α such that [Ax, x] ≥ α‖x‖2 for all
x ∈ dom(A). Clearly, A is bounded below in (K, [·, ·]) if and only if the operator

B := JA is bounded below in the Hilbert space (K, 〈·, ·〉). The form [A ·, ·] = 〈B ·, ·〉
is in a natural way associated with A. Therefore the natural form domain associated
with A in the Krein space K is identical with the form domain of B in the Hilbert

space (K, 〈·, ·〉), and we define

fdom(A) := fdom( JA).(4.1)

This definition is independent of the choice of a fundamental symmetry J (see [7,
Section 1]). The natural form on fdom(A) is [·, ·]A := 〈·, ·〉B.

The goal of this section is to characterize the form domains of the operators as-
sociated with the problem (1.1)–(1.2) in the Krein space L2([a, b], r) ⊕ C

d
∆

. Besides
(1.1) we shall consider the equation

L( f ) = λ|r| f on [a, b].(4.2)

A natural setting in which operators are associated with (1.1) (and (4.2)) is the Krein
space L2([a, b], r), that is the space of all (equivalence classes of) measurable func-

tions f defined on [a, b] for which
∫ b

a
| f |2 |r| < +∞. The indefinite and definite

inner products on L2([a, b], r) are

[ f , g] :=

∫ b

a

f gr and 〈 f , g〉 :=

∫ b

a

f g|r|,(4.3)

respectively. Clearly, the fundamental symmetry connecting the two inner products
in (4.3) is

( J0 f )(t) :=
(

sgn r(t)
)

f (t), t ∈ [a, b],(4.4)

and L2([a, b], r) = L2([a, b], |r|). Recall that the maximal operator Tmax associated

with (4.2) is defined in L2([a, b], |r|) by Tmax( f ) := 1
|r|L( f ) for all f in

dom(Tmax) =

{
f ∈ L2([a, b], r) : f [k] ∈ AC[a, b], k = 0, . . . , 2n− 1,

and
1

|r|
f [2n]
=

1

|r|
L( f ) ∈ L2([a, b], r)

}
.

The minimal operator Tmin associated with (4.2) is the restriction of Tmax to the set
of all f ∈ dom(Tmax) such that f [k](a) = f [k](b) = 0 for k = 0, 1, . . . , 2n − 1. It
is a closed symmetric operator with defect 2n and T∗min = Tmax in the Hilbert space
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L2([a, b], |r|). For properties of Tmin and Tmax and the conditions for a 2n-th order
symmetric differential expression L( f ) under which these operators are studied see

[18], [20] or [24, Section 3]. The maximal and minimal operators associated with
(1.1) are now defined as Smax := J0Tmax and Smin := J0Tmin, respectively, with J0

defined in (4.4), see [10, Section 2]. Since Tmin is a closed symmetric operator with
defect 2n in L2([a, b], |r|), the operator Smin is closed symmetric and has defect 2n in

the Krein space L2([a, b], r). An operator S0 is a closed symmetric extension of Smin

in L2([a, b], r) if and only if T0 := J0S0 is a closed symmetric extension of Tmin in
L2([a, b], |r|). It is well known that the domain of a closed symmetric extension T0 of
Tmin, and hence the domain of a closed symmetric extension S0 of Smin, is determined

as a subspace of dom(Tmax) = dom(Smax) by a set of 2n + d boundary conditions.
In the rest of this paper, for the closed symmetric operator Tmin, and hence for Smin

as well, we use the boundary mapping b : dom(Tmax) → C
4n for which the column

vector b( f ) is

[ f (a) f ′(a) . . . f (n−1)(a) f (b) f ′(b) . . . f (n−1)(b)

f [n](a) . . . f [2n−1](a) f [n](b) . . . f [2n−1](b)]T .

Integrating by parts in (2.2) we calculate the concomitant matrix of b to be

Q = i




0 0 −R 0
0 0 0 R

R 0 0 0
0 −R 0 0


 with R =




0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0



,

where the matrix R and all the other blocks in Q are n× n matrices. It is convenient

to introduce a self-adjoint 2n× 2n matrix Qe :=
[

R 0
0 −R

]
so that Q can be written as

Q = i
[

0 −Qe

Qe 0

]
. Since R is a self-adjoint matrix and RR = I, the matrices Q and Qe

are self-adjoint and QQ = I and QeQe = I.
A 1 × 4n row vector u is called a boundary condition. A function f in dom(Tmax)

satisfies the boundary condition u if ub( f ) = 0. The boundary condition u is called

essential if the final 2n components of u are all 0. Essential boundary conditions are
discussed by M. G. Krein in [18, §7], see also [3], [6]. Let 0 ≤ k ≤ 4n. A convenient
way to write a set of k linearly independent boundary conditions is to use a k × 4n

matrix D of maximal rank. Then a function f in dom(Tmax) satisfies all k boundary

conditions in D if Db( f ) = 0. We will study restrictions of the operator Tmax to
domains of the form

{ f ∈ dom(Tmax) : Db( f ) = 0}.(4.5)

Denote by T0 the adjoint (in L2([a, b], r)) of the restriction of Tmax onto the domain

in (4.5). By [9, Lemma 3.5] the operator T0 is symmetric in L2([a, b], r) if and only
if DQ−1D∗ = 0.

Clearly the domain in (4.5) will not change if we row reduce the matrix D. Since
essential boundary conditions play an important role in what follows we will use the
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following construction. Given a k × 4n matrix X, of maximal rank k, let Y be its
reduced row echelon form (starting the reduction at the bottom right corner). Write

Y =

[
Xe 0

X21 X22

]
,(4.6)

where 0 is a p× 2n matrix and the (k− p)× 2n matrix X22 and p× 2n matrix Xe are
of maximal ranks. We allow for the possibility that p = 0. In that case we consider
Xe to be an “empty” matrix, that is, all formulae involving Xe can be dropped.

Let Fmax be the set of all functions f in L2([a, b], r) such that f , f ′, . . . , f (n−1) are

absolutely continuous on [a, b] and
∫ b

a
pn| f

(n)|2 < +∞. For functions f ∈ Fmax we
introduce the essential boundary mapping be : Fmax → C

2n by

be( f ) :=
[

f (a) f ′(a) · · · f (n−1)(a) f (b) f ′(b) · · · f (n−1)(b)
]T
.

Clearly be is surjective. It follows from [18, §7] that the kernel ker(be) equals the form
domain of the Friedrichs extension of Tmin.

The next two theorems deal with a self-adjoint operator in the Krein space
L2([a, b], r)⊕C

d
∆

which can be associated with the problem (1.1)–(1.2). Since the op-
erator Tmin = J0Smin is bounded below and has a self-adjoint extension with discrete
spectrum, the first theorem is an immediate consequence of Theorems 3.1 and 3.3.

Theorem 4.1 Let D be a (2n− d)× 4n matrix and let M and N be d × 4n matrices

such that DQ−1D∗ = MQ−1M∗ = NQ−1N∗ = DQ−1M∗ = DQ−1N∗ = 0, the

(2n + d)×4n matrix
[

D
M
N

]
has maximum rank 2n + d and such that∆−1 := iMP−1N∗

is self-adjoint and invertible. Let Ã be the extension of Smin in K̃ = L2([a, b], r) ⊕ C
d
∆

defined by (3.3)–(3.4), where the operator Sm in (3.3)–(3.4) is replaced by Smin.

Then Ã is a self-adjoint operator in the Krein space K̃ = L2([a, b], r) ⊕ C
d
∆

and it

has all the properties listed in Theorem 3.3.

Theorem 4.2 In addition to the assumptions of Theorem 4.1, also assume that the

matrices D and N are of the form given in (4.6) and that the matrix Ne is of size k× 2n.

Let Ã be the self-adjoint extension of S0 in Theorem 4.1. Then the form domain fdom(Ã)

of Ã is given by

fdom(Ã) =

{[
f0

f1

]
∈ K̃ : f0 ∈ Fmax,Debe( f0) = 0, f1 =

[
Nebe( f0)

x

]
, x ∈ C

d−k

}
.

(4.7)

Proof By definition, fdom(Ã) = fdom(B̃), where B̃ = J̃Ã, with J̃ as in (3.6). There-
fore, without loss of generality, we can assume that r > 0 and that ∆ is positive

definite. Thus we shall replace Smin, Smax and Ã by the Hilbert space notation Tmin,
Tmax and B̃ from Section 2.
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It follows from [9, Lemma 3.4] and the assumptions about D, M and N , that the
restriction T0 of Tmax defined on

dom(T0) =



 f ∈ dom(Tmax) :




D

M

N


 b( f ) = 0



(4.8)

is a symmetric extension of Tmin with defect d and that the domain of its adjoint is

dom(T∗0 ) = { f ∈ dom(T∗m) : Db( f ) = 0}.

Denote the right hand side of (4.7) by F1. First we prove that fdom(B̃) ⊂ F1. Since
the 2n× 4n matrix

[
D
N

]
has maximum rank 2n and satisfies

[
D

N

]
Q−1

[
D

N

]∗
= 0,

[9, Lemma 3.4] implies that the restriction B0 of Tmax to the domain

dom(B0) := { f0 ∈ dom(Tmax) : Db( f0) = Nb( f0) = 0}

is a self-adjoint operator in the Hilbert space L2([a, b], r). The operator B0 is exactly
the self-adjoint extension of T0 used in Lemma 2.8. Using the notation and results of
Lemma 2.8, to complete the proof of fdom(B̃) ⊂ F1, we only need to prove that

fdom(B0) ⊂ F1 and span{φ1, . . . , φd} ⊂ F1.(4.9)

Since φ1, . . . , φd ∈ dom(B̃) ⊂ F1, the second inclusion in (4.9) follows directly from
the definition of dom(B̃). To prove the first inclusion in (4.9), we use the description
of the form domain

fdom(B0) = { f0 ∈ Fmax : Debe( f0) = Nebe( f0) = 0}

which is given in [18, §7]. Therefore,

fdom(B0) 3

[
f0

0

]
=




f0

Nebe( f0)

0


 ∈ F1.

A proof of F1 ⊂ fdom(B̃) follows. Since the vectors φ1, . . . , φd ∈ dom(B̃) are lin-
early independent over dom(B0), it follows that the d×1 vectors Nb(φ1

0), . . . ,Nb(φd
0)

are linearly independent. Let f be an arbitrary element in F1. Our goal is to find

g0 ∈ fdom(B0) and α1, . . . , αd ∈ C such that

f =




f0

Nebe( f0)

x


 =
[

g0

0

]
+

[ ∑d
j=1 α jφ

j
0∑d

j=1 α jNb(φ
j
0)

]
.(4.10)
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Thus, we have to find α1, . . . , αd ∈ C such that

f0 −
d∑

j=1

α jφ
j
0 ∈ fdom(B0),(4.11)

[
Nebe( f0)

x

]
=

d∑

j=1

α jNb(φ
j
0).(4.12)

Clearly the function on the left hand side of (4.11) satisfies the smoothness condition
to be in fdom(B0). To make sure that this function is in fdom(B0) we need to check
the essential boundary conditions:

Debe( f0) =

d∑

j=1

α jDebe(φ
j
0) and Nebe( f0) =

d∑

j=1

α jNebe(φ
j
0).(4.13)

The definition of F1 and the fact that φ
j
0 ∈ dom(T∗0 ), j = 1, . . . , d, imply that the left

hand equality in (4.13) is satisfied. The right hand equality in (4.13) is in fact a part

of the equality (4.12). Thus, to complete the proof we only need to note that the sys-
tem (4.12) has a solution for α1, . . . , αd ∈ C since the vectors Nb(φ1

0), . . . ,Nb(φd
0)

are linearly independent.

5 Expansions in the Form Domain

In this section we will consider various norms on form domains of differential oper-

ators in the space K̃ = L2([a, b], r)⊕ C
d
∆

. Let f ∈ Fmax. Put

||| f ||| :=

(∫ b

a

p1/2
n | f

(n)|2
) 1/2

+

n−1∑

k=0

max{| f (k)(x)| : x ∈ [a, b]}.

Lemma 5.1 The space (Fmax, ||| · |||) is a Banach space. The essential boundary map-

ping be : (Fmax, ||| · |||)→ C
2n is continuous.

Proof Let { f j} be a Cauchy sequence in (Fmax, ||| · |||). Then f (k)
j → gk as j → +∞

in C([a, b]) for k = 0, 1, . . . , n− 1 and p
1/2
n f (n)

j → p
1/2
n gn in L2([a, b]) (or, f (n)

j → gn

in L2([a, b], pn)).
Since strong convergence in L2 implies weak convergence, it follows that

∫ x

a

f (n)
j =

∫ b

a

p−1/2
n χ[a,x] p1/2

n f (n)
j →

∫ b

a

p−1/2
n χ[a,x] p1/2

n gn =

∫ x

a

gn as j → +∞.

Therefore,

f (n−1)
j (x)− f (n−1)

j (a)→

∫ x

a

gn as j → +∞ for all x ∈ [a, b],
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and, consequently gn−1(x)− gn−1(a) =
∫ x

a
gn. Since the function gn = p

−1/2
n · p

1/2
n gn,

as a product of two L2 functions, is integrable, we conclude that gn−1 is absolutely
continuous on [a, b] and g ′n−1 = gn a.e. on [a, b]. Similarly, we conclude that all

the functions gk, k = 0, 1, . . . , n − 1 are absolutely continuous on [a, b] and that

g ′k−1 = gk, k = 1, . . . , n. Since the function p
1/2
n gn is integrable over [a, b], it follows

that g0 ∈ Fmax. Also, f (k)
j → g(k)

0 as j → +∞ in C([a, b]) for k = 0, 1, . . . , n− 1 and

p
1/2
n f (n)

j → p
1/2
n g(n)

0 in L2([a, b]). Therefore, { f j} converges to g0 in (Fmax, ||| · |||).
The essential mapping be is continuous since clearly for each f ∈ Fmax the maxi-

mum of the moduli of the components of be( f ) is less or equal to ||| f |||.

Consider the direct sum Fmax⊕C
d of Banach spaces (Fmax, ||| · |||) and C

d with the
norm of x ∈ C

d given by the maximum of the moduli of its components. This norm

will also be denoted by ||| · |||. Let Ã be the self-adjoint operator of Theorem 4.1, and

let α be chosen so that Ã + α J̃ is uniformly positive in L2([a, b], r)⊕ C
d
∆

.

Our main result about form domain convergence is as follows.

Theorem 5.2 The vector space fdom(Ã) is a Hilbert space H under [·, ·]Ã+α J̃ and a

Banach space B under ||| · |||, and the corresponding two norms are equivalent.

Proof The first contention follows by the definitions and the second follows from
Theorem 4.2 and Lemma 5.1. For the third, let ı denote the inclusion mapping from
H to B.

Suppose that xn → x in H and ıxn → y in B. Since the topologies in H and B

are stronger than that of H̃, we have xn → x and ıxn = xn → y in H̃, whence x = y.

But ıx = x, so ıx = y and we conclude that ı is closed, hence bounded by the closed
graph theorem [16, Theorem III.5.20].

By the same reasoning, the inclusion mapping from B to H is bounded, and the
proof is complete.

Remark 5.3 If 1/pn ∈ L∞[a, b], then the norms in Theorem 5.2 dominate the
Sobolev norm of W n

2 ⊕ C
d. If in addition pn ∈ L∞[a, b], then all three norms are

equivalent.

As a consequence of Theorem 5.2, classical results from the spectral theory of self-
adjoint operators in Hilbert spaces which are given in terms of convergence in H

are equivalent to results about (uniform) convergence in B. We are now ready for

our main result on series convergence in the form domain of Ã, which we recall is

quasi-uniformly positive in the Krein space K̃ = L2([a, b], r)⊕ C
d
∆

.

Theorem 5.4 Let λ j , j = 1, 2, . . . be precisely those eigenvalues of Ã (each repeated

according to its multiplicity) which are semisimple, real and have the property that

λ j[φ, φ] > 0 for all nonzero eigenvectors corresponding to λ j . Let

φ j =

[
φ j0

Nb(φ j0)

]
, j ∈ N,(5.1)
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be corresponding nontrivial eigenvectors of Ã which are mutually orthogonal in K̃. For

an element f =
[ f0

f1

]
∈ K̃, the following are equivalent

(a) f belongs to fdom(Ã).

(b) The series (with positive terms)
∑+∞

j=1 λ j
|[ f ,φ j ]|

2

[φ j ,φ j ]
converges in R.

(c) The series

+∞∑

j=1

[ f , φ j]

[φ j , φ j]

[
φ(k)

j0

Nb(φ j0)

]
(5.2)

converges in the uniform norm in C[a, b] ⊕ C
d if k = 0, 1, . . . , n − 1 and in

L2([a, b], pn)⊕ C
d if k = n.

Proof Denote by L∞ the closed linear span of the eigenspaces corresponding to the
eigenvalues λ j , j = 1, 2, . . . . We proved in Theorem 3.3 that there are only finitely

many eigenvalues of Ã that are not included among λ j , j = 1, 2, . . . and that their
algebraic eigenspaces are finite dimensional. Denote by L0 the closed linear span of

the eigenspaces corresponding to these eigenvalues. Both subspaces L∞ and L0 are

invariant under Ã and Theorem 3.3 implies that

L2([a, b], r)⊕ C
d
∆
= L0[+̇]L∞,(5.3)

a direct and orthogonal sum. Consequently, (L∞, [·, ·]) is a Krein space. Denote by
P0 and P∞ the orthogonal projections corresponding to (5.3).

Denote by Ã∞ the restriction of Ã onto L∞. The operator Ã∞ is uniformly pos-

itive in (L∞, [·, ·]) and σ(Ã∞) = {λ j , j = 1, 2, . . . }. It follows from [8, Proposi-

tion 3.1] that g ∈ L∞ belongs to fdom(Ã∞) if and only if the series

+∞∑

j=1

λ j

|[g, φ j]|
2

[φ j , φ j]
(5.4)

converges. Clearly, L0 ⊂ dom(Ã). It was shown in the proof of [8, Theorem 3.4] that

fdom(Ã) = L0[+̇] fdom(Ã∞).(5.5)

Let f be an arbitrary vector in L2([a, b], r)⊕C
d
∆

. Then f = h + g with h = P0 f ∈

L0 and g = P∞ f ∈ L∞. The equality (5.5) implies that f ∈ fdom(Ã) if and only if

P∞ f = g ∈ fdom(Ã∞), which is equivalent to the convergence of the series in (5.4).
Since h ∈ L0 is orthogonal to each φ j , j = 1, 2, . . . we have [g, φ j] = [ f , φ j], and

consequently
+∞∑

j=1

λ j

|[g, φ j]|
2

[φ j , φ j]
=

+∞∑

j=1

λ j

|[ f , φ j]|
2

[φ j , φ j]
.
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This equality, and the previously established equivalences, prove that (a) is equivalent
to (b).

To prove the equivalence of (b) and (c), note that the series in (b) coincides term
by term with the series

+∞∑

j=1

|[ f , φ j]Ã∞
|2

[φ j , φ j]Ã∞

.

Since the vectors φ j/[φ j , φ j]
1/2

Ã∞
form an orthonormal basis of the Hilbert space

(
fdom(Ã∞), [·, ·]Ã∞

)
it follows that (b) is equivalent to convergence of the series

+∞∑

j=1

[ f , φ j]

[φ j , φ j]
φ j(5.6)

in the Hilbert space
(

fdom(Ã∞), [·, ·]Ã∞

)
. As Ã∞ is uniformly positive in the Krein

space (L∞, [·, ·]), the norm of the Hilbert space
(

fdom(Ã∞), [·, ·]Ã∞

)
is stronger

than the norm of the original Krein space L2([a, b], r) ⊕ C
d
∆

, that is the norm of the

Hilbert space L2([a, b], |r|) ⊕ C
d
|∆|. Consequently, if we equip the finite dimensional

space L0 with the norm of L2([a, b], |r|)⊕ C
d
|∆| and fdom(Ã∞) with the norm of the

Hilbert space
(

fdom(Ã∞), [·, ·]Ã∞

)
, then the direct sum ‖ · ‖s of these norms on

fdom(Ã) = L0[+̇] fdom
(

Ã∞
)

will be stronger than the norm on L2([a, b], |r|) ⊕ C
d
|∆|. Reasoning in the same way

as in the proof of Theorem 5.2, we see that the norm ‖ · ‖s is equivalent to ||| · ||| on

fdom(Ã). Consequently, the norm of [·, ·]Ã∞
is equivalent to ||| · ||| on fdom(Ã∞).

Therefore, (b) is equivalent to convergence of the series (5.6) in ||| · ||| and hence to
(c).

Remark 5.5 If the conditions of Theorem 5.4 hold and if we put g =
[
g0 g1

]T
=

P∞ f (i.e., the projection of f onto L∞ of (5.3)), then the series in (5.2) converge

to
[
g(k)

0 g1

]T
, in the corresponding topologies. In order to get expansions that will

converge to
[

f (k)
0 f1

]T
, finitely many generalized eigenfunctions of Ã must be ap-

pended to (5.1).

It turns out that in the Hilbert space case Theorem 5.4 can be slightly strengthened

and a simpler proof can be given. We state it as the following:

Theorem 5.6 Assume that H̃ = L2([a, b], r)⊕C
d
∆

is a Hilbert space and let Ã = B̃ be

the operator introduced in Theorem 4.2. Let λ j , j ∈ N be eigenvalues of B̃, each repeated

according to its multiplicity, and let

φ j =

[
φ j0

Nb(φ j0)

]
, j ∈ N,(5.7)
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be corresponding eigenfunctions of B̃, orthogonal in H̃.

For an element f =
[ f0

f1

]
∈ H̃, the statements (a), (b) and (c) of Theorem 5.4 are

equivalent.

If the conditions (a), (b) and (c) of Theorem 5.4 hold, the series in (5.2) converge to[
f (k)
0

f1

]
in the corresponding topologies. In particular the series for f converges in W n

2⊕C
d

if 1/pn ∈ L∞[a, b].

Proof Since the operator B̃ is self-adjoint in the Hilbert space H̃ each f ∈ H̃ can

be expanded in terms of the eigenfunctions (5.7) in the norm of H̃ and the series
∑+∞

j=1
|〈 f ,φ j〉|

2

〈φ j ,φ j〉
converges in R. Also, fdom(B̃) = fdom(B̃ + αĨ) for each α ∈ R.

Therefore, without loss of generality, we can assume that B̃ is uniformly positive.

The membership f ∈ fdom(B̃) is equivalent to B̃1/2 f ∈ H̃, which is the same as

+∞∑

j=1

λ
1/2
j

〈 f , φ j〉

〈φ j , φ j〉
φ j =

+∞∑

j=1

λ
1/2
j

〈 f , φ j〉

〈φ j , φ j〉1/2
φ j

〈φ j , φ j〉1/2
∈ H̃,

after we expand f in terms of the H̃-orthogonal basis (5.7). Since φ j/〈φ j , φ j〉
1/2

form an orthonormal basis of H̃, the equivalence between (a) and (b) follows.

Since φ j also form an orthogonal basis of H, we can rewrite the above equivalence

as

f =

+∞∑

j=1

〈 f , φ j〉B̃
〈φ j , φ j〉B̃

φ j

with convergence in H, that is,

∥∥∥∥ f −
n∑

j=1

〈 f , φ j〉

〈φ j , φ j〉
φ j

∥∥∥∥
H

→ 0.

The equivalence with (c) now follows from Theorem 5.2.

The last statement follows from Remark 5.3.
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[5] J. Bognàr, Indefinite inner product spaces. Springer-Verlag, 1974.
[6] E. A. Coddington and H. S. V. de Snoo, Regular boundary value problems associated with pairs of

ordinary differential expressions. Lecture Notes in Math. 858, Springer-Verlag, 1981.

https://doi.org/10.4153/CJM-2002-043-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-043-6


1164 Paul Binding and Branko Ćurgus
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