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A NOTE ON THE VAN DER WAERDEN 
PERMANENT CONJECTURE 

JACQUES DUBOIS 

1. Introduction and statement of results. The permanent of an w-square 
complex matrix P = (pa) is defined by 

p e r P = YL Pl<r(l)p2<r(2) . . . pw(n) 
<r£Sn 

where the summation extends over Snj the symmetric group of degree n. This 
matrix function has considerable significance in certain combinatorial prob­
lems [6; 7]. The properties and many related problems about the permanent 
are presented in [3] along with an extensive bibliography. 

In 1926, B. L. van der Waerden [7] conjectured that for all elements P of 
the set tln the inequality 

per P > ~n 
n 

holds with equality if and only if P = Jn. Here £2W denotes the set of all 
w-square doubly stochastic matrices and Jn is the element of Q,n whose entries 
are all 1/n. Many authors have studied this conjecture extensively and to my 
knowledge it has been shown true only for n = 2, n = 3 [4], n = 4 [1] and 
n = 5 [2]. 

For a general n, we know that if the permanent function achieves its absolute 
minimum value on Un in Int 0n (the interior of £2n), then the conjecture is true 
[4, Theorem 2 and Theorem 3]. M. Marcus and M. Newman [4, Theorem 4] 
have also shown that if the absolute minimizing matrix does not belong to 
Int Qn, then all its zeros cannot occur in a fixed row (or column). In addition, 
P. J. Eberlein and G. S. Mudholkar [1, Theorem 7] have shown that this 
absolute minimizing matrix, after suitable permutations of its rows and 
columns, cannot be of the form 

TO Yl 

where 0 is an r X k matrix ( l ^ r , k ^ n — 1) whose entries are 0, and 
Y (respectively Zi, Z2) is an r X (n — k) (respectively (n — r) X k, (n — r) X 
(n — k)) matrix whose entries are positive. 

The purpose of this note is to present, in the following two theorems, other 
results concerning the zero pattern of the absolute minimizing matrix. 
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T H E O R E M 1. If the absolute minimizing matrix for p e r P (P Ç 12n) is not in 
I n t £ln, then all its zeros cannot occur in two fixed rows (or columns). 

T H E O R E M 2. If an element P in £ln is such that there exist n X n permutation 
matrices Qi and Q2 with the property that the matrix Q1PQ2 or its transpose takes 
the fo m 

Ui Z2] 
where X = (xtj) is an r X 2 matrix (r ^ 1) with xn > 0 and the others xtj = 
0, Z\ (respectively Z2) is an (n — r) X 2 {respectively (n — r) X (n — 2)) 
matrix whose entries are positive and Y is any r X (n — 2) matrix, then P 
cannot be an absolute minimizing matrix. 

T h e relation between Theorem 1 and Theorem 4 in Marcus and Newman ' s 
paper [4] is self-explanatory. In Theorem 2, the fact t ha t Y is any r X (n — 2) 
matr ix allows us to decide t ha t many zero pa t te rns are inadmissible in the 
construction of a minimizing (for the permanent function) element of 12w. 

2. Proofs . Before proving these theorems we introduce some notation* 
An n X n matr ix P = (ptj) is expressed in terms of its column vectors as 
(p1, p2, . . . , pn) and in terms of its row vectors as (pi, p2, . . . , pn)- If 1 = J < 
k ^ n, p(j'k) denotes the matr ix 

(p\ . . . , p'~\ pk - pi, p'+\ . . . , p \ . . . , p n ) 

(if j = 1 we adopt the obvious convention) , whereas, if 1 ^ i, j ^ n, Cij(P) 
denotes the permanent of the (n — 1) X (n — 1) matr ix obtained by deleting 
row i and column j from P . 

Since the permanent is a multilinear function of the column of an w-square 
matr ix P , we have : 

(1) Ctj(P) - Cik(P) = Cik(P
{J^) 

for 1 S i ^ n and 1 ^ j < k ^ n. This simple relation and Theorem 1 in 
Marcus and Newman [4] will be our main tools. 

We now prove Theorem 1. Assume on the contrary t ha t P = (ptj) £ 12w is 
an absolute minimizing matrix with all its zeros contained in two given rows. 
W e can suppose t h a t these are the first two rows (N.B. per QP = per P for 
any n X n permuta t ion matr ix Q). Let k (respectively r) denote the number 
of zero entries of P in its first (respectively, second) row. By hypothesis we 
have 1 S k < n and 1 ^ r < n. We may also suppose without loss of generality 
t h a t k ^ r, t h a t pu = pu = . . . = pu = 0, pij > 0 for k < j ^ n, and t h a t 
5 and t are two nonnegative integers satisfying s + t = r and p2i = p22 = . . . 
= p2S = 0, p2k+i = p2k+2 = . . . = p2k+t = 0, p2j > 0 for s <j S k and 
k + t < j ^ n. Fur thermore , using the corollary to Theorem 3 in [2] we may 
suppose t h a t the remaining n — 3 rows of P are all equal and so we let 

pz = pi = . . . = pn = («i, «2, . . . , <xn). 
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The case where / = 0 and s = k is already settled (this is Eberlein and 
Mudholkar's result quoted earlier). 

If t = 0 and s ^ k — 1 then the stochastic constraints imply that as > as+i. 
On the other hand, using Theorem 1 of [4] and relation (1) above we can write 

(2) 0 ^ C2s(P) - C2s+1(P) = C2s+1(P
{s^) 

where P^'s+l) is a matrix whose sth column is (0, p2s+i, &s+i — asi . . . , a s+i — 
as)

T (as usual T denotes the transpose of a vector) and whose other entries 
are nonnegative. Thus it follows from (2) that as+i — as ^ 0. This is a 
contradiction. 

Finally if t è 1, we have 

(3) 0 ^ d ,H- i (P ( W l ) ) 

and 

(4) Cu+i(P{k'k+l)) ^ 0. 

Since, in this case, (p\k+i, —p2k, <*k+i — ak, . . . , ak+1 — ak)
T is the &th column 

of P^k>k+l) and the submatrix obtained from P by deleting its first two rows 
and its &th and (k + l ) th columns has only positive entries we infer from (3) 
that ak+i — ak > 0 and from (4) that ak+i — ak < 0. Again we obtain a 
contradiction and the proof of Theorem 1 is complete. 

An obvious adaptation of this argument gives Theorem 2 and a very short 
proof of Theorem 4 in [4]. 
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