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ON APPROXIMATION BY
TRIGONOMETRIC LAGRANGE INTERPOLATING POLYNOMIALS II

P.B. BORWEIN, T.F. XIE AND S.P. ZHOU

We show that trigonometric Lagrange interpolating approximation with arbitrary
real distinct nodes in Lp space for 1 ̂  p < oo, as that with equally spaced nodes
in LF space for 1 < p < oo in an earlier paper by T.F. Xie and S.P. Zhou, may
also be arbitrarily "bad". This paper is a continuation of this earlier work by Xie
and Zhou, but uses a different method.

Let L\^, 1 ^ p ^ oo be the class of real integrable functions of power p and of
period 2n and let Lf̂  = Ĉ TT the class of all real continuous functions of period 2ir.

For / £ L\^, Sn(f,x) is the nth partial sum of the Fourier series of f(x); for
/ £ Zfx) ^n ( /L is the nth best approximation of f(x) in IP; for / £ CW, L%(f,x)
is the nth trigonometric Lagrange interpolating polynomial of f(x) with distinct nodes
Xn — {*n,j}j"0 (by a / l w e mean that a £ 6(mod 2ir)). In particular,

2n

Jt=O

is the nth trigonometric Lagrange interpolating polynomial of f(x) with equally spaced
nodes, where

Xk ~

n + l s in(x-x t ) /2 '

* 0 l 2o T T ' * 0,l,zn + 1

The norm of / £ L\v is defined as follows.

11/11 = II /IIL~=O max
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Although

Hinll = sup {| | in/ | | : Il/H = 1} ~ | |SB| | ~ log (n + 1),

(whereby An ~ Bn we indicate that there exists a positive constant M independent
of n such that M " 1 ̂  An/Bn ^ M) the story for the behaviour of these two linear
operators in Lp space is different. Throughout the paper, C(x) always indicates a
positive constant depending upon x and C indicates a positive absolute constant, which
may have different values at different places. For Fourier partial sums, by applying the
well-known Riesz theorem (see, for example, Zygmund [4]) one has

\\f-Sn(f)\\LP^C(p)En(f)p, K P <oo,

while for Lagrange interpolation with equally spaced nodes, the work [3] proved that
there exists an infinitely differentiable function / £ Ci* such that

where {An} is any given positive decreasing sequence with

n'Xn -> 0

for any s > 0.
One might ask what happens in L1 space? Though in many cases L1 possesses

similar properties to L°° by duality, it appears not to happen in this case. Further-
more, what happens for Lagrange interpolation with arbitrary real distinct nodes in
Lp space for 1 ̂  p < co? Since the constructive method used in [3] is no longer
valid in these cases, the present paper will use a different idea to construct the required
counterexample.

THEOREM. Let 1 ^ p < co. Suppose that {Xn} is a given sequence of real

distinct nodes and {An} is any given positive decreasing sequence. Then there exists

an infinitely differentiable function f 6 CiT such that

COROLLARY. Let 1 ̂  p < oo. Suppose that {Xn} is a given sequence of real
distinct nodes and {An} is any given positive decreasing sequence. Then there exists
an infinitely differentiable function f G Cz* such that
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LEMMA 1 . Let 1 ^ p < oo. Suppose that Xn = {zn.jJ^So 1S a sequence of real
distinct nodes and Nn is a natural number. Then there exists a function hn g C îr
such that

hn{xnfi) = 0,

(1) 1 ^ M * » j ) < I I M < 2n> 3 = 1.2,-•• ,2n,

and

(2) H M L P < C « ^ n 2 / P -

PROOF: Because of the period 2TT, without loss of generality we can assume that

0 = a;ni0 < xn,i < xn>2 <••• < xn , 2 n < 2TT.

Let

JLT*

for 1 ^ j ^ 2n. Then it is clear that xNn (2ir — x) n i has a maximum point xnj.

Write

set M*) =
fc=i

for i G [0,27r), and extend it to the whole line with period 2TT. Evidently, hn 6

and

M O ) = M 2 T T ) = 0.

We clearly have

for 1 ^ j ^ 2n. At the same time,

2n

On the other hand, a calculation yields
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The proof of Lemma 1 is thus completed. D

LEMMA 2 . Let 1 ^ p < oo. Suppose that Xn — {%n,j}*=o l s a sequence of real

distinct nodes and that {An} is a given positive decreasing sequence. Then there exists

a. trigonometric polynomial gn(%) of degree Mn such that for large enough n,

and

\\gn - Lt(gn)\\LP > C,

where Sn = 2~2n^ f ] lsin

PROOF: Let hn(x) be the function defined in Lemma 1. We first establish

(3) \\hn - Sn(hn)\\LP = 0 (nlog (n + 1)N~^) ,

and

(4) ||fc» - LZ(hn)\\LP ^ J /

where j ; n = J J sin -

Inequality (3) is straightforward: we just need to apply (2) and the estimation of

the Lebesgue constant. Now write

2n

i=o

lf W =

Since

sin — i - = sin —2— s- cos — a + cos —2— s- S l n ^ £ f

for x G [«„,,- - n-12-2n»7n,xni i +n-12-2 n7? n] , we have

(5)
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Meanwhile, for x G [xn,j - n-12-2nr)n,xn>j + n'12~2nrin] and t

\x-xn>j\

(6) \l?(x)\ = 2"2 n.

Combining (5), (6) and (1), for sufficiently large n we get

2n

* = 0

dx - \\K

2n

^

C2-2n/prl
1JP - CnN-

that is, (4).
Without loss of generality suppose that An ^ 1. Now choose

Nn =

then (3), (4) become

(7)
and

(8)

where Sn =

Because hn G C^,,, we may select a trigonometric polynomial g^ with sufficiently
large degree Mn ^ n such that

(9) ||fc» - 9*n\

Hence by (7) and (9),

1 (n + 1),

K - Sn(g*n)\\LP < \\g'n - hn\\ +

^ 52Anlog-1 (

< CSn\n.

- Sn(hn)\\LP

C6n\
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Similarly, from (8) and (9),

>C6n

for large enough n. Set

gn(x) = S-'g^x);

then from the above discussion we get the required inequality. U

PROOF OF THE THEOREM: Select a sequence {rij} inductively: Let m = 1. After
nj, choose

(10) ni+1 = [ m i . A - ^ d ^ l +logn,-) +

where mn = Mn [n26~2ln + l ) .

Define

Clearly f(x) G Ci* is infinitely difFerentiable since <jrny(*) is a trigonometric polynomial
of degree mnj. and ||</n|| = ^(n^n1) • Together with (10), Lemma 2 implies that

k - *5<»L >m-"' Ik - L5 (^) L - c (H \\+i)f:

At same time, by (10) and Lemma 2 again,

= U [mnj Any + m n y + 1 J = O \mnj Anyj .

*=i+i

Altogether,

Ik-^IL

which is the required result. 0

REMARK. In spite of the counterexample in the present paper, there are several positive
results in this direction. For example, [1, 2] discuss the rate of convergence of Ln(f,x)

to f(x) in IP, in terms of the sequence of best approximation of the function in Lp.
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