On the Drinfeld discriminant function

ERNST-ULRICH GEKELER

Fachbereich 9 Mathematik, Universität des Saarlandes, Postfach 15 11 50, D-66041 Saarbrücken, Germany; e-mail: gekeler@math.uni-sb.de

Received 9 February 1996; accepted in final form 13th February 1996

Abstract. The discriminant function Δ is a certain rigid analytic modular form defined on Drinfeld's upper half-plane Ω . Its absolute value $|\Delta|$ may be considered as a function on the associated Bruhat–Tits tree \mathcal{T} . We compare $\log |\Delta|$ with the conditionally convergent complex-valued Eisenstein series E defined on \mathcal{T} and thereby obtain results about the growth of $|\Delta|$ and of some related modular forms. We further determine to what extent roots may be extracted of $\Delta(z)/\Delta(nz)$, regarded as a holomorphic function on Ω . In some cases, this enables us to calculate cuspidal divisor class groups of modular curves.

Mathematics Subject Classifications (1991): 11G18, 11G16, 11F30.

Key words: Drinfeld upper half-plane, improper Eisenstein series, modular units, cuspidal divisor class group.

Notations

We will throughout use the following notation:

- \mathbb{F}_q = finite field of characteristic p with q elements
- $A = \mathbb{F}_q[T]$ polynomial ring in an indeterminate T
- $K = \mathbb{F}_{q}(T)$ rational function field
- $K_{\infty} = \mathbb{F}_q((\pi))$ completion of K at the infinite place $(\pi := T^{-1})$
- v_{∞} = normalized valuation of K_{∞}
- $O_{\infty} = \mathbb{F}_q[[\pi]]$ integers in K_{∞}
- C = completed algebraic closure of K_{∞}
- $| \cdot | =$ normalized absolute value on K_{∞} , extended to C
- $| \cdot |_i =$ 'imaginary part': $C \to \mathbb{R}, |z|_i = \inf_{x \in K_\infty} |z x|$
- G = group scheme GL(2)
- B = Borel subgroup of upper triangular matrices in G
- Z = scalar matrices in G

$$\mathcal{K} = G(\mathcal{O}_{\infty}) = \operatorname{GL}(2, \mathcal{O}_{\infty})$$

- $\mathcal{I} = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{K} \mid c \equiv 0 \mod \pi \} \text{ Iwahori subgroup}$
- $\Gamma = G(A) = GL(2, A)$
- $\Omega = \mathbb{P}^1(C) \mathbb{P}^1(K_\infty) = C K_\infty \text{ Drinfeld upper half-plane}$
- \mathcal{T} = Bruhat–Tits tree of PGL(2, K_{∞})

For any graph S, we let X(S) be its set of vertices, of oriented edges, respectively. For $e \in Y(S)$, o(e), $t(e) \in X(S)$ and $\overline{e} \in Y(S)$ denote its origin, terminus, and inversely oriented edge, respectively. We write 'log' for the logarithm to base q.

0. Introduction

We let $\Gamma = \operatorname{GL}(2, A)$ be the modular group over the rational function field $K = \mathbb{F}_q(T)$ with ring of integers $A = \mathbb{F}_q[T]$. The group Γ acts on Drinfeld's upper half-plane Ω , and the quotient $\Gamma \setminus \Omega$ is canonically identified with the affine line over C = completed algebraic closure of $K_{\infty} = \mathbb{F}_q((1/T))$.

The isomorphism is given by a *j*-invariant (the invariant of rank-two Drinfeld A-modules) $j = \frac{g^{q+1}}{\Delta}$, where g and Δ are modular forms on Ω of respective weights q-1 and q^2-1 . They share a number of properties with their counterparts g_2 , g_3 and Δ , respectively, in the classical modular theory: relations with Eisenstein series [13], product formulas [4], expansions around 'infinity' [7]. Further, the *C*-algebra of modular forms for Γ is generated by g and Δ (or by g and the canonical (q-1)th root h of Δ , if a 'nebentype' is admitted).

Surprisingly, not much is known so far about the behavior of the absolute values of Δ , g, h, j, considered as real-valued functions on Ω . Our aim in the present paper is, among others, to fill this gap.

The first main result is Theorem 2.13, where we give a formula for $|\Delta|$ as a function $\Omega \to \mathbb{R}$ that actually factors over the Bruhat–Tits tree \mathcal{T} attached to Ω . Corresponding expressions are given for |j| and |g| (Thm 2.17, Cor. 2.18). The next topic is the (related) question to what extent the functions Δ/Δ_n (where $\Delta_n(z) = \Delta(nz), n \in A$) admit roots in (a) the function field of the modular curve $X_0(n)$ of Hecke type associated with the congruence subgroup $\Gamma_0(n)$ of Γ ; (b) the group $\mathcal{O}(\Omega)^*$ of invertible holomorphic functions on Ω . The answer is given in Theorem 3.16 and its corollaries. We further determine the character ω_n of $\Gamma_0(n)$ through which $\Gamma_0(n)$ acts on the 'maximal root' D_n of Δ/Δ_n (Thm 3.20 + Cor. 3.21). These questions are connected with the structure of the cuspidal divisor class group of $X_0(n)$, as is demonstrated in the concluding Examples 3.23 and 3.25.

Our main technical tools are the 'logarithmic derivative' mapping $r: \mathcal{O}(\Omega)^* \to \underline{H}(\mathcal{T}, \mathbb{Z})$ (see (1.10)) and Fourier analysis on the tree $\Gamma_{\infty} \setminus \mathcal{T}$, where $\Gamma_{\infty} = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in \Gamma \}$. We compare $r(\Delta)$ with the improper Eisenstein series E on \mathcal{T} defined by complex analytic means [8]. Since $r(\Delta)$ and E agree up to a constant (Cor. (2.8)), we can derive properties of Δ from the properties of E shown in [8]. This way there results e.g. an upper bound for max $\{i \mid \Delta/\Delta_n \text{ has an }i\text{th root}\}$. We then verify it is sharp by constructing such a root through modular forms.

1. Drinfeld modular forms, logarithmic derivatives, Fourier coefficients

A *C*-valued function *f* on the 'upper half-plane' $\Omega = C - K_{\infty}$ is a modular form of *weight* $k \in \mathbb{N}_0$ and *type* $m \in \mathbb{Z}/(q-1)$ for $\Gamma = \text{GL}(2, A)$ if

ON THE DRINFELD DISCRIMINANT FUNCTION

(i)
$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k (\det \gamma)^{-m} f(z),$$

= $\gamma \begin{pmatrix} ab\\ cd \end{pmatrix} \in \Gamma, \ z \in \Omega;$ (1.1)

(ii) f is holomorphic (in the rigid analytic sense);

(iii) f is holomorphic at infinity.

The description of the analytic structure on Ω is given e.g. in [1, 2, 9, 13]; the meaning of condition (iii) is explained in [7] 5.7. Similarly, we define modular forms for subgroups $\Gamma' \subset \Gamma$ of finite index. Besides the *Eisenstein series*

$$E^{(k)}(z) = \sum_{a,b \in A} (az+b)^{-k} \quad (0 < k \equiv 0 \mod q-1),$$

which are modular of weight k and type 0 [13], there are three distinguished modular forms g, h, Δ which, among others, enjoy the following properties (see [7] for a systematic presentation; here we use the normalization $g = g_{\text{old}}$, $\Delta = \Delta_{\text{old}}$ of *loc. cit.* p. 683, which involves a slight change of constants in some formulas).

Let $M_{k,m}$ be the C-vector space of forms of weight k and type m. Then

$$g = (T^{q} - T)E^{(q-1)} \in M_{q-1,0}$$

$$\Delta = (T^{q^{2}} - T)E^{(q^{2}-1)} + (T^{q^{2}} - T^{q})E^{(q-1)^{q+1}} \in M_{q^{2}-1,0}$$

vanishes nowhere on Ω

$$h = g' - \frac{\Delta'}{\Delta}g \in M_{q+1,1} \quad \left(f' = \overline{\pi}\frac{\mathrm{d}f}{\mathrm{d}z}\right)$$

$$h^{q-1} = -\Delta$$

$$\bigoplus_{k>0} M_{k,0} = C[g, \Delta] \quad \text{(David Goss [14])}$$
(1.2)

$$\bigoplus_{k \ge 0, \ m \in \mathbb{Z}/(q-1)} M_{k,m} = C[g,h].$$

Here $\overline{\pi} \in C$ is some constant analogous with $2\pi i$, with logarithmic absolute value $\log |\overline{\pi}| = \frac{q}{q-1}$. Note that $f \mapsto f'$ is $\overline{\pi}^2$ times the operator θ of [7], which compensates the different normalizations of g, h, and Δ . These forms naturally appear as the coefficients of Drinfeld modules. Whereas g is similar to the coefficient forms g_2 , g_3 in the theory of elliptic curves, the *Drinfeld discriminant* Δ shares many of the properties of the classical discriminant $\Delta(z) = (2\pi i)^{12} \prod (1 - e^{2\pi i nz})^{24}$.

Next, let \mathcal{T} be the *Bruhat–Tits tree* of PGL(2, K_{∞}). It is a (q + 1)-regular tree with

$$\begin{split} X(\mathcal{T}) &= G(K_{\infty})/\mathcal{K} \cdot \mathcal{Z}(\mathcal{K}_{\infty}) \quad \text{(vertices),} \\ Y(\mathcal{T}) &= G(K_{\infty})/\mathcal{I} \cdot \mathcal{Z}(\mathcal{K}_{\infty}) \quad \text{(orientied edges),} \end{split}$$

where the canonical map from $Y(\mathcal{T})$ to $X(\mathcal{T})$ associates with each edge e its origin o(e). It is easily verified that

$$S_X := \left\{ \begin{pmatrix} \pi^k \ u \\ 0 \ 1 \end{pmatrix} \middle| \begin{array}{c} k \in \mathbb{Z}, \ u \in K_{\infty}, \\ u \mod \pi^k O_{\infty} \end{array} \right\}$$

is a set of representatives for $X(\mathcal{T})$. We let v(k, u) be the vertex corresponding to $\binom{\pi^k \ u}{0 \ 1}$. By an *end* of \mathcal{T} , we understand the equivalence class of an infinite path without backtracking, where two paths that differ in a finite number of edges are identified. The set $\partial \mathcal{T}$ of ends of \mathcal{T} is in 1 - 1 correspondence with $\mathbb{P}^1(K_{\infty}) =$ space of lines in $V = K_{\infty}^2$. We normalize the bijection such that the end $(v(k, 0), v(k-1, 0), \ldots)$ corresponds to ∞ . It defines an orientation on \mathcal{T} , i.e., a decomposition $Y(\mathcal{T}) = Y^+(\mathcal{T}) \cup Y^-(\mathcal{T})$ with $\overline{Y^+(\mathcal{T})} = Y^-(\mathcal{T})$. Namely, $e \in Y(\mathcal{T})$ is positive ($\Leftrightarrow e \in Y^+(\mathcal{T}) \Leftrightarrow \operatorname{sgn}(e) = +1$) if it points to the end ∞ , end *negative* ($\Leftrightarrow e \in Y^-(\mathcal{T}) \Leftrightarrow \operatorname{sgn}(e) = -1$) otherwise. We thus get a section

$$\begin{array}{ccc} X(\mathcal{T}) & \xrightarrow{\cong} & Y^+(\mathcal{T}) \hookrightarrow Y(\mathcal{T}) \\ v & \longmapsto e \text{ s.t. } o(e) = v, \ \mathrm{sgn}(e) = +1 \end{array}$$

for the 'origin' map from $Y(\mathcal{T})$ to $X(\mathcal{T})$. Since the reflection $e \mapsto \overline{e}$ on $Y(\mathcal{T})$ group-theoretically is given by

class of
$$g \in G(K_{\infty}) \mapsto$$
 class of $g\begin{pmatrix} 0 & 1 \\ \pi & 0 \end{pmatrix}$,

each $e \in Y(\mathcal{T})$ is uniquely represented by

either
$$\begin{pmatrix} \pi^{k} & u \\ 0 & 1 \end{pmatrix}$$
 (if sgn $(e) = +1$,
in this case we put $e =: e(k, u)$) (1.4)
or $\begin{pmatrix} \pi^{k} & u \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \pi & 0 \end{pmatrix}$ (if sgn $(e) = -1$)

with $\begin{pmatrix} \pi^k & u \\ 0 & 1 \end{pmatrix} \in S_X$. Now each such element of S_X with $u \notin \pi^k O_\infty$ may be written as

$$egin{pmatrix} \pi^{a+t}, \ \pi^t v \ 0, \ 1 \end{pmatrix}$$
 with $t\in\mathbb{Z}, a\in\mathbb{N}$ uniquely determined,

and $v \in O_{\infty}^*$ uniquely determined modulo $\pi^a O_{\infty}$. We define the functions κ, τ, α on $Y(\mathcal{T})$ by

$$\kappa(e) = k, \ \tau(e) = t, \ \alpha(e) = a, \quad e \text{ or } \overline{e} \text{ equal to } e(k, u), \ u \notin \pi^k O_{\infty},$$

$$\kappa(e) = \tau(e) = k, \ \alpha(e) = 0, \qquad e \text{ or } \overline{e} \text{ equal to } e(k, 0).$$
(1.5)

By definition, κ , τ and α are invariant under $e \mapsto \overline{e}$, and κ is invariant under the action of the stabilizer

$$\Gamma_{\infty} = \Gamma \cap B$$

of the end ∞ in Γ . The intuitive meaning is as follows: Let $A(0, \infty)$ be the *principal* axis of \mathcal{T} , i.e., the path $(\ldots, e(k+1, 0), e(k, 0), e(k-1, 0), \ldots)$ from the end 0 to the end ∞ of \mathcal{T} . Then $\alpha(e)$ is the distance from e to $A(0, \infty)$, $\tau(e)$ describes the vertex next to e on $A(0, \infty)$, and κ decreases by one on each step towards ∞ .

We put $\underline{H}(\mathcal{T},\mathbb{Z})$ for the group (and right $G(K_{\infty})$ -module) of maps $\varphi: Y(\mathcal{T}) \to \mathbb{Z}$ that satisfy

(i)
$$\varphi(e) + \varphi(\overline{e}) = 0, \ e \in Y(\mathcal{T}) \ (\varphi \text{ alternating})$$

(ii) $\sum_{\substack{e \in Y(\mathcal{T}) \\ o(e)=v}} \varphi(e) = 0, \ v \in X(\mathcal{T}) \ (\varphi \text{ harmonic}).$ (1.6)

<u> $H(\mathcal{T},\mathbb{Z})$ </u> is called the module of integral-valued harmonic cochains or *currents*. Both Ω and \mathcal{T} are analogues of the complex upper half-plane; they are related by a $G(K_{\infty})$ -equivariant map $\lambda \colon \Omega \to \mathcal{T}(\mathbb{R})$ (= points of the realization of \mathbb{R}) that we will briefly describe. Recall [11] that $\mathcal{T}(\mathbb{R})$ may be canonically identified with the set of equivalence classes of norms on the two-dimensional K_{∞} -vector space K_{∞}^2 . Then $\lambda(z)$ corresponds to the norm ν_z , where $\nu_z((u, v)) := |uz + v|$. The map λ is onto the rational points $\mathcal{T}(\mathbb{Q})$ of \mathcal{T} . We have in $\Omega \subset \mathbb{P}^1(C)$:

$$\lambda^{-1}(\text{vertex}) \cong \mathbb{P}^1(C) - (q+1) \text{ disjoint balls},$$

 $\lambda^{-1} \begin{pmatrix} \text{edge minus} \\ \text{end points} \end{pmatrix} \cong \mathbb{P}^1(C) - \text{ two disjoint balls}.$

For example,

$$\lambda^{-1}(v(0,0)) = \{ z \in C \mid |z| \leq 1, |z-c| \geq 1, \\ \forall c \in \mathbb{F}_q \} = \{ z \in C \mid |z| = |z|_i = 1 \} \text{ and }$$

$$\lambda^{-1}(e(0,0) - \text{ end points}) = \{ z \in C \mid 1 < |z| < q \}.$$
(1.7)

The relationship between the functions $|.|, |.|_i$ on C and the functions κ, τ, α on \mathcal{T} is as follows.

1.8 LEMMA. Let $z \in \Omega$ be such that $\lambda(z) = v \in X(\mathcal{T})$, and let e be the unique positive edge with o(e) = v. Then

$$\log |z|_i = -\kappa(e)$$
 and $\log |z| = -\tau(e)$.

186

Proof. Straightforward from (1.7), the $G(K_{\infty})$ -equivariance of λ , and the formula

$$|\gamma z|_i = |cz + d|^{-2} |\det \gamma| |z|_i$$

for $\gamma = {a \atop cd} \in G(K_\infty).$

1.9 COROLLARY. For $z \in \Omega$, the conditions (i) $|z| = |z|_i$ and (ii) $\lambda(z) \in A(0, \infty)$ are equivalent.

Proof. Without restriction, $\lambda(z) \in X(\mathcal{T})$ since both log |z| and log $|z|_i$ factor through λ and are linear on edges of \mathcal{T} . Then the assertion is clear from the lemma and (1.5).

The following construction, due to Marius van der Put, is fundamental for the study of modular forms. Let $\mathcal{O} = \mathcal{O}_{\Omega}$ be the structure sheaf of the analytic space Ω and $\mathcal{O}(\Omega)^*$ the units of its global sections. Then there is a canonical short exact sequence of $G(K_{\infty})$ -modules (trivial action on C^*):

$$0 \to C^* \to \mathcal{O}(\Omega)^* \xrightarrow{\tau} \underline{H}(\mathcal{T}, \mathbb{Z}) \to 0.$$
(1.10)

It is related with the logarithmic derivative through the commutative diagram

where the lower horizontal map is res: $g(z) \mapsto \operatorname{res} g(z) \, \mathrm{d}z$, $(\operatorname{res} \omega)(e) = \operatorname{residue}$ of the differential form ω in the oriented annulus $\lambda^{-1}(e)$. The definition of r is as follows:

$$r(f)(e) = \log \frac{\|f\|_{\lambda^{-1}(t(e))}}{\|f\|_{\lambda^{-1}(o(e))}},$$
(1.12)

where $||f||_{\lambda^{-1}(v)}$ denotes the spectral norm of $f \in \mathcal{O}(\Omega)^*$ on $\lambda^{-1}(v)$, i.e., sup{ $||f(z)| | z \in \lambda^{-1}(v)$ } = $|f(z)| (z \in \lambda^{-1}(v))$ since f is invertible. The fact that r is well-defined (i.e., takes its values in $\underline{H}(\mathcal{T}, \mathbb{Z})$) and has the stated properties is proved in [2] and [10]. In particular, we have for $f \in \mathcal{O}(\Omega)^*$, $v_1, v_2 \in X(\mathcal{T}), z_1, z_2 \in \Omega$ with $\lambda(z_i) = v_i$:

$$\log \left| \frac{f(z_2)}{f(z_1)} \right| = \int_{v_1}^{v_2} r(f)(e) \, \mathrm{d}e.$$
(1.13)

(Recall that 'log'='log_a'. The integral is the sum of r(f) along the unique path from v_1 to v_2 .) In view of (1.10) to (1.13), we like to view r as a substitute for the logarithmic derivative map $f \mapsto f'/f$ in the classical theory. The next result calculates r(f) for the most elementary functions $f \in \mathcal{O}(\Omega)^*$.

1.14 PROPOSITION. Let $a \neq b \in \mathbb{P}^1(K_{\infty})$ and $f_{a,b}$ be a rational function on $\mathbb{P}^1(C)$ with a simple zero at a, a simple pole at b and no further zeroes and poles. Let further A(a,b) be the unique path in \mathcal{T} from the end a to the end b, and define $\varphi_{a,b} \in \underline{H}(\mathcal{T},\mathbb{Z})$ by

$$\varphi_{a,b}(e) = \begin{cases} 1 & e \text{ on } A(a,b) \\ -1 & \overline{e} \text{ on } A(a,b) \\ 1 & \text{ otherwise.} \end{cases}$$

Then $r(f_{a,b}) = \varphi_{a,b}$.

Proof. In view of the $G(K_{\infty})$ -equivariance of r, it suffices to consider the case $(a,b) = (0,\infty)$, i.e., f(z) = z the identity function. Let $z \in \Omega$ be such that $\lambda(z) = v = o(e) \in X(\mathcal{T})$ with some $e \in Y^+(\mathcal{T}), e' \in Y^+(\mathcal{T})$ the first edge on the path from v to ∞ lying on the axis $A(0,\infty)$, v' = o(e'). Suppose that $e \neq e'$. The picture looks:

$$v(t, 0) = v'$$

$$e = e(k, *)$$

$$e' = e(t, 0)$$

$$t = \tau(e)$$

$$k - t = \alpha(e) = \text{distance } (v, v')$$

$$e' = e(t, 0)$$

$$By (1.8), |z| \text{ is constant on the path from } v \text{ to } v', \text{ thus by}$$

$$(1.13), r(f)(e) = 0. \text{ On the other hand, it is clear (again from (1.8)) that log |z| increases by one for each step on A(0, \infty) towards \infty, \text{ thus } r(f)(e') = +1.$$

Next, we associate Fourier coefficients to Γ_{∞} -invariant elements φ of $\underline{H}(\mathcal{T}, \mathbb{C})$. In view of (1.4) and (1.6)(i), each $\varphi \in \underline{H}(\mathcal{T}, \mathbb{C})$ is uniquely determined by its restriction to $Y^+(\mathcal{T}) = B(K_\infty)/(I \cap B(K_\infty))Z(K_\infty)$. We may thus regard $\varphi \in$ $\underline{H}(\mathcal{T},\mathbb{C})^{\Gamma_{\infty}}$ as a function on $Y^+(\Gamma_{\infty}\setminus\mathcal{T})=\Gamma_{\infty}\setminus Y^+(\mathcal{T})$, the positive edges of the quotient $\Gamma_{\infty} \setminus \mathcal{T}$ by $\Gamma_{\infty} = \Gamma \cap B$, and apply the machinery of Fourier analysis. The following is an adaption of [19] Ch. III to our situation. Details are carried out in [8], Sections 2 and 3.

Let $\operatorname{Div}(K)$ be the multiplicative group of divisors on K and $\operatorname{Div}^+(K) \hookrightarrow \operatorname{Div}(K)$ the monoid of positive divisors. Each $\mathfrak{m} \in \operatorname{Div}(K)$ may uniquely be written as a power ∞^k of the infinite prime ∞ times a finite divisor \mathfrak{m}_f (i.e., $\infty \notin \operatorname{supp}(\mathfrak{m}_f)$). We identify finite positive divisors with ideals of $A = \mathbb{F}_q[T]$. The norm $|\mathfrak{m}|$ of $\mathfrak{m} \in \operatorname{Div}(K)$ is $q^{\deg \mathfrak{m}}$. The principal divisor $\operatorname{div}(m)$ of $m \in K^*$ is always understood with its infinity part, so that its degree is zero. For $u = \Sigma u_i \pi^i \in K_\infty$, put $\nu(u) = q - 1$ if $u_1 = 0$ and $\nu(u) = -1$ otherwise. Then we define for each $\varphi \in \underline{H}(\mathcal{T}, \mathbb{C})^{\Gamma_\infty}$ two functions

 $\begin{array}{ll} c_0(\varphi,\cdot): \ K^*_\infty & \to \ \mathbb{C} & (\text{the constant Fourier coefficient of } \varphi) \\ c(\varphi,\cdot): & \operatorname{Div}^+(K) \to \ \mathbb{C} & (\text{the nonconstant Fourier coefficient of } \varphi) \end{array}$

by

$$c_{0}(\varphi, x) = q^{1-k} \sum_{\substack{u \in (\pi)/(\pi^{k})}} \varphi(e(k, u)) \quad k := v_{\infty}(x) \ge 1$$

$$= \varphi(e(k, 0)) \quad k \le 1,$$

$$c(\varphi, \mathfrak{m}) = q^{-1-l} \left[\sum_{\substack{0 \neq u \in (\pi)/(\pi^{2+l}) \\ \text{monic}}} \varphi(e(2+l, u))\nu(-mu) + \varphi(e(2+l, 0)) \right]$$
(1.15)

if $\mathfrak{m} = \operatorname{div}(m) \cdot \infty^l$ with some $m \in A$.

The Γ_{∞} -invariance of φ implies that the summands appearing on the right hand sides only depend on the respective residue classes of $u \in (\pi) = \pi O_{\infty}$. Some $u \in K_{\infty}^*$ is monic if its lowest order coefficient in π is one. Again from the Γ_{∞} invariance, we could replace the sum over the nonzero monics in $(\pi)/(\pi^{2+l})$ by the sum over the nonzero $u \in [(\pi)/(\pi^{2+l})]/\mathbb{F}_q^*$. The Fourier coefficients satisfy

(i)
$$c_0(\varphi, x) = q^{-v_\infty(x)}c_0(\varphi, 1) = q^{-v_\infty(x)}\varphi(e(0, 0));$$

(ii) $c(\varphi, \mathfrak{m}_f \cdot \infty^k) = q^{-k}c(\varphi, \mathfrak{m}_f) \quad (k \in \mathbb{N}_0);$
(iii) $\varphi(e(k, u)) = c_0(\varphi, \pi^k) + \sum_{\substack{m \in A \text{ monic} \\ \deg m \leqslant k-2}} c(\varphi, \operatorname{div}(m) \cdot \infty^{k-2})\nu(mu).$
(1.16)

Properties (i) and (ii) reflect the harmonicity of φ as a function on $Y^+(\mathcal{T})$, and (iii) is the inversion formula. In (iii) and similar expressions, $c(\varphi, \mathfrak{m}) = 0$ if \mathfrak{m} fails to be positive. Conversely, given functions c_0 and c that satisfy (i) and (ii), the function φ defined by (iii) lies in $\underline{H}(\mathcal{T}, \mathbb{C})^{\Gamma_{\infty}}$.

We finally introduce *Hecke operators*. For a function φ on $Y^+(\mathcal{T}) = B(K_{\infty})/(\mathcal{I} \cap B(K_{\infty}))Z(K_{\infty})$ and a positive finite divisor m, we put

$$T_{\mathfrak{m}}\varphi(x) = \sum \varphi\left(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} x \right) \quad (x \in B(K_{\infty})),$$
(1.17)

where the sum is over $a, b, d \in A$ such that a, d are monic, $(ad) = \mathfrak{m}$ and deg $b < \deg d$. Then $T_{\mathfrak{m}}\varphi$ is again a function on $Y^+(\mathcal{T})$ (i.e., right $(\mathcal{I} \cap B(K_{\infty}))Z(K_{\infty})$ -invariant as a function on $B(K_{\infty})$) and even in $\underline{H}(\mathcal{T}, \mathbb{C})^{\Gamma_{\infty}}$ if φ is. The $T_{\mathfrak{m}}$ have the usual properties, which may be looked up in [19] Ch. VI. We just point out that we can read off from its Fourier coefficients that $\varphi \in \underline{H}(\mathcal{T}, \mathbb{C})^{\Gamma_{\infty}}$ is an eigenform (*loc. cit.* p. 44).

2. The logarithmic derivative of the discriminant

We now calculate the current $r\left(\Delta\right)$ and derive some consequences. The functional equation

$$\Delta(\gamma z) = (cz+d)^{q^2-1}\Delta(z) \quad \left(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma\right)$$

translates to

$$r(\Delta)(\gamma e) = (q^2 - 1)\varphi(e) + r(\Delta)(e)$$

where by (1.13), $\varphi \in \underline{H}(\mathcal{T}, \mathbb{Z})$ equals $\varphi_{-d/c,\infty}$ if $c \neq 0$ and $\varphi = 0$ otherwise. Now

$$\varphi(e) \neq 0 \Leftrightarrow c \neq 0$$
 and $\begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} (e) \in A(0, \infty),$

in which case $\varphi(e) = \operatorname{sgn}(e)$. We therefore define

$$S(\gamma, e) := \operatorname{sgn}(e), \quad \text{if } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ with } c \neq 0$$

and
$$\begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} (e) \in A(0, \infty)$$
 (2.1)

= 0 otherwise.

2.2 LEMMA. (i)
$$S(\gamma, e) = 0 \Leftrightarrow \operatorname{sgn}(e) = \operatorname{sgn}(\gamma e)$$
.
(ii) $S(\gamma \delta, e) = S(\gamma, \delta e) + S(\delta, e), \gamma, \delta \in \Gamma$.

Proof. (i) [8] (4.5) + (4.6). (ii) Straightforward calculation.

Using $S(\gamma, e)$, we may thus express the behavior of $r(\Delta)$ under Γ by the functional equation

$$r(\Delta)(\gamma e) = (q^2 - 1)S(\gamma, e) + r(\Delta)(e).$$
(2.3)

On the other hand, it is clear that (2.3) characterizes $r(\Delta)$: If φ is another element of $\underline{H}(\mathcal{T}, \mathbb{Z})$ subject to the same transformation rule, the difference $r(\Delta) - \varphi$ is Γ -invariant. But it is well-known that the quotient $\Gamma \setminus \mathcal{T}$ is a half-line

$$\Gamma \setminus \mathcal{T} = \bullet - - - \bullet - - - \bullet - - - \bullet \cdots$$
(2.4)

represented by the vertices v(k,0), $k \leq 0$ (e.g. [17] p. 111), and therefore $\underline{H}(\mathcal{T},\mathbb{Z})^{\Gamma} = 0$ and $r(\Delta) = \varphi$.

Let now $E \in \underline{H}(\mathcal{T}, \mathbb{C})^{\Gamma_{\infty}}$ be the current defined through its Fourier coefficients $c_0(.) = c_0(E, .), c(.) = c(E, .)$:

- (i) $c_0(\pi^k) = -\frac{q^2}{q^2-1}q^{-k};$
- (ii) c_0 is Eulerian ([19] p. 10) at ∞ with Euler factor $(1 q^{-1}X)^{-1}$;
- (iii) c₀ is Eulerian at finite places p of K with Euler factor (1 − (1 + |p|⁻¹)X + |p|⁻¹X²)⁻¹;
 (iv) c((1)) = 1.

As can be read off from the Fourier coefficients, E is an eigenform for the Hecke operator $T_{\mathfrak{p}}$ with eigenvalue $\epsilon_{\mathfrak{p}} = 1 + |\mathfrak{p}|$. The next result is proved in [8] Theorem 6.1, Corollary 6.2, Proposition 5.8:

2.6 THEOREM. (i) For each $\gamma \in \Gamma$, E satisfies the functional equation

$$E(\gamma e) = \frac{q}{q-1}S(\gamma, e) + E(e)$$

(ii)

$$E(e(k,0)) = -\frac{q^2}{q^2 - 1}q^{-k} \qquad k \leq 1$$
$$= \frac{q^{k+1} - q^2 - q}{q^2 - 1} \qquad k \geq 1.$$

(iii) The set of values (up to sign) of E on $Y(\mathcal{T})$ is contained in the set of values on $A(0, \infty)$ described by (ii). In particular, its values are rational with bounded

denominator
$$(q^2 - 1)$$
.

2.7 *Remark. E* may also be represented, up to a scalar factor, as an improper (= only conditionally convergent) Eisenstein series $\sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} \varphi(\gamma e)$, where $\varphi(e) = \operatorname{sgn}(e)q^{-\kappa(e)}$, and where the summation has to be taken in a fixed order (*loc. cit.*).

Comparing the constants in the respective functional equations, we have the immediate corollaries.

2.8 COROLLARY.

$$r(\Delta) = \frac{(q^2 - 1)(q - 1)}{q}E$$

and

$$r(h) = \frac{q^2 - 1}{q}E$$

2.9 COROLLARY.

$$r(\Delta)(e(k,0)) = -q^{1-k}(q-1) \qquad k \le 1$$

= $(q^k - q - 1)(q-1) \qquad k \ge 1$

and this gives (up to sign) all the values of $r(\Delta)$ on $Y(\mathcal{T})$.

2.10 COROLLARY. Let r be the largest number such that there exists an rth root of Δ in $\mathcal{O}(\Omega)^*$. Then r = q - 1.

Proof. gcd{values of $r(\Delta)$ } = q - 1.

2.11 COROLLARY. Let $\mathfrak{p} = (f) \subset A$ be a prime, f monic. The function h (and hence $\Delta = -h^{q-1}$) satisfies the functional equation

$$h(fz)\prod_{\substack{b\in A\\b<\deg \mathfrak{p}}}h\left(\frac{z+b}{f}\right)=h^{|\mathfrak{p}|+1}(z).$$

Proof. Let \tilde{h} be the left hand side. Then $r(\tilde{h}) = T_{\mathfrak{p}}r(h) = (|\mathfrak{p}| + 1)r(h)$, where the first equation is immediate from the definition of Hecke operators, and the second one results from (2.5) and (2.8). Hence $\tilde{h}(z) = \text{const. } h^{|\mathfrak{p}|+1}(z)$, and the constant is determined to 1 using the expansion of h around the cusp ∞ ([7] Theorem 9.1).

2.12 Remark. The above formula may be written more suggestively as

$$\frac{h(z)}{h(fz)} = \prod_{\substack{b \in A \\ deg \ b < deg \ p}} \frac{h(\frac{z+b}{f})}{h(z)},$$

i.e., as a distribution relation. It is then similar to the distribution relations satisfied by the classical discriminant Δ and related functions (see [15, 16]). Clearly, we can write down relations analogous to (2.11) for not necessarily prime ideals $\mathfrak{m} \subset A$, exploiting the fact that r(h) is an eigenform for $T_{\mathfrak{m}}$.

2.13 THEOREM. Let $z_k \in \Omega$ be such that $\lambda(z_k) = v(k,0) \in X(\mathcal{T})$. Then $|\Delta(z_k)| = q^{n_k}$ with

$$n_k = q^2 + q - q^{1-k} \qquad k \leq 1$$

= $q^2 + q + k(q^2 - 1) - q^{1+k} \qquad k \geq 1$

Proof. Let $z_0 \in \Omega$ be any element of $\mathbb{F}_{q^2} - \mathbb{F}_q$. As follows from (1.8), $\lambda(z_0)$ equals the vertex v(0,0). Now $A + Az_0 = \mathbb{F}_{q^2}[T] =: A^{(2)}$, which by the Weierstrass correspondence between lattices and Drinfeld modules corresponds to a rank-one Drinfeld $A^{(2)}$ -module Φ . Multiplying $A^{(2)}$ with some constant $\overline{\pi}^{(2)}$ of logarithmic absolute value $\frac{q^2}{q^2-1}$ (cf. [12]) yields the lattice $\overline{\pi}^{(2)}A^{(2)}$ corresponding to the Carlitz $A^{(2)}$ -module $\rho^{(2)}$, defined by the operator polynomial $\rho_T^{(2)}(X) = TX + X^{q^2}$ (notations as in [7] Section 4). But $\rho^{(2)}$ may be regarded as a rank-two Drinfeld A-module with complex multiplication, which yields the discriminant

$$\Delta(z_0) = \Delta(A^{(2)}) = (\overline{\pi}^{(2)})^{q^2 - 1} \Delta(\overline{\pi}^{(2)} A^{(2)})$$
$$= (\overline{\pi}^{(2)})^{q^2 - 1} \Delta(\rho^{(2)}) = (\overline{\pi}^{(2)})^{q^2 - 1}$$

of logarithmic absolute value $\log |\Delta(z_0)| = q^2$. Now the formula comes out by inserting (2.9) into (1.13) and integrating.

2.14 *Remarks.* (i) Since $r(\Delta)$ is linear on edges, we now know $|\Delta(z)|$ for $z \in \lambda^{-1}(A(0,\infty))$. Referring to [8] 6.5, we may determine $|\Delta(z)|$ for arbitrary $z \in \Omega$, provided the coordinates of $\lambda(z)$ on \mathcal{T} (see (1.5)) are specified.

(ii) The infinite product for $\Delta(z)$ given in [4] doesn't suffice to calculate $|\Delta(z)|$ since it converges only for $|z|_i$ large, i.e., in the relatively uninteresting case where $\lambda(z)$ is 'close to infinity'.

Next, let $j = \frac{q^{q+1}}{\Delta}$ be the Drinfeld *j*-invariant. It is Γ -invariant and yields an identification $\Gamma \setminus \Omega \xrightarrow{\cong} C$. We have $j(z) = 0 \Leftrightarrow z \in \Gamma(\mathbb{F}_{q^2} - \mathbb{F}_q)$, and all these roots are q + 1-fold (roots of g are easily verified to be simple: e.g. [7] 5.15). In particular, j is invertible on $\Omega' = \Omega - \lambda^{-1}(\Gamma v(0,0))$. Applying the Definition (1.12) of the map r to j yields some function $r(j): Y(\mathcal{T}) \to \mathbb{Z}$ which is alternating, Γ -invariant and harmonic (1.6(ii)) at those vertices $v \in X(\mathcal{T})$ which are not Γ -equivalent to v(0,0).

2.15 CLAIM. At $v \in \Gamma v(0,0)$ we have

$$\sum_{\substack{e \in Y(\mathcal{T}) \\ o(e)=v}} r(j)(e) = (q+1)q(q-1),$$

and therefore r(j)(e) = q(q-1) for such e, since they are all Γ -equivalent. It suffices to verify this for v = v(0, 0). In $\lambda^{-1}(v)$, we have the q(q-1) zeroes $z \in \mathbb{F}_{q^2} - \mathbb{F}_q$ of j, each with multiplicity (q+1), and no other zeroes. Then the claim follows from the way r(j) has been constructed, i.e., the residue theorem, see [2] and [10] p. 95. Now recall (2.4) that

$$\Gamma \setminus \mathcal{T} = \overset{v_0}{\bullet} \overset{e_0}{\longrightarrow} \overset{v_1}{\bullet} \overset{e_1}{\longrightarrow} \overset{v_2}{\bullet} - \cdots,$$

where v_k is the class of v(-k, 0), e_k the class of e(-k, 0). Further, for $k \ge 0$, the q positive edges of \mathcal{T} meeting v(-k-1, 0) and different from e(-k-1, 0) are identified under Γ with e_k . Together, this implies

$$r(j)(e_k) = q^{k+1}(q-1).$$
 (2.16)

Let $z_k \in \Omega$ be as in (2.13), i.e., $\lambda(z_k) = v(k, 0)$.

2.17 THEOREM. For $0 \neq k \in \mathbb{Z}$ we have

 $\log |j(z_k)| = q^{|k|+1}.$

Proof. Let $z \in \lambda^{-1}(v(0,0)) = \{z \in C \mid |z| = |z|_i = 1\}$. All the terms in $E^{(q-1)}(z) = \sum_{a,b}' \frac{1}{(az+b)^{q-1}}$ are ≤ 1 in absolute value, hence $||E^{(q-1)}||_{\lambda^{-1}(v(0,0))} \le 1$, and the value 1 is attained e.g. for $z \in \mathbb{F}_{q^3} - \mathbb{F}_q$. Consequently, log $||g||_{\lambda^{-1}(v(0,0))} = \log |T^q - T| = q$, and from (2.13), log $||j||_{\lambda^{-1}(v(0,0))} = q$. Now for k < 0,

$$\log |j(z_k)| = \int_{v(0,0)}^{v(k,0)} r(j)(e) \, \mathrm{d}e + \log ||j||_{\lambda^{-1}(v(0,0))}$$

(formula (1.13) is not essentially affected from the defect of harmonicity of r(j) in v(0,0))

$$= q^{-k+1}$$
 by (2.16).

For k > 0, $|j(z_k)| = |j(z_{-k})|$ since v(-k, 0) and v(k, 0) are Γ -equivalent. \Box

2.18 COROLLARY. With the same notation as above,

$$\log |g(z_k)| = q \qquad k \leq -1$$
$$= q + k(q-1) \ k \geq 1.$$

Proof. log $|g(z_k)| = \frac{1}{q+1} (\log |\Delta(z_k)| + \log |j(z_k)|)$, which yields the result. \Box

2.19 *Remark.* As for j, log |g(z)| only depends on $\lambda(z)$ and is linear on edges, as long as $\lambda(z) \notin \Gamma v(0, 0)$. The asserted values may be determined directly: The first

case $\log |g(z_k)| = q$ for $k \leq -1$ reflects that $g = (T^q - T)E^{(q-1)}$ is non-zero at the cusp ∞ with $\log |g(\infty)| = q + \log |E^{(q-1)}(\infty)| = q$, and the second could be seen by inspecting the sum for $E^{(q-1)}(z_k)$. But the crucial point is that $\log |g(z)|$ may be expressed through the corresponding data of Δ and j even if $\lambda(z) \notin A(0, \infty)$, in which case a direct evaluation of $E^{(q-1)}$ seems difficult.

3. Roots of modular units

Let $n \in A$ be monic of degree $\delta > 0$, and let $\Gamma_0(n) = \{\binom{a \ b}{c \ d} \in \Gamma \mid c \equiv 0 \mod n\}$ be the *n*th *Hecke congruence* subgroup. An elementary calculation yields that Δ/Δ_n and its (q-1)th root h/h_n are modular functions (i.e., invariant) for $\Gamma_0(n)$. Correspondingly, $r(\Delta) - r(\Delta_n)$ is a $\Gamma_0(n)$ -invariant current on \mathcal{T} . Here of course $\Delta_n(z) = \Delta(nz), h_n(z) = h(nz)$. In case *n* is prime, we determined in [5] Section 4 to what extent roots may be extracted out of Δ/Δ_n in the function field of the modular curve $X_0(n) = \Gamma_0(n) \setminus \Omega \cup \{\text{cusps}\}$. Here we generalize this result, allowing $n \in A$ arbitrary, and also considering roots in $\mathcal{O}(\Omega)^*$.

Let $\varphi \in \underline{H}(\mathcal{T}, \mathbb{Z})^{\Gamma_{\infty}}$ be given by its Fourier coefficients c_0 and c, and let $\varphi_n := \varphi \circ \binom{n0}{01} \in \underline{H}(\mathcal{T}, \mathbb{Z})^{\Gamma_{\infty}}$ be its shift by the matrix $\binom{n0}{01}$.

3.1 LEMMA. φ_n has the Fourier coefficients c'_0 , c' given by

$$\begin{split} c_0'(\pi^k) &= q^{\delta} c_0(\pi^k) \\ c'(\mathfrak{m} \cdot \infty^k) &= c(\mathfrak{m} \cdot \operatorname{div}(n)_f^{-1} \cdot \infty^k) \end{split}$$

(m a positive finite divisor).

Proof. The first formula is immediate from (1.16(i)). The second one results from (1.15) and a change of variables.

Next, let e_a , e_b , e_c be the edges $e_a = e(2, \pi)$, $e_b = e(2, 0)$, $e_c = e(1, 0)$ of \mathcal{T} . The picture on $\Gamma_{\infty} \setminus \mathcal{T}$ looks

where all the $e(2, t\pi)$ $(t \in \mathbb{F}_q^*)$ are identified mod Γ_{∞} with e_a . Thus for $\varphi \in \underline{H}(\mathcal{T}, \mathbb{Z})^{\Gamma_{\infty}}$,

$$(q-1)\varphi(e_a) + \varphi(e_b) = \varphi(e_c).$$

On the other hand, some of the Fourier coefficients of φ may directly be evaluated from (1.15):

$$c_0(\pi^2) = q^{-1}((q-1)\varphi(e_a) + \varphi(e_b)) = q^{-1}\varphi(e_c),$$

$$c((1)) = q^{-1}(-\varphi(e_a) + \varphi(e_b)).$$
(3.17)

Combining (3.1), (3.3) with (2.6)–(2.9) and solving for the values on the edges e_a , e_b , e_c yields the following table for the functions $\varphi = r(\Delta)$, $r(\Delta)_n = r(\Delta_n)$, $r(\Delta) - r(\Delta_n)$.

3.4 TABLE. $(\delta := \deg n > 0)$

	$r(\Delta)$	$r(\Delta_n)$	$r(\Delta) - r(\Delta_n)$
$egin{array}{l} c((1)) \ c_0(1) \ arphi(e_a) \end{array}$	$\frac{\frac{(q^2-1)(q-1)}{q}}{-(q-1)q}$ $-(q-1)q$	$0 \\ -(q-1)q^{\delta+1} \\ -(q-1)q^{\delta-1}$	$\begin{array}{c} \frac{(q^2-1)(q-1)}{q} \\ (q-1)q(q^{\delta}-1) \\ (q-1)q(q^{\delta-2}-1) \end{array}$
$arphi(e_b) \ arphi(e_c)$	$(q^2 - q - 1)(q - 1)$ -(q - 1)	$-(q-1)q^{\delta-1}$ $-(q-1)q^{\delta}$	$(q-1)(q^{\delta-1}+q^2-q-1)$ $(q-1)(q^{\delta}-1)$

3.5 COROLLARY. Let r be the largest integer such that there exists an rth root of Δ/Δ_n in $\mathcal{O}(\Omega)^*$. Then r divides $(q-1)^2$ if $\delta = \deg n$ is odd, and divides $(q-1)(q^2-1)$ if δ is even.

(We will see in (3.18) that in fact equality holds.)

Proof. As is immediately verified, $gcd\{\varphi(e_a), \varphi(e_b), \varphi(e_c)\} = (q-1)^2$, $(q-1)(q^2-1)$ if δ is odd, even, respectively, for $\varphi = r(\Delta) - r(\Delta_n)$. \Box

In order to construct roots of Δ/Δ_n , we have to introduce some more material.

(3.6) Let $X(n) = \Gamma(n) \setminus \Omega \cup \{\text{cusps}\}$ be the Drinfeld modular curve of level n, $\Gamma(n) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod n \}$. The cusps $cusps(\Gamma(n))$ of X(n) correspond bijectively to

$$\Gamma(n) \setminus \Gamma/\Gamma_{\infty} \xrightarrow{\cong} \Gamma(n) \setminus \mathbb{P}^{1}(K) \xrightarrow{\cong} [(A/n)^{2}_{\text{prim}}]/\mathbb{F}_{q}^{*}$$

where $(A/n)_{\text{prim}}^2 \hookrightarrow (A/n)^2$ is the set of pairs $\{\binom{a}{c} \mid a, c \in A/n, (A/n)a + (A/n)c = A/n\}$, and the identification is induced from $\binom{a \ b}{c \ d} \mapsto \binom{a}{c} \mod n$. We

simply write $\binom{a}{c}$ for the corresponding cusp of X(n). Similarly, the cusps of $X_0(n)$ are given by

$$cusps(\Gamma_0(n)) \xrightarrow{\cong} \Gamma_0(n) \setminus \Gamma/\Gamma_{\infty} \xrightarrow{\cong} \left\{ \begin{bmatrix} a \\ c \end{bmatrix} \mid a, c \in A/n \text{ coprime} \right\},$$

where $\begin{bmatrix} a \\ c \end{bmatrix}$ is the equivalence class of $\begin{pmatrix} a \\ c \end{pmatrix} \mod \Gamma_0(n)$. Let

$$n = \prod_{1 \le i \le s} f_i^{r_i} \tag{3.7}$$

be the prime decomposition of n, i.e., the $f_i \in A$ monic, irreducible, of degree d_i , pairwise different, and put $q_i = q^{d_i}$. For $x \in A/n$, we let $\underline{h}(x) = (h_1(x), \ldots, h_s(x))$ be its *height*, where $h_i(x) = \operatorname{ord}_{f_i}(x) \in \{0, 1, \ldots, r_i\}$ is the truncated f_i -adic valuation. In particular, $h_i(0) = r_i$. For $\binom{a}{c} \in cusps(\Gamma(n))$ we put $\underline{h}\binom{a}{c} = \underline{h}(c)$ and $\rho\binom{a}{c} = 1$, if there is an i with $0 < h_i(c) < r_i$, and $\rho\binom{a}{c} = q - 1$ otherwise. Note that $\underline{h}\binom{a}{c}$ and $\rho\binom{a}{c}$ only depend on the class of $\binom{a}{c} \mod \Gamma_0(n)$ and therefore are defined on $cusps(\Gamma_0(n))$. The next lemma (whose proof we omit) follows from calculating the $\Gamma_0(n)$ -orbits on $cusps(\Gamma(n))$.

3.8 LEMMA. The ramification index $\operatorname{ram}\binom{a}{c}$ of the $\operatorname{cusp}\binom{a}{c}$ of X(n) over the $\operatorname{cusp}\binom{a}{c}$ of $X_0(n)$ is given by

$$\operatorname{ram}\left(\begin{array}{c}a\\c\end{array}\right) = \rho\left(\begin{array}{c}a\\c\end{array}\right) \prod_{1 \leqslant i \leqslant s} q_i^{\inf\{2h_i, r_i\}}$$

In particular, it depends only on $\underline{h}\binom{a}{c} = (h_1, \ldots, h_s)$.

3.9 EXAMPLE. Let *n* be prime of degree δ . There are $(q^{2\delta} - 1)/(q - 1) \operatorname{cusps} {a \choose c}$ on X(n) and two $\operatorname{cusps} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ on $X_0(n)$. We have $\operatorname{ram} {1 \choose 0} = (q - 1)q^{\delta}$ and $\operatorname{ram} {0 \choose 1} = q - 1$.

The total ramification index of $\binom{a}{c}$ over the unique cusp ' ∞ ' of X(1) equals $(q-1)\Pi q_i^{r_i} = (q-1)|n|$, as follows from the description of $cusps(\Gamma(n))$. Since Δ has a simple zero at $\infty \in X(1)$, we get (with zero orders of modular forms defined as in [6])

$$\operatorname{ord}_{\left[{a \atop c}\right]}\Delta = \frac{(q-1)|n|}{\operatorname{ram}{a \atop c}} = \frac{(q-1)}{\rho{a \atop c}} \prod_{1 \le i \le s} q_i^{r_i - \inf\{2h_i, r_i\}}, \ h_i = h_i(c).$$
(3.10)

Let $w_n : z \mapsto \frac{1}{nz}$ be the Atkin-Lehner involution on Ω . The matrix $\binom{0}{n}$ normalizes $\Gamma_0(n)$ and thus induces an involution on $X_0(n)$, which interchanges Δ and Δ_n .

Furthermore: If $\begin{bmatrix} a \\ c \end{bmatrix}$ has height $\underline{h} = (h_1, \ldots, h_s)$, the cusp $w_n \begin{bmatrix} a \\ c \end{bmatrix}$ has height $\underline{h}' = (r_1 - h_1, \ldots, r_s - h_s)$. In view of (3.8), we therefore get

$$\operatorname{ord}_{\left[\begin{smallmatrix}a\\c\end{smallmatrix}\right]}\Delta_{n} = \frac{(q-1)|n|}{\operatorname{ram}(w_{n}{a\choose c})} = \frac{q-1}{\rho{a\choose c}} \prod_{1 \le i \le s} q_{i}^{r_{i} - \inf\{2(r_{i} - h_{i}), r_{i}\}}.$$
(3.11)

For any pair $(u, v) \in A \times A - nA \times nA$, we let $e_{u,v} \colon \Omega \to C$ be the holomorphic function defined in [3] p. 99, i.e.,

$$e_{u,v}(z) := e_{\Lambda}\left(\frac{uz+v}{n}\right),$$

where Λ is the A-lattice $Az + A \subset C$ and e_{Λ} its exponential function. For the moment we are interested in its following properties (*loc. cit.*, in particular Korollar 2.2 and Section 3):

(3.12) (i) $e_{u,v}$ has neither zeroes nor poles on Ω and depends only on the residue class of $(u, v) \mod n$.

(ii)
$$e_{u,v}(\gamma z) = (cz+d)^{-1}e_{(u,v)\gamma}(z), \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

(iii) The inverse $e_{u,v}^{-1}$ is a holomorphic modular form of weight 1, $e_{u,v}$ itself is a meromorphic modular form of weight -1 for $\Gamma(n)$.

(iv) The zero order of $e_{u,v}^{-1}$ at $\binom{a}{c} \in \operatorname{cusps}(\Gamma(n))$ is given by

$$\operatorname{ord}_{\binom{a}{c}} e_{u,v}^{-1} = |au + cv|_n.$$

Here $|x|_n = |x_0|$ if $x, x_0 \in A$, $x \equiv x_0 \mod n$, deg $x_0 < \deg n$.

3.13 *Remark*. The inverse $e_{u,v}^{-1}$ may also be described as the Eisenstein series

$$e_{u,v}^{-1}(z) = E_{u,v}(z) = \sum_{\substack{a,b \in A \\ (a,b) \equiv (u,v) \mod n}} (az+b)^{-1}.$$

This will however not be used in this paper.

We now define the functions on Ω

$$F(z) = \prod_{\substack{0 \neq v \in A \\ \deg v < \delta}} e_{0,v}^{-1},$$

$$G(z) = \prod_{\substack{v \text{ monic} \\ \deg v < \delta}} e_{0,v}^{-1}.$$
(3.14)

Then clearly $F = (-1)^{\delta} G^{q-1}$, and F is modular of weight |n| - 1 and type 0 for $\Gamma_0(n)$, as immediately results from the transformation rule of the $e_{u,v}$. Further, its orders at the various cusps of $X_0(n)$ are

$$\operatorname{ord}_{\left[\begin{smallmatrix}a\\c\end{smallmatrix}\right]}F = \operatorname{ram}\binom{a}{c}^{-1}\sum_{0\neq v\in A/n} |vc|_n.$$
(3.15)

3.16 THEOREM. The divisors of Δ , Δ_n and F on $X_0(n)$ are related by

 $|n| \operatorname{div} \Delta - \operatorname{div} \Delta_n = (q^2 - 1) \operatorname{div} F.$

Proof. All the divisors have their support in $cusps(\Gamma_0(n))$, so we have to compare their orders at the different cusps. Those of Δ and Δ_n are given by (3.8), (3.10) and (3.11). They only depend on the height $\underline{h} = (h_1, \ldots, h_s)$ of the cusp $\begin{bmatrix} a \\ c \end{bmatrix}$, as is the case for $\operatorname{ord}_{\begin{bmatrix} a \\ c \end{bmatrix}} F$. Thus we may without restriction assume that c is a divisor of $n, c = \prod_{1 \le i \le s} f_i^{h_i}$. For such c, we find by an elementary calculation

$$\sum_{0 \neq v \in A/n} |vc|_n = \frac{|n|^2 - |c|^2}{q+1},$$

where $|c| = \prod_{1 \leq i \leq s} q_i^{h_i}$. Hence for an arbitrary cusp $\begin{bmatrix} a \\ c \end{bmatrix}$ of height <u>h</u>,

$$\sum_{0 \neq v \in A/n} |vc|_n = \frac{|n|^2 - \Pi q_i^{h_i}}{q+1}$$

Inserting this into (3.15) yields the result.

3.17 COROLLARY. Up to constants we have

$$\frac{\Delta}{\Delta_n} = \text{const.} \frac{F^{q^2 - 1}}{\Delta^{|n| - 1}}.$$

3.18 COROLLARY. The estimate given in (3.5) for the root number r is sharp. that is, Δ/Δ_n has an rth root in $\mathcal{O}(\Omega)^*$, where $r = (q-1)^2$ if δ is odd and $r = (q-1)(q^2-1)$ if δ is even, and r is maximal.

Proof. Recall first that $\Delta = -h^{q-1}$ and $F = \text{const. } G^{q-1}$ are (q-1)th powers. Thus $r \ge (q-1) \text{gcd}\{(q^2-1), |n|-1\}$, which is as stated.

The function G is a modular form of weight (|n|-1)/(q-1) for $\Gamma_1(n) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid a \equiv d \equiv 1, c \equiv 0 \mod n \}$ and transforms according to

$$G(\gamma z) = \chi(\gamma)(cz+d)^{(|n|-1)/(q-1)}G(z)$$
(3.19)

under $\Gamma_0(n)$, where χ is a character with $\chi^{q-1} = 1$, i.e., $\chi: \Gamma_0(n) \to \mathbb{F}_q^*$. We will next determine χ . Recall that $n = \prod f_i^{r_i}$ as usual. For $1 \leq i \leq s$, we let

$$N_i: (A/n)^* \to (A/f_i)^* \to \mathbb{F}_q^*$$

be the canonical projection followed by the norm.

3.20 THEOREM. The 'nebentype' χ of G is given by

$$egin{array}{rl} \chi\colon \Gamma_0(n)& o \, \mathbb{F}_q^st\ \left(egin{array}{c} a \ b\ c \ d\end{array}
ight)&\mapsto \, \Pi N_i(d)^{-r_i} \end{array}$$

Proof. First note that for $a \in \mathbb{F}_q^*$

$$e_{0,av}(z) = a \cdot e_{0,v}(z). \tag{1}$$

Let $S \subset A/n - \{0\}$ be the set of monics, which is a set of representatives for $(A/n - \{0\})/\mathbb{F}_q^*$, as is dS if $d \in (A/n)^*$. Hence for each $v \in S$ there are unique $a_v \in \mathbb{F}_q^*$, $v' \in S$ such that $dv = a_v \cdot v'$, d being fixed. In view of (1) and the definition of G, we will have

$$\chi\left(\begin{pmatrix}a & b\\ c & d\end{pmatrix}\right) = \prod_{v \in S} a_v^{-1}.$$
(2)

For each height vector $\underline{h} = (h_1, \ldots, h_s) < \underline{r} = (r_1, \ldots, r_s)$, we let $(A/n)(\underline{h})$ be the elements of A/n of height \underline{h} and $S(\underline{h})$ the monics in $(A/n)(\underline{h})$. We calculate the contribution of $S(\underline{h})$ to (2).

Let $m = m(\underline{h}) := \prod f_i^{r_i - h_i}$. Then the group $(A/m)^*$ acts faithfully and simply transitively on $(A/n)(\underline{h})$, that is, for $v, v' \in (A/n)(\underline{h})$ there exists a unique $x \in (A/m)^*$ such that xv = v', labelled $(\frac{v'}{v})$. Then

$$\prod_{v \in S(\underline{h})} a_v = \prod_{v \in S(\underline{h})} \left(\frac{dv}{v}\right) = (d \mod m)^{\varphi(m)/(q-1)},\tag{3}$$

since $dS(\underline{h})$ and $S(\underline{h})$ are representatives for $(A/n)(\underline{h})/\mathbb{F}_q^*$. Here $\varphi(m) := \sharp(A/m)^*$, and the right hand term lies in $\mathbb{F}_q^* \hookrightarrow (A/m)^*$. Now

$$(A/m)^* \xrightarrow{\cong} \prod_{i \text{ s.t. } h_i < r_i} (A/f_i^{r_i - h_i})^*,$$

which implies $(d \mod m)^{\varphi(m)/(q-1)} = 1$ if m fails to be primary, i.e., if there are at least two i with $h_i < r_i$. If $m = f_i^{r_i - h_i}$ is primary, $(A/m)^*$ decomposes canonically into $(A/f_i)^*$ and its p-Sylow group of order $q_i^{r_i - h_i - 1}$, and $(d \mod m)^{\varphi(m)/(q-1)} = (d \mod f_i)^{(q_i - 1)/(q-1)} = N_i(d)$. Hence

$$\prod_{v \in S(\underline{h})} a_v = N_i(d), \quad \exists ! i \text{ s.t. } h_i < r_i$$

$$= 1 \qquad \text{otherwise.}$$
(4)

Inserting (4) into (2) finishes the proof.

For $\delta = \deg n$ even (odd), let D_n be the function $G \cdot h^{-(|n|-1)/(q^2-1)}$ $(G^{q+1} \cdot h^{-(|n|-1)/(q-1)})$, respectively, i.e., $\Delta/\Delta_n = \text{const.} D_n^r$ with r as in (3.18).

3.21 COROLLARY. The function D_n transforms under $\Gamma_0(n)$ according to the character $\omega_n := \chi \cdot \det^{\delta/2} if \delta$ is even and $\omega_n = \chi^2 \cdot \det^{\delta} if \delta$ is odd. *Proof.* For δ odd,

$$D_n(\gamma z) = \frac{\chi^{q+1}(\gamma)}{\det(\gamma)^{-(|n|-1)/(q-1)}} D_n(z)$$

(by the theorem and the definition of D_n)

$$= \chi^2(\gamma) \det(\gamma)^{\delta} D_n(z)$$

since $\frac{|n|-1}{q-1} = \frac{q^{\delta}-1}{q-1} \equiv \delta \mod q-1$. A similar consideration gives the result for δ even.

Let $o(\omega_n)$ be the order of ω_n . Then $D_n^{o(\omega_n)}$ is the least power of D_n which is $\Gamma_0(n)$ -invariant, and $r/o(\omega_n)$ is the largest number k such that Δ/Δ_n has a kth root in the field of modular functions for $\Gamma_0(n)$.

3.22 PROPOSITION.

$$o(\omega_n) = \frac{q-1}{\gcd(q-1, r_1, \dots, r_s, \delta/2)}, \ \delta \ even$$
$$= \frac{q-1}{\gcd(q-1, r_1, \dots, r_s, \delta)}, \quad \delta \ odd.$$

Proof. For any of the characters $N_i^{-r_i}$ (see (3.20)), χ , det, ω_n , its order is the size of its image in \mathbb{F}_q^* . E.g. for $N_i^{-r_i}$, it equals $\frac{q-1}{\gcd(q-1,r_i)}$ since $N_i: \Gamma_0(n) \to \mathbb{F}_q^*$, $\binom{a \ b}{c \ d} \mapsto N_i(d)$, is surjective. The assertion now follows from the Chinese remainder theorem.

In the concluding corollaries, we let '0' = $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ ' ∞ ' = $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ be the distinguished cusps of $X_0(n)$.

3.23 COROLLARY (see [5]). Let n be prime of degree δ . The cuspidal divisor class group C of $X_0(n)$ is cyclic of order $(|n|-1)/(q^2-1)$ if δ is even and (|n|-1)/(q-1) if δ is odd.

Proof. By (3.9), C is the group generated by the class of $[(0) - (\infty)]$. The divisor of Δ/Δ_n is $(|n|-1)[(0)-(\infty)]$, and the character ω_n of D_n has exact order

(q-1). Hence D_n^{q-1} but no smaller power of D_n is invariant under $\Gamma_0(n)$, and the class of $[(0) - (\infty)]$ has the asserted order.

3.24 *Remark.* In the above situation, let t be the gcd of q - 1 and $\sharp C$. Then yet the divisor of $D_n^{(q-1)/t}$ on X(n) comes from a divisor on $X_0(n)$, and (q-1)/t is minimal with that property. As we will show in subsequent work, this implies that the kernel of the canonical map from C to the group Φ_{∞} of connected components of the Néron model $/K_{\infty}$ of the Jacobian Jac $(X_0(n))$ is the subgroup of order t in C. Hence the picture differs significantly from the one at the finite place (n), where the corresponding mapping $C \to \Phi_{(n)}$ is always bijective [5]. This gives a negative answer to a question raised by J. Teitelbaum ([18] p. 283).

3.25 COROLLARY. Let $n = f^2$, f prime. The divisor class of $[(0) - (\infty)]$ in $X_0(n)$ has order $(|n| - 1)/(q^2 - 1)$ is q is even or deg f is odd, and $(|n| - 1)/2(q^2 - 1)$ if q is odd and deg f is even.

Proof. Besides 0 and ∞ , there are (|f| - 1)/(q - 1) cusps $s = \begin{bmatrix} u \\ f \end{bmatrix}$ of height 1 (*u* monic of degree < deg *f*). Now ord_s $\Delta = \operatorname{ord}_s(\Delta_n) = q - 1$ for such *s*, and thus div $(\Delta/\Delta_n) = (|n| - 1)[(0) - (\infty)]$. We conclude with (3.22).

We believe that an extension of the preceding arguments eventually will lead to the determination of the cuspidal divisor class groups C of all the curves $X_0(n)$, $X_1(n)$, X(n), where n is a not necessarily prime element of A. A first step has been carried out in [3], from whose results upper estimates for $\sharp C$ may be derived.

References

- 1. Deligne, P., Husemöller, D.: Survey of Drinfeld modules, Contemp. Math. 67 (1987) 25-91.
- 2. Fresnel, J., van der Put, M.: Géométrie analytique rigide et applications, *Progr. Math.* 18 (1981), Birkhäuser, Basel, Boston.
- 3. Gekeler, E.-U.: Modulare Einheiten für Funktionenkörper. J. reine angew. Math. 348 (1984), 94–115.
- Gekeler, E.-U.: A product expansion for the discriminant function of Drinfeld modules of rank two. J. Number Theory 21 (1985), 135–140.
- 5. Gekeler, E.-U.: Über Drinfeld'sche Modulkurven vom Hecke-Typ. Comp. Math. 57 (1986), 219–236.
- Gekeler, E.-U.: Drinfeld Modular Curves, Lect. Notes Math., vol. 1231, Springer, Berlin, Heidelberg, New York, 1986.
- 7. Gekeler, E.-U.: On the coefficients of Drinfeld modular forms, Invent. Math. 93 (1988), 667-700.
- 8. Gekeler, E.-U.: Improper Eisenstein series on Bruhat–Tits trees, *manuscripta math.* 86 (1995), 367–391.
- Gekeler, E.-U., Reversat, M.: Jacobians of Drinfeld modular curves. J. reine angew. Math. 476 (1996), 27–93.
- Gerritzen, L., van der Put, M.: Schottky Groups and Mumford Curves. Lect. Notes Math., vol. 817, Springer, Berlin, Heidelberg, New York, 1980.
- 11. Goldman, O., Iwahori, N.: The space of p-adic norms. Acta Math. 109 (1963), 137-177.
- 12. Goss, D.: Von Staudt for $\mathbb{F}_{q}[T]$, *Duke Math. J.* 45 (1978), 885–910.
- 13. Goss, D.: π-adic Eisenstein Series for Function Fields, Comp. Math. 41 (1980), 3–38.
- 14. Goss, D.: The algebraist's upper half-plane. Bull. AMS NS 2 (1980), 391-415.

- 15. Robert, G.: Concernant la relation de distribution satisfaite par la fonction φ associée à un réseau complexe. Invent. Math. 100 (1990), 231-257.
- 16. Robert, G.: La racine 12-ième canonique de Δ(L)^[<u>L</u>:L]/Δ(<u>L</u>). In: Séminaire de Théorie des Nombres 1989/90, S. David (ed.), *Progr. Math.* 102 (1992), Birkhäuser, Basel, Boston.
 17. Serre, J.-P.: Trees. Springer, Berlin, Heidelberg, New York, 1980.
- 18. Teitelbaum, J.: Modular symbols for $\mathbb{F}_q(T)$. Duke Math. J. 68 (1992), 271–295.
- 19. Weil, A.: Dirichlet series and automorphic forms, Lect. Notes Math., vol. 189, Springer, Berlin, Heidelberg, New York, 1971.