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Non-tame Mice from Tame Failures of the
Unique Branch Hypothesis
Grigor Sargsyan and Nam Trang

Abstract. In this paper, we show that the failure of the unique branch hypothesis (UBH) for tame trees
implies that in some homogenous generic extension of V there is a transitive model M containing
Ord∪R such that M � AD+ + Θ > θ0. In particular, this implies the existence (in V ) of a non-tame
mouse. The results of this paper significantly extend J. R. Steel’s earlier results for tame trees.

In this paper, we establish, using the core model induction, a lower bound for
certain failures of the Unique Branch Hypothesis (UBH), which is the statement that
every iteration tree that acts on V has at most one cofinal well-founded branch. For
the rest of this paper, all trees considered are nonoverlapping, that is whenever E
and F are extenders such that E is used before F along a branch of the tree, then
lh(E) ≤ crit(F). The following is our main theorem. Tame trees1 are defined in
Definition 5.1. Roughly speaking, these are the trees in which the critical point of
any branch embedding is above a strong cardinal that reflects strong cardinals.

Main Theorem Suppose there is a proper class of strong cardinals and UBH fails for
tame trees. Then in a set generic extension of V , there is a transitive inner model M such
that Ord∪R ⊆ M and M � AD+ + θ0 < Θ. In particular, there is a non-tame mouse.

The Unique Branch Hypothesis was first introduced by Martin and Steel in [3].
Towards showing UBH, Neeman [5] showed that a certain weakening of UBH called
cUBH holds provided there are no non-bland mice.2 However, in [17], Woodin
showed that in the presence of supercompact cardinals UBH can fail for tame trees.3

It is, however, still an important open problem whether UBH holds for trees that use
extenders that are 2ℵ0 -closed in the models that they are chosen from. A positive
resolution of this problem will lead to the resolution of the inner model problem for
superstrong cardinals and beyond. It is worth remarking that the aforementioned
form of UBH for tame trees will also lead to the resolution of the inner model prob-
lem for superstrong cardinals and beyond. Our work can be viewed as an attempt to
prove UBH for tame trees by showing that its failure is strong consistency-wise.
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UBH.
1The term “tame trees” is our ad-hoc terminology and has nothing to do with the well-established term

“tame” used to define a certain first-order property of premice.
2We will not use this terminology.
3Woodin constructs alternating chains whose branches are well-founded. Extenders of such trees can

be demanded to reflect the set of strong cardinals which reflect strong cardinals. Hence critical points of
the branch embeddings can certainly be demanded to be above the first strong cardinal that reflects strong
cardinals.
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In this direction, Steel [16] showed that the failure of UBH for (nonoverlapping)
trees implies that there is an inner model with infinitely many Woodin cardinals. If
in addition UBH fails for some tree T such that δ(T) is in the image of two branch
embeddings witnessing the failure of UBH for T, then Steel obtained an inner model
with a strong cardinal that is a limit of Woodin cardinals. For tame trees (which, as
mentioned in the footnote, include a class of examples constructed by Woodin [17]),
the Main Theorem considerably strengthens the aforementioned result of Steel and
because the proof presented here is via the core model induction, we expect that it
will yield much more. We believe that our proof, coupled with arguments from [8],
will give the existence of a transitive inner model M such that Ord∪R ⊆ M and
M � “ ADR + Θ is regular”. However, we still do not know if an arbitrary failure of
UBH implies the existence of a non-tame mouse. Various arguments presented in
this paper resemble the arguments given in [7, 11], and some familiarity with those
articles will be useful.

1 Preliminaries

In this paper, we will need to make use of the material presented in [7, Section 1],
most of which, especially Section 1.1, carries over to the hybrid context by just chang-
ing the word “mouse” to “hybrid mouse”. Because of this, we will only introduce a
few main notions and will use [7, Section 1] as our main background material. In
particular, we assume that the reader has already translated the material of [7, Section
1.1] into the language of hybrid mice.

1.1 Stacking Mice

Following the notation of [7, Section 1.3], we fix some uncountable cardinal λ and
assume ZF. Notice that any function f : Hλ → Hλ can be naturally coded by a subset
of P(

⋃
κ<λ P(κ)). We then let Code∗λ : HHλ

λ → P(
⋃
κ<λ P(κ)) be one such coding. If

λ = ω1, then we just write Code∗. Because for α ≤ λ, any (α, λ)-iteration strategy4

for a hybrid premouse of size <λ is in HHλ

λ , we have that any such strategy is in the
domain of Code∗λ.

Suppose Λ ∈ dom(Code∗λ) is a strategy with hull condensation and µ ≤ λ. Recall
that we say F is a (µ,Λ)-mouse operator if for some X ∈ Hλ and formula φ in the
language of Λ-mice, if Y is such that X ∈ Y , then F(Y ) is the minimal µ-iterable
Λ-mouse satisfying φ[Y ].

We then let Codeλ be Code∗λ restricted to F ∈ dom(Code∗λ), which is defined by
the following recursion:

(a) for some α ≤ λ, F is a (α, λ)-iteration strategy with hull condensation,5

(b) for some α ≤ λ and for some (α, λ)-iteration strategy Λ ∈ dom(Code∗λ) with
hull condensation, F is a (λ,Λ)-mouse operator,

4This is an iteration strategy for stacks of fewer than α normal trees, each of which has length less than
λ. Typically these are fine-structural n-maximal iteration trees (as defined in [4]), where n is the degree of
soundness of the premouse we iterate. We will suppress this parameter thoughout our paper.

5In this case as well as in the cases below α = 0 is allowed.
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(c) for some α ≤ λ, for some (α, λ)-iteration strategy Λ ∈ dom(Code∗λ) with hull
condensation, for some (λ,Λ)-mouse operator G ∈ dom(Code∗λ) and for some
β ≤ λ, F is a (β,Λ)-iteration strategy with hull condensation for some G-mouse
M ∈ Hλ.

When λ = ω1, we just write Code instead of Codeω1 . Given an F ∈ dom(Codeλ), we
let MF be, in the case F is an iteration strategy, the structure that F iterates, and in
the case F is a mouse operator, the base of the cone on which F is defined.

Let P ∈ Hλ be a hybrid premouse, and for some α ≤ λ let Σ be (α, λ)-iteration
strategy with hull condensation for P. Suppose now that Γ ⊆ P(∪κ<λP(κ)) is such
that Codeλ(Σ) ∈ Γ. Given a Σ-premouse M, we say M is Γ-iterable if |M| < λ and
M has a λ-iteration strategy (or (α, λ)-iteration strategy for some α ≤ λ) Λ such
that Codeλ(Λ) ∈ Γ6. We let MiceΓ,Σ be the set of Σ-premice that are Γ-iterable.

Definition 1.1 Given a Σ-premouse M ∈ Hλ, we say M is countably α-iterable
provided that, if π : N → M is a countable submodel of M, then N, as a Σπ-mouse,
is α-iterable. When α = ω1 + 1, we just say that M is countably iterable. We say that
M is countably Γ-iterable if, whenever π and N are as above, N is Γ-iterable.

Suppose M is a Σ-premouse. We then let o(M) = Ord∩M. We also let M||ξ be
M cut off at ξ, i.e., we keep the predicate indexed at ξ. We let M|ξ be M||ξ without
the last predicate. We say ξ is a cutpoint of M if there is no extender E on M such
that ξ ∈ (cp(E), lh(E)]. We say ξ is a strong cutpoint if there is no E on M such that
ξ ∈ [cp(E), lh(E)]. We say η < o(M) is overlapped in M if η is not a cutpoint of M.
Given η < o(M) we let

OM
η =

⋃
{N /M : ρ(N) = η and η is not overlapped in N}.

Given a self-wellordered7 a ∈ Hλ, we define the stacks over a as follows.

Definition 1.2 (i) LpΣ(a) =
⋃
{N : N is a countably iterable sound Σ-mouse

over a such that ρ(N) = a},
(ii) Kλ,Γ,Σ(a) =

⋃
{N : N is a countably Γ-iterable sound Σ-mouse over a such

that ρ(N) = a},
(iii) Wλ,Γ,Σ(a) =

⋃
{N : N is a Γ-iterable sound Σ-mouse over a such that ρ(N) =

a}.

When Γ = P(
⋃
κ<λ P(κ)), we omit it from our notation. We can define the

sequences 〈LpΣ
ξ (a) : ξ < η〉, 〈Kλ,Γ,Σ

ξ (a) : ξ < ν〉, and 〈Wλ,Γ,Σ
ξ (a) : ξ < µ〉 as usual.

The definition for operator Lp is as follows:

(a) LpΣ
0 (a) = LpΣ(a),

(b) for ξ < η, if LpΣ
ξ (a) ∈ Hλ then LpΣ

ξ+1 = LpΣ(LpΣ
ξ (a)),

(c) for limit ξ < η, LpΣ
ξ =

⋃
α<ξ LpΣ

α(a),

(d) η is least such that for all ξ < η, LpΣ
ξ (a) is defined.

6Recall that iteration strategy for a Σ-mouse must respect Σ. In particular, all Λ-iterates of M are
Σ-premice.

7I.e., self well-ordered, a set a is called self well-ordered if trc(a ∪ {a}) is well-ordered in L1(a).
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The other stacks are defined similarly.

1.2 (Γ,Σ)-suitable Premice

Again we fix an uncountable cardinal λ such that a large fragment of ZF holds in
Vλ. We also fix Σ ∈ dom(Codeλ) such that Σ is a (α, λ)-iteration strategy with
hull condensation and Γ ⊆ P(

⋃
κ<λ P(κ)) such that Codeλ(Σ) ∈ Γ. We now start

outlining how to import the material from [7, Subsection 1.3]. The most important
notion we need from that subsection is that of a (Γ,Σ)-suitable premouse, which is
defined as follows.

Definition 1.3 ((Γ,Σ)-suitable premouse) A Σ-premouse P is (Γ,Σ)-suitable if
there is a unique cardinal δ such that

(i) P � “ δ is the unique Woodin cardinal”,
(ii) o(P) = supn<ω(δ+n)P,
(iii) for every η 6= δ, Wλ,Γ,Σ(P|η) � “ η is not Woodin”.
(iv) for any η < o(P), OP

η = Wλ,Γ,Σ(P|η).

If Γ = P(
⋃
α<λ P(a)), then we use λ instead of Γ. In particular, we use λ-suitable

to mean Γ-suitable. We will do the same with all the other notions, such as fullness
preservation and short tree iterability, defined in this section

Suppose P is Γ-suitable. Then we let δP be the δ of Definition 1.3. We then
proceed as in [7, Section 1.3] to define (1) nice iteration tree, (2) (Γ,Σ)-short tree, (3)
(Γ,Σ)-maximal tree, (4) (Γ,Σ)-correctly guided finite stack, and (5) the last model
of a (Γ,Σ)-correctly guided finite stack, by using the Wλ,Γ,Σ operator instead of the
WΓ operator.

Definition 1.4 (S(Γ,Σ) and F(Γ,Σ)) Let S(Γ,Σ) = {Q : Q is (Γ,Σ)-suitable}.
Also, we let F(Γ,Σ) be the set of functions f such that dom( f ) = S(Γ,Σ) and for
each P ∈ S(Γ,Σ), f (P) ⊆ P and f (P) is amenable to P, i.e., for every X ∈ P,
X ∩ f (P) ∈ P.

Given P ∈ S(Γ,Σ) and f ∈ F(Γ,Σ), we let fn(P) = f (P) ∩ P|((δP)+n)P. Then
f (P) =

⋃
n<ω fn(P). We also let γPf = sup

(
δP ∩HullP1

(
{ fn(P) : n < ω}

))
.

Notice that γPf = δP ∩HullP1
(
γPf ∪ { fn(P) : n < ω}

)
. We then let

HP
f = HullP1 (γPf ∪ { fn(P) : n < ω}).

If P ∈ S(Γ,Σ), f ∈ F(Γ,Σ) and i : P → Q is an embedding, then we let i( f (P)) =⋃
n<ω i( fn(P)).

The following are the next block of definitions that routinely generalize into our
context: (1) ( f ,Σ)-iterability, (2)~b = 〈bk : k < m〉 witness ( f ,Σ)-iterability for
~T = 〈Tk,Pk : k < m〉, and (3) strong ( f ,Σ)-iterability. These definitions generalize
by using S(Γ,Σ) and f ∈ F(Γ,Σ) instead of S(Γ) and F(Γ).

If P is strongly ( f ,Σ)-iterable and~T is a (Γ,Σ)-correctly guided finite stack on P

with last model R, then we let πΣ
P,R, f : HP

f −→ HR
f be the embedding given by any~b
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that witnesses the ( f ,Σ)-iterability of~T, i.e., fixing~b that witnesses f -iterability for~T,

πΣ
P,R, f = π~T,~b �HP

f .

Clearly, πΣ
P,R, f is independent of~T and~b. Here we keep Σ in our notation for πΣ

P,R, f
because it depends on a (Γ,Σ)-correct iteration. It is conceivable that R might also
be a (Γ,Λ)-correct iterate of P for another Λ, in which case πΣ

P,R, f might be different
from πΛ

P,R, f . However, the point is that these embeddings agree on HP
f . Also, we do

not carry Γ in our notation, as it is usually understood from the context.

Given a finite sequence of functions ~f = 〈 fi : i < n〉 ∈ F(Γ,Σ), we let
⊕

i<n fi ∈
F(Γ,Σ) be the function given by (

⊕
i<n fi)(P) = 〈 fi(P) : i < n〉. We set

⊕ ~f =⊕
i<n fi .
We then let

IΓ,F,Σ =
{

(P, ~f ) : P ∈ S(Γ,Σ), ~f ∈ F<ωand P is strongly
⊕ ~f -iterable

}
.

Definition 1.5 Given F ⊆ F(Γ,Σ), we say F is closed if for any ~f ⊆ F<ω there is P
such that (P,⊕~f ) ∈ IΓ,F,Σ and for any~g ⊆ F<ω , there is a (Γ,Σ)-correct iterate Q of

P such that (Q, ~f ∪~g) ∈ IΓ,F,Σ.

Now fix a closed F ⊆ F(Γ,Σ) and let FΓ,F,Σ =
{

HP
f : (P, f ) ∈ IΓ,F,Σ

}
. We

then define�Γ,F,Σ on IΓ,F,Σ by letting (P, ~f ) �Γ,F,Σ (Q,~g) if and only if Q is a (Γ,Σ)-

correct iterate of P and ~f ⊆ ~g. Given (P, ~f ) �Γ,F,Σ (Q,~g), we have that

πΣ
P,Q,~f

: HP

⊕~f −→ HQ

⊕~f .

Notice that if F is closed then�Γ,F,Σ is directed. Then let M∞,Γ,F,Σ be the direct limit

of (FΓ,F,Σ,�Γ,F,Σ) under πΣ
P,Q,~f

’s. Given (P, ~f ) ∈ IΓ,F,Σ, we let

πΣ
P,~f ,∞ : HP

⊕~f −→M∞,Γ,F,Σ

be the direct limit embedding. Using the proof of [7, Lemma 1.19], we get the fol-
lowing lemma.

Lemma 1.6 M∞,Γ,F,Σ is well founded.

Let F be as above and let G ⊆ F. The following list is then the next block of def-
initions that carry over to our context with no significant changes (see [7, Section
1.4]): (1) semi (F,G,Σ)-quasi iteration, (2) the embeddings of the (F,G,Σ)-quasi
iteration (in this context, we will have Σ in the superscripts), (3) (F,G,Σ)-quasi it-
erations, (4) the last model of (F,G)-quasi iterations, (5) ~f -guided strategies, (6) a
Σ-quasi-self-justifying-system (Σ-qsjs), and (7) (ω,Γ,Σ)-suitable premice.
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1.3 HODΣ under AD+

It turns out that for certain iteration strategies Σ, V HODΣ

Θ of many models of de-
terminacy can be obtained as M∞,Γ,F,Σ for some Γ and F. For the rest of this sec-
tion we assume AD+. Suppose Σ is an iteration strategy of some hod mouse Q

and suppose Σ is P(P(ω))-fullness preserving (see [8]) and has branch condensa-
tion (i.e., λ = ω1 from the notation of Subsections 1.1 and 1.2). Assume further
that V = L(P(R)) + MC(Σ)8 + Θ = θΣ and that P is below “θ is measurable”, i.e.,
below a measurable limit of Woodins. We let Γ = P(P(ω)) and for the duration
of this subsection, we drop Γ from our notation. Thus, a Σ-suitable premouse is a
(Γ,Σ)-suitable premouse, etc.

Suppose P is Σ-suitable and A ⊆ R is ODΣ. We say that P weakly term captures

A if, letting δ = δP for each n < ω, there is a term relation τ ∈ PColl(ω,(δ+n)P) such
that for comeager many P-generics, g ⊆ Coll(ω, (δ+n)P), we have τg = P[g]∩A. We
say P term captures A if the equality holds for all generics. The following lemma is
essentially due to Woodin, and the proof for mice can be found in [9].

Lemma 1.7 SupposeP is Σ-suitable and A ⊆ R is ODΣ. ThenPweakly term captures
A. Moreover, there is a Σ-suitable Q that term captures A.

Given a Σ-suitable P and an ODΣ set of reals A, we let τPA,n be the standard name
for a set of reals in PColl(ω,(δ+n)P) witnessing the fact that P weakly captures A. We
then define fA ∈ F(Γ,Σ) by letting

fA(P) = 〈τPA,n : n < ω〉.

Let FΣ,od = { fA : A ⊆ R ∧ A ∈ ODΣ}.
All the notions we have defined above using f ∈ F(Γ,Σ) can be redefined for

ODΣ sets A ⊆ R using fA as the relevant function. To save some ink, in what follows,
we will say A-iterable instead of fA-iterable and similarly for other notions. Also, we
will use A in our subscripts instead of fA.

The following lemma is one of the most fundamental lemmas used to compute
HOD and is originally due to Woodin. Again, the proof can be found in [9].

Theorem 1.8 For each f ∈ FΣ,od, there is a P ∈ S(Γ,Σ) that is (FΣ,od, f )-quasi
iterable.

Let M∞ = M∞,Fod,Σ.

Theorem 1.9 (Woodin [9]) δM∞ = Θ, M∞ ∈ HODΣ and

M∞|Θ =
(

V HODΣ

Θ ,~EM∞|Θ, SM∞ ,∈
)
,

where SM∞ is the predicate of M∞ describing Σ.

Finally, if a ∈ Hω1 is self-wellordered, then we could define M∞(a) by working
with Σ-suitable premice over a. Everything we have said about Σ-suitable premice
can also be said about Σ-suitable premice over a, and in particular, the equivalent
of Theorem 1.9 can be proved using HOD(Σ,a)∪{a} instead of HODΣ and M∞(a)
instead of M∞.

8MC(Σ) stands for the Mouse Capturing relative to Σ, which says that for x, y ∈ R, x is OD(Σ, y) if
and only if x is in some Σ-mouse over y.
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2 The Maximal Model

The core model induction is a method for constructing models of determinacy while
working under various hypothesis. During the induction one climbs up through the
Solovay hierarchy. This is a hierarchy of axioms that extends AD+ and roughly de-
scribes how complicated the Solovay sequence is. To pass the successive stages of the
Solovay hierarchy, (i.e., the stages where the length of the sequence is a successor),
one defines a large enough model, called the maximal model, and shows that it sat-
isfies AD+. The next step is to construct a hod pair beyond the maximal model. In
this section our goal is to introduce the maximal model and prove some correctness
results, such as Lemma 2.5. For more on the Solovay hierarchy, see [6].

We start by introducing universally Baire iteration strategies and mouse operators.
We assume ZFC. Throughout this paper we fix a canonical method for sets in HC by
reals. Given a real x that is a code of a set in HC, we let Mx be the structure coded by
x and let πx : Mx → Nx be the transitive collapse of Mx. We let W F be the set of reals
that code sets in HC.

Definition 2.1 (uB operators) Suppose Λ ∈ dom(Code) and λ ≥ ω1 is a cardi-
nal. We say Λ is λ-uB if there exist <λ-complementing trees9 (T, S) witnessing that
Code(Λ) is < λ-uB in the following stronger sense: for all x ∈W F and n,m ∈ x,

(x, n,m) ∈ p[T] ⇐⇒ πx(m) ∈ Λ(πx(n)).

If g is a <λ-generic then we let Λg be the canonical interpretation of Λ onto V [g];
i.e., given a, b ∈ HCV [g], Λg(a) = b if and only if, whenever x ∈W FV [g] is such that
a ∈ Nx and n ∈ x is such that πx(n) = a, we have

b = πx

[
{m : (x, n,m) ∈ (p[T])V [g]}

]
.

If Λ is λ-uB for all λ, then we say Λ is uB.

Suppose now that λ is an uncountable cardinal, g is a less than λ-generic, a ∈
(Hλ)V [g] and Σ ∈ dom(Code) is λ-uB. Then we define LpΣ,g(a), Wλ,Σ,g(a), and
Kλ,Σ,g(a) in V [g] according to Definition 1.2. The following connects the three stacks
defined above.

Proposition 2.2 For every a ∈ HV
λ , Wλ,Σ(a) E Kλ,Σ(a) E LpΣ(a). Moreover, for

any η < λ and V -generic g ⊆ Coll(ω, η) or g ⊆ Coll(ω,<η), Wλ,Σ,g(a) E Wλ,Σ(a),
Kλ,Σ,g(a) E Kλ,Σ(a), and LpΣ,g(a) E LpΣ(a).

We are now in a position to introduce the maximal model of AD+.

Definition 2.3 (Maximal model of AD+) Suppose Σ ∈ Code is λ-uB and µ < λ is
a cardinal. Let g ⊆ Coll(ω,<µ)10 be generic. Then we let Sλ,Σµ,g = L(Kλ,Σ,g(RV [g])).

9This means that the trees project to complements in all <λ-generic extensions.
10In this paper, µ is typically an inaccessible cardinal.

https://doi.org/10.4153/CJM-2013-036-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-036-x


910 G. Sargsyan and N. Trang

Thus far strategy mice have been discussed only in situations when the underlying
set was self-wellordered. However, Sλ,Σµ,g is a Σ-mouse over the set of reals. Such

hybrid mice were defined in [8, Section 2.10]. We say that Sλ,Σµ,g is the λ-Σ-maximal
model at µ. Next we define hod pairs below a cardinal.

Definition 2.4 (Hod pair below λ) Suppose now that (P,Σ) is a hod pair11 such
that Σ ∈ dom(Code) is λ+-uB. We say that (P,Σ) is a hod pair below λ if Σ has
branch condensation and whenever g ⊆ Coll(ω, λ) is V -generic, and Σg is ω1-
fullness preserving in V [g].

The next lemma connects various degrees of iterability. Below, if ξ ∈ Ord and N
is a transitive model of ZFC, then we let Nξ = V N

ξ .
For the purposes of the next lemma, suppose µ < λ are such that µ is a strong

cardinal and λ is inaccessible. Let j : V → M be an embedding witnessing that µ
is λ+-strong and let g ⊆ Coll(ω,<µ) and h ⊆ Coll(ω,< j(µ)) be two generics such
that g = h ∩ Coll(ω,<µ). Let j+ : V [g]→ M[h] be the lift of j. Let W = V [g].

Lemma 2.5 Suppose (P,Σ) is a hod pair below µ and a ∈ Vλ[g] is self-wellordered.
Then

Wλ,Σ,g(a) = Wλ,Σ,h∩Coll(ω,<λ)(a) = Kλ,Σ,g(a) = Kµ,Σ,g(a) = (W j(λ), j(Σ),h(a))M[h].

Proof We first show that Wλ,Σ,g(a) = Kµ,Σ,g(a). Work in W . Clearly, Wλ,Σ,g(a) E
Kµ,Σ,g(a). Then let M E Kµ,Σ,g(a) be such that ρ(M) = a. We want to see that
M E Wλ,Σ,g(a). To see this, notice that, by a standard absoluteness argument, there
is σ : M → j+(M) such that σ ∈ M[h], σ(P) = P and M[h] � j(Σg)σ = j(Σg)
(this follows from the fact that Σ has branch condensation). Hence, in M[h], M is a
ω1 + 1-iterable j(Σg)-mouse. Let in M[h], Λ ∈ M[h] be the unique ω1 + 1-iteration
strategy of M (as a j(Σg)-mouse). It follows from the homogeneity of the collapse
and the uniqueness of Λ that Λ �HW

λ ∈W . Hence, M EWλ,Σ,g(a).
To see that Wλ,g(a) = (W j(λ), j(Σ),h(a))M[h], first suppose that M E Wλ,Σ,g(a).

Then in M[h] we have j(M) E W j(λ), j(Σ),h( j+(a)). Since in M[h] M is embeddable
into j+(M) via σ with the above properties, we get that in M[h], M EW j(λ), j(Σ),h(a).
Next, suppose that M E (W j(λ), j(Σ),h(a))M[h] is such that ρ(M) = a. It follows
from the homogeneity of the collapse and the uniqueness of the strategy of M that
M ∈ V [g] and that M EWλ,Σ,g(a).

We thus have that

(2.1) Wλ,Σ,g(a) = Kµ,Σ,g(a) =
(
W j(λ), j(Σ),h(a)

)M[h]
.

Finally notice that(
W j(λ), j(Σ),h(a)

)M[h]
EWλ,Σ,h∩Coll(ω,<λ)(a) EWλ,Σ,g(a)

E Kλ,Σ,g(a) E Kµ,Σ,g(a).

(2.2)

Equations (2.1) and (2.2) now easily imply the claim.

11Hod pairs are in the sense of [8]. They all satisfy that there is no measurable limit of Woodins.
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The following is an easy corollary of Lemma 2.5.

Corollary 2.6 Suppose that µ < κ < λ and j : V → M are such that µ and κ are
strong cardinals, λ is inaccessible, j witness that µ is λ-strong, and M � “κ is strong
cardinal”. Let (P,Σ) be a hod pair below µ that is λ-uB. Let g ⊆ Coll(ω,<κ) and
h ⊆ Coll(ω,< j(µ)) be generic such that g = h ∩ Coll(ω,<κ). Let

j+ : V [g ∩ Coll(ω,<µ)] −→ M[h]

be the lift of j. Then, whenever a ∈ Vλ[g],

Wλ,Σ,g(a) = Kκ,Σ,g(a) = Wλ,Σ,h∩Coll(ω,<λ)(a) =
(
W j(λ), j(Σ),h(a)

)M[h]
.

Proof Let k = g ∩ Coll(ω,<µ). Notice that because j(Σ) has a unique extension
in M[h], we have that j+(Σk) �Vλ[g] = Σg . Because κ is a strong cardinal in V , it
follows from Lemma 2.5 that

Wλ,Σ,g(a) = Kκ,Σ,g(a).

Because κ is a strong cardinal in M, it follows from Lemma 2.5 that

Kκ,Σ,g(a) = W j(λ), j(Σ),g(a) = (W j(λ), j(Σ),h(a))M[h].

Therefore, Wλ,Σ,g(a) = Kκ,Σ,g(a) = (W j(λ), j(Σ),h(a))M[h].

3 The Core Model Induction

The goal of this section is to develop some basic notions in order to state Theorem 3.3
which we will use as a black box. Our core model induction is a typical one: we have
two uncountable cardinals κ < λ, the core model induction operators (cmi operators)
defined on bounded subsets of κ can be extended to act on bounded subsets of λ, and
for any such cmi operator F acting on bounded subsets of λ, the minimal F-closed
mouse with one Woodin cardinal exists and is λ-iterable. Having these three condi-
tions is enough to show, by using the scales analysis developed in [10, 13], that the
-λ-maximal model at κ indeed satisfies AD+. The details of the proof of Theorem 3.3
have appeared, in a less general form, in [9, 11].

The mouse operators that are constructed during core model induction have two
additional properties: they transfer and relativize well. To make these notions precise,
fix Σ ∈ dom(Code), which is λ-uB. Given a Σ-mouse operator F ∈ dom(Codeλ),
we say that:

(Relativizes well) F relativizes well if there is a formula φ(u, v,w) such that, whenever
X,Y ∈ dom(F) and N are such that X ∈ L1(Y ) and N is a transitive rudimentarily
closed set such that Y, F(Y ) ∈ N, we have that F(X) ∈ N and F(X) is the unique
U such that N � φ[U ,X, F(Y )].

(Transfers well) F transfers well if, whenever X,Y ∈ dom(F) are such that X is
generic over L1(Y ), we have that F(L1(Y )[X]) is obtained from F(Y ) via S-con-
structions (see [8, Section 2.11]) and in particular, F(L1(Y ))[X] = F(L1(Y )[X]).
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We are now in a position to introduce the core model induction operators that we
will need in this paper.

Definition 3.1 (Core model induction operator) Suppose |R| = κ, (P,Σ) is a hod
pair below κ+. We say F ∈ dom(Code) is a Σ core model induction operator, or just
Σ-cmi operator, if one of the following holds:

(i) For some α ∈ Ord, letting M = Sκ
+,Σ
ω ||α, M � AD+ + MC(Σ) and one of the

following holds:

(a) F is a Σ-mouse operator that transfers and relativizes well.
(b) For some self-wellordered b ∈ HC and some Σ-premouse Q ∈ HCV over b,

F is an (ω1, ω1)-iteration strategy for Q that is (P(R))M-fullness preserving,
has branch condensation, and is guided by some ~A = (Ai : i < ω) such that
~A ∈ ODM

b,Σ,x for some x ∈ b. Moreover, α ends either a weak or a strong gap
in the sense of [10].

(c) For some H ∈ dom(Code), H satisfies a or b above and for some n < ω, F
is x → M#,H

n (x) operator or for some b ∈ HC , F is the ω1-iteration strategy
of M#,H

n (b).

(ii) For some α ∈ Ord, a ∈ HC and M E Wκ+,Σ(a) such that ρ(M) = a letting
Λ be M’s unique strategy, the above conditions hold for F with LΛ

κ+ (R) used
instead of Sκ

+,Σ
ω and Λ used instead of Σ.

When Σ = ∅, we omit it from our notation. Often times, when doing core model
induction, we have two uncountable cardinals κ < λ and we need to show that cmi
operators in V Coll(ω,<κ) can be extended to act on V Coll(ω,<κ)

λ . This is a weaker notion
than being λ-uB. We also need to know that for any cmi operator F ∈ V Coll(ω,<κ),
M

#,F
1 -exists. We make these statements more precise.

Definition 3.2 (Lifting cmi operators) Suppose κ < λ are two cardinals such that
κ is an inaccessible cardinal and suppose (P,Σ) is a hod pair below κ.

(i) Lift(κ, λ,Σ) is the statement that for every generic g ⊆ Coll(ω,<κ), in V [g],
for every every Σg-cmi operator F there is an operator F∗ ∈ dom(Codeλ) such that
F = F∗ �HC . In this case we say that F is λ-extendable. Such an F∗ is necessarily
unique, as can be easily shown by a Skolem hull argument.12 If Lift(κ, λ,Σ) holds,
g ⊆ Coll(ω,<κ) is generic, and F is a Σg-cmi operator, then we let Fλ be its extended
version.

(ii) We let Proj(κ, λ,Σ)13 be the conjunction of the statements “Lift(κ, λ,Σ)” and
“for every generic g ⊆ Coll(ω,<κ), in V [g], we have

(a) for every Σg-cmi operator F, M#,F
1 exists and is λ-iterable;

(b) for every a ∈ Hω1 , Kω1,Σ,g(a) = Wλ,Σ,g(a)”.

12Suppose H0,H1 ∈ dom(CodeV [g]
λ ) are two extensions of F. Working in V [g], let π : N → Hλ+ [g]

be elementary such that N is countable and H0,H1 ∈ rng(π). Let (H0,H1) = π−1(H0,H1). Then it
follows from the definition of being a Σ-cmi operator that H0 = H0 �N and H1 = H �N. However, since
H0 �N = F �N = H1 �N, we get that N � H0 = H1, a contradiction.

13Proj stands for projective determinacy. The meaning is taken from clause (a).
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Recall that under AD, if X is any set, then θX is the least ordinal that is not a
surjective image of R via an ODX function. The following is the core model induction
theorem that we will use.

Theorem 3.3 Suppose κ < λ are two uncountable cardinals and suppose (P,Σ) is a
hod pair below κ such that Proj(κ, λ,Σ) holds. Then for every generic g ⊆ Coll(ω,<κ),
Sλ,Σκ,g � AD+ + θΣ = Θ.

We will not prove the theorem here, as the proof is very much like the proof of
the core model induction theorems in [7, Theorems 2.4 and 2.6], [9, Chapter 7], and
[11]. To prove the theorem we have to use the unpublished scales analysis for Sλ,Σκ,g ;
see [10]. Also, the readers familiar with the scales analysis of Lp(R) as developed
by Steel [13, 14] should have no problem seeing how the general theory should be
developed. However, there is one point worth going over.

Suppose we are doing core model induction to prove Theorem 3.3. Fix g ⊆
Coll(ω,<κ). During this core model induction, we climb through the levels of Sλ,Σκ,g ,
some of which project to R but do not satisfy that “Θ = θ ′ ′Σg . It is then the case that
the scales analysis of [10] cannot help us in producing the next “new” set. However,
such levels can never be problematic for proving that AD+ holds in Sλ,Σκ,g . This follows
from the next lemma.

Lemma 3.4 Suppose in V [g], M E Sλ,Σκ,g is such that ρ(M) = R and M � “ Θ 6= θ ′ ′Σg .

Then there is N E Sλ,Σκ,g such that M E N, N � “ AD+ + Θ = θ ′ ′Σg .

Proof Since M � “ Θ 6= θ ′ ′Σg it follows that P(R)M∩ (LpΣg

(R))M 6= P(R)M. It then
follows that there is someα < o(M) such that ρ(M|α) = R but M|α 6E (LpΣg

(R))M.
Let π : N → M|α be such that N is countable and its iteration strategy is not in M.
Let Λ ∈ V [g] be the λ-iteration strategy of N. Then a core model induction through
LΛ(R) shows that LΛ(R) � AD+ (this is where we needed Definition 3.1(ii)). How-
ever, its not hard to see that LΛ(R) � “ Θ = θ ′ ′Σg . It then follows from an unpublished
result of the the first author and Steel that LΛ(R) � P(R) = P(R) ∩ LpΣg

(R) (for

the case Σg = ∅, see [12]). Then let K E (LpΣg

(R))LΛ(R) be such that ρ(K) = R,
K � Θ = θΣg and Λ �HCV [g] ∈ K (there is such a K by an easy application of
Σ2

1(Code(Σg)) reflection). Since countable submodels of K are λ-iterable (see clause
(b) of Proj(κ, λ,Σ)), we have that K E Sλ,Σκ,g . Also we cannot have that K / M,
because otherwise N would have a strategy in M. Therefore, M E K.

We can now do core model induction through the levels of Sλ,Σκ,g as follows. If we
have reached a gap satisfying “Θ = θ ′ ′Σg , then we can use the scales analysis of [10] to
go beyond. If we have reached a level that satisfies “Θ 6= θ ′ ′Σg , then using Lemma 3.4
we can skip through it and go to the least level beyond it that satisfies “Θ = θ ′ ′Σg . We
leave the rest of the details to the reader.

One final remark is that under the hypothesis of Theorem 3.3, whenever Λ ∈ V [g]
is an iteration strategy of some Σ-mouse M over some self-wellordered a ∈ HCV [g]

with the property that ρ(M) = a, then LΛ(RV [g]) � AD+ (which can be proved by
a core model induction argument through LΛ(RV [g])). It then follows that Sλ,Σκ,g �
“ Θ = θΣg ”.
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We end this section with the following useful fact on lifting strategies. Among
other things it can be used to show clause (b) of Proj(κ, λ,Σ).

Lemma 3.5 (Lifting cmi operators through strongness embeddings) Suppose κ < λ
are such that κ is a λ-strong cardinal. Then whenever (P,Σ) is a hod pair below κ,
Lift(κ, λ,Σ) and clause (b) of Proj(κ, λ,Σ) hold.

Proof Fix an embedding j : V → M witnessing that κ is λ-strong. We only show
that Lift(κ, λ,Σ) holds, as the proof of clause (b) of Proj(κ, λ,Σ) is very similar.
Let g ⊆ Coll(ω,<κ) and h ⊆ Coll(ω,< j(κ)) be V -generic such that g = h ∩
Coll(ω,<κ). We can then extend j to j+ : V [g] → M[h]. Working in V [g], fix a
Σg-cmi operator F. Let Fλ = j+(F) �Hλ[g]. Fix X ∈ HCV [g] such that V [g] � F ∈
OD{X,Σg}. It then follows that M[h] � j+(F) ∈ OD{X, j+(Σg )}. This in turn implies
Fλ ∈ V [g].

4 A Core Model Induction at a Strong Cardinal

In this section we present a useful application of Theorem 3.3 that we will later use
to prove our main theorem. Recall that we say µ reflects the set of strong cardinals if
for every λ there is an embedding j : V → M witnessing that µ is λ-strong and for
any cardinal κ ∈ [µ, λ), V � “κ is strong” if and only if M � “κ is strong”.

Theorem 4.1 Suppose µ < κ < λ are such that λ is an inaccessible cardinal, µ and
κ are strong such that µ reflects the set of strong cardinals, and whenever (R,Ψ) is a
hod pair below κ such that λR = 0, Proj(κ, λ,Ψ) holds. Suppose m ⊆ Coll(ω,<κ) is
generic. Then in V [m], there is A ⊆ R such that L(A,R) � θ0 < Θ.

More specifically, let g = m ∩ Coll(ω,<µ) and P = (M∞)S
λ
µ,g . Then in V [m],

P has an (ω1, ω1)-iteration strategy Ψ such that Ψ is λ-fullness preserving. Moreover,

there is a stack~T ∈ HCV [m] on P according to Ψ with last model Q such that π
~T exists

and in V [m] (Q,Ψ
Q,~T) is a hod pair below ω1. Finally, in V [m], Ψ is λ-extendible and

L(Ψ
Q,~T,R) � AD+ + θ0 < Θ.

Clearly it is enough to prove the second part of the theorem, which we do with a
sequence of lemmas. Fix µ < κ < λ as in Theorem 4.1. Fix a V -generics m, g as
in the theorem and let j : V → M be an embedding witnessing that µ is λ+-strong
and such that κ is strong in M. Also fix a V -generic h ⊆ Coll(ω,< j(µ)) such that
h ∩ Coll(ω,<κ) = m. It then follows that j lifts to j+ : V [g]→ M[h]. Notice that it
follows from our hypothesis, Theorem 3.3, and Lemma 3.5 that Sλµ,g � AD+ +Θ = θ0.

Let k = h ∩ Coll(ω,<λ), S = Sλµ,g , and Γ∗ = (Fod)S. The following is an imme-
diate corollary of Lemma 2.5.

Corollary 4.2 For any a ∈ HCV [g], (Lp(a))S = Wλ,g(a).

We will use the next lemma along with [7, Lemma 1.29 ] to construct an iteration
strategy for P.

Lemma 4.3 j+[Γ∗] is a qsjs for j+(S(Γ∗)) as witnessed by P .
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Proof We first prove the following claim.

Claim Suppose R ∈ j(S) is such that there are π : P→ R and σ : R→ j(P) such
that j �P = σ ◦ π. Then R ∈ S( j+(Γ∗)).

Proof of Claim First let T ∈ j+(S) be the tree projecting to the universal (Σ2
1) j+(S)

set. We have that L[T,P] � P = H(δP)+ω . Notice that T ∈ V . It then follows that we
can lift j �P, π and σ to

j∗ : L[T,P] −→ L[ j(T), j(P)], π∗ : L[T,P] −→ L[π∗(T),R],

σ∗ : L[π∗(T),R] −→ L[ j(T), j(P)].

such that j∗ = σ∗◦π∗. The proof of [7, Lemma 2.21] now shows that R ∈ j+(S(Γ∗)).

To finish the proof, we need to show that for every A ∈ Γ∗, in j+(S):

(a) P is ( j+[Γ∗], j(A))-quasi iterable14.

To see (a), fix A ∈ Γ∗ and fix Q ∈ S(Γ∗) such that in S, Q is (Γ∗,A)-quasi iterable.
Then j+(S) � “Q is ( j+(Γ∗), j(A))-quasi iterable”. Since we have that j+(S) � “P is a
( j+(Γ∗), j(A))-quasi iterate of Q”, we have that j+(S) � “P is a ( j+(Γ∗), j(A))-quasi
iterable”. Repeating the argument for every A, we get that

(b) for every A ∈ Γ∗, j+(S) � “P is ( j+(Γ∗), j(A))-quasi iterable”.

It follows from (b) that to finish the proof of (a) it is enough to show that

(c) for every A ∈ Γ∗, in j+(S), every ( j+(Γ∗), j+(A))-quasi iteration is also a
( j+[Γ∗], j+(A))-quasi iteration.

To prove (c), it is enough to show that whenever Q is a j+(Γ∗)-quasi iterate of
P then δQ =

⋃
B∈ j+[Γ∗] HQ

τQB
. Fix Q which is a j+(Γ∗)-quasi iterate of P. Let π =⋃

B∈ j+[Γ∗] πP,Q,B. Let W be the transitive collapse of
⋃

B∈ j+[Γ∗] HQ
τQB

. Let σ : W → Q

be the uncollapse map and τ =
⋃

B∈ j+(Γ∗) πQ,∞,B. Because P =
⋃

B∈ j+[Γ∗] HP
B , π is

total. It then follows that

j �P = τ ◦ (σ−1 ◦ π).

The claim then implies that W ∈ S( j+(Γ∗)). This finishes the proof of (a). A similar
proof gives the following:

(d) whenever Q is a j+[Γ∗]-quasi iterate of P and ε : R →Σ1 Q is such that for every
A ∈ Γ∗, τQj+(A) ∈ rng(ε) then R ∈ j+(S(Γ∗)).

The key point again is that the embedding π defined above is total. This finishes the
proof of the lemma.

We can now use [7, Lemma 1.29] to get a strategy Σ∗ = Σ j+[Γ∗]. In our current
situation, there is one important difference with [7]. Here Σ∗ may not act on all trees

14Technically we should write ( j+[Γ∗], { j(A)}), but we abuse notation here.
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that are in M[h] as j+[Γ∗] is not in M[h]. However, it acts on all stacks that are in
Vλ[k]. This is simply because

F = {B ∩ RV [k] : B ∈ j+[Γ∗]} ∈ V [k].

Also, Σ = Σ∗ �Vλ[m] and Ψ = Σ �Vκ[m].

Lemma 4.4 In V [m], Σ is a (λ, λ)-iteration strategy that is λ-fullness preserving and
is guided by F.

Proof It is enough to show that Σ is λ-fullness preserving as we have already es-
tablished the remaining clauses. That Σ is λ-fullness preserving follows easily from
Corollary 2.6.

Next, we show that there is a stack~T on P according to Ψ with last model Q ∈
HCV [m] such that π

~T exists and Ψ
Q,~T has branch condensation. We follow the proof

of branch condensation that first appeared in [2] and also in [9, Chapter 7] (see
especially the proofs of [9, Lemmas 7.9.6 and 7.9.7]). Below we summarize what we
need in order to carry out the proof.

Recall that if Λ is a (possibly partial) iteration strategy for a λ-suitable premouse
R, then we say Λ has weak-condensation on its domain whenever R∗ is a Λ-iterate of
R such that the iteration embedding i : R→ R∗ exists and R∗∗ is such that there are
π : R→ R∗∗ and σ : R∗∗ → R∗ with the property that i = σ ◦ π, it follows that R∗∗

is λ-suitable.
Suppose (R, J) is a pair such that R is a transitive set such that for some ν that is a

cardinal in R, R � “ V = Hν+ + J is a precipitous ideal on ω ′ ′1 . We say (R, J) captures
Ψ if in V [m],

(a) (R, J) is countable and an iterable pair via taking generic ultrapowers by J and its
images;

(b) P ∈ HCR, Ψ �HCR ∈ R, and letting ΨR = Ψ �HCR, R � “no tail of ΨR has
branch condensation”;

(c) whenever ξ < ω1 and (Rα, Jα,Gα
15, πα,β : α < β ≤ ξ) is some iteration of

(R, J) of length ξ + 1, we have that π0,ξ(ΨR) has weak-condensation and fullness
preservation on its domain.

The main lemma towards showing that some tail of Ψ has branch condensation
follows.

Lemma 4.5 In V [m], there is no (R, J) that captures Ψ.

We do not give the proof of the lemma as it can be found in [2] and in [9, Chap-
ter 7]. We then derive a contradiction by showing the following lemma.

Lemma 4.6 Suppose no tail of Ψ has branch condensation. Then in V [m], there is a
pair (R, J) that captures Ψ.

15Gα ⊆ (P(ω1)/ Jα)Rα is a generic over Rα.
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Proof It follows from Theorem 3.3 and Lemma 3.5 that

Sλκ,m � AD+ + θ0 = Θ.

Then let Q = M
Sλκ,m
∞ . It easily follows from the fact that j+(S) � “Q is a Fod-quasi

iterate of P”, from Lemma 4.3 and Lemma 4.4 that Q = M∞(P,Ψ). It then follows
that V � |Q| < κ+.

To finish let π : P → Q be the iteration map according to Ψ. We also let T be
the tree of the universal (Σ2

1)S
λ
κ,m -set, ν = ((2κ)+)V and µ be a κ-complete normal

measure on κ. Working in V [m], let σ : R→ (Hν+ )V [m] be such that R is countable
and {Ψ,Q, π,T, µ} ∈ rng(σ). Let n ∈ ω be such that Tn projects onto{

(x,M) : x ∈ RV [m] ∧M EWλ,m(x) ∧ ρ(M) = x
}
.

Also let r ∈ ω be such that Tr projects to the set of (x, y, z) such that x codes a self-
wellordered X, y codes an M /Wλ,m(X) such that ρ(M) = X and z is a tree on M

according to the unique iteration strategy of M.
Then let

{Ψ,Q, π,T, µ} = σ−1
(
{Ψ,Q, π,T, µ}

)
,

R = σ−1((Hν+ )V ) and m = σ−1(m). We then have that R = R[m]. Then let J ∈ R
be the precipitous ideal on ω1 induced by µ (see [1, Theorem 22.33]).

Suppose now that no tail of Ψ has branch condensation. It then follows by el-
ementarity of σ that R � “ no tail of σ−1(Ψ) has branch condensation”. Since we
already know that in V [m], (R, J) is countable and iterable, to finish, it remains to
show that the (R, J) captures Ψ.

Let ΨR = Ψ �HCR = σ−1(Ψ), QR = σ−1(Q), and πR = σ−1(π). Notice that by
the construction of Ψ we have that whenever R is a Ψ-iterate of P via~T such that the
iteration embedding π

~T-exists, M∞(R,Ψ
R,~T) = Q and letting πR,Q be the iteration

map, π = πR,Q ◦ π
~T . We then have that

(1) R �“ if R is a ΨR-iterate of P via~T such that the iteration embedding π
~T-exists,

then M∞(R,ΨR) = QR, and letting πR,QR be the iteration map, πR = πR,QR ◦
π
~T”.

To show that (R, J) captures Ψ, let (Rα, Jα,Gα, πα,β : α < β ≤ ξ) be some

iteration of (R, J) of length ξ + 1. Let~T ∈ HCRξ be according to π0,ξ(ΨR) with last

model R such that π
~T-exists. We need to show that Sλκ,m � “R is Σ2

1-suitable”. By
(1), we have that there is p : R→ π0,ξ(Q) such that π0,ξ(πR) = p ◦ π~T .

It follows from the construction of J that π0,ξ �R is actually an iteration of R via µ
and there is q : π0,ξ(R)→ (Hν+ )V such that σ �R = q ◦ (π0,ξ �R). We then have that

π =
(

q � (π0,ξ �Q
R)
)
◦ p ◦ π~T,

implying that, by weak condensation of Ψ, that Sλκ,m � “R is Σ2
1-suitable”. The proof

that π0,ξ(ΨR) has weak branch condensation is very similar, and we omit it.
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It remains to show that iterations according to π0,ξ(ΨR) are correctly guided. We
do this only for normal trees, as the general case is only notationally more compli-
cated. To show this, we first consider the case of trees that do not have fatal drops.
Notice that if T ∈ HCV [m] is a correctly guided tree16 that is according to Ψ and
letting b = Ψ(T), then Q(b,T)-exists whenever x, y ∈ RV [m] are such that x codes
M(T) and y codes Q(b,T) then (x, y) ∈ p[Tn]. We then have that

(2) if T ∈ HCR is according to ΨR, is correctly guided, and, letting b = ΨR(T),
Q(b,T)-exists, then whenever x, y ∈ RR are such that x codes M(T) and y codes
Q(b,T), (x, y) ∈ p[Tn].

Now let T ∈ HCRξ be according to π0,ξ(ΨR) and such that it is correctly guided
and if b = π0,ξ(ΨR)(T), then Q(b,T)-exists. Let x, y ∈ RRξ be such that x codes
M(T) and y codes Q(b,T). By (2) we have that (x, y) ∈ p[π0,ξ(Tn)]. Keeping the
above notation, we have that (x, y) ∈ p[l◦π0,ξ(Tn)] = p[Tn] implying thatQ(b,T) E
Wλ,m(M(T)).

Lastly, we need to take care of trees with fatal drops. Notice that if T ∈ HCV [m]

is a tree that has a fatal drop at (α, η) then letting U be the tail of T after stage α on

O
MT

α
η and letting M E O

MT
α

η be the least such that ρ(M) = η and U is a tree on M

above η then whenever x, y, z ∈ RV [m] are such that x codes MT
α |η, y codes M and z

codes U, we have (x, y, z) ∈ p[Tr]. It then follows that

(3) if T ∈ HCR is a tree that has a fatal drop at (α, η) then letting U be the tail of T

after stage α on O
MT

α
η and letting M E O

MT
α

η be the least such that ρ(M) = η and
U is a tree on M above η, whenever x, y, z ∈ RR are such that x codes MT

α |η, y
codes M and z codes U, we have (x, y, z) ∈ p[Tr].

The rest of the proof is just like the proof of the case when T does not have a fatal
drop except that we now use (3) instead of (2).

Using Lemma 4.6 we can fix~T ∈ HCV [m] on P according to Ψ with last model

Q such that π
~T-exists and Ψ

Q,~T has branch condensation. To finish the proof of
Theorem 4.1 we need to show that in V [m], (Q,Ψ

Q,~T) is a hod pair below ω1. It

would then follow from Lemma 3.3 that in V [m], L(Ψ
Q,~T,R) � AD+. Because in

V [m], Ψ
Q,~T is ω1-fullness preserving, it follows that L(Ψ

Q,~T,R) � AD+ + Θ > θ0.
The following lemma then finishes the proof of Theorem 4.1. Let Λ = Ψ

Q,~T .

Lemma 4.7 V [m] � (Q,Λ) is a hod pair below ω1.

Proof Let ν < µ be such that letting l = m ∩ Coll(ω, ν), Q ∈ HCV [l]. We claim that

(1) in V [l] there are κ-complementing trees T, S such that in V [m],

(p[T])V [m] = {(x, n,m) : x ∈ R, n,m ∈ x and πx(m) ∈ Λ(πx(n))}.

We start our proof of (1) with the following claim.

Claim The fragment of Λ �HCV [l] that acts on normal trees is κ-uB in V [l].

16Recall that correctly guided trees do not have fatal drops, see the paragraph before [7, Definition 1.11].
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Proof of claim Given η ∈ (ν, κ) we let lη = m∩Coll(ω,<η). Also, let Pη ∈ V [l] be
the result of generically comparing all R ∈ HCV [lη] such that V [lη] � “ Coll(ω,<κ) R

is λ-suitable and λ-short tree iterable”. Also, let Qη be the Λ-iterate of Q obtained by

making Hη[lη] generically generic for B
Qη

δQη
. Let πη : Q→ Pη and ση : Q→ Qη be the

iteration embeddings. In V [g], let

U = {(x, y) ∈ R2 : S � “ x codes a and y codes a sound a-mouse projecting to a”},

Z = {(x, y, z) ∈ R3 : S � “ x codes a, y codes a sound a-mouse M
projecting to a, and z codes a normal
tree according to the unique strategy of M ” }.

Then we have that U ,Z ∈ Γ∗.
Suppose now that T ∈ HCV [m] is a stack on Q. We then have that T is according

to Λ if and only if for any η ∈ (ν, κ) such that T ∈ HCV [lη]:

(i) T does not have a fatal drop and for any limit α < lh(T) letting b be the branch
of T �α the following holds:

(a) Q(b,T �α) exists if and only if whenever n ⊆ Coll(ω, δQη ) is Qη[T]-generic
and x ∈ Qη[T][n] is a real coding M(T �α), there is y ∈ Qη[T][n] such
that (x, y) ∈ πη(τQU ) and if M is the mouse coded by y, then rud(M) �
“ δ(T �α) is not Woodin”.

(b) Q(b,T �α) does not exist if and only if there is σ : MT
α → Pη such that

πη = σ ◦ πT
0,α.

(ii) T has a fatal drop at (α, β) and whenever n ⊆ Coll(ω, δQη ) is Qη-generic, x ∈
Qη[T][n] is a real coding MT

α |β and y ∈ Qη[T][n] is a real coding O
MT

α

β , there is
z ∈ Qη[T][n] such that z codes the part of T after stageα and (x, y, z) ∈ πη(τQZ ).

It is not hard to see that if we let φ be the formula expressed by the clauses above,
then club many hulls of (HV [l]

κ ,Λ �HV [l]
κ ,∈) are generically correct about Λ �HCV [l]

and hence, about φ. More precisely, in V [l], there is a club of X ∈ HV [l]
κ such that

letting π : N → X be the transitive collapse of X, then whenever (n,T) are such that
n is generic over N and T ∈ N[n] is a tree on Q,

Q[n] � φ[T] if and only if φ[T].

The claim now follows from [15, Lemma 4.1].

To finish the proof of (1) we first notice that the claim holds for Λ �HCV [l]. Let
then (T, S) be the κ-complementing trees such that in V [m], p[T] = {x : x codes
T on Q such that φ[T]} (see [15, Lemma 4.1]). The proof of the claim then shows
that in V [m], p[T] = {x : x codes a tree T according to Λ}. It is now easy to modify
(T, S) so that they satisfy (1).

5 On the Strength of the Failure of UBH for Tame Trees

In this section, we present the proof of our Main Theorem. For the rest of this section
we assume that there is a proper class of strong cardinals. We start by introducing
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tame trees. Recall that we say κ reflects the set of strong cardinals (or κ is a strong
reflecting strongs) if for every λ there is an embedding j : V → M witnessing that κ
is λ-strong and for any cardinal µ ∈ [κ, λ), V � “µ is strong” if and only if M � “µ
is strong”.

Definition 5.1 (Tame iteration tree) A normal iteration tree T on V is tame if for
all α < β < lh(T) such that α = predT(β + 1), we have MT

α � “∃κ < λ < cp(ET
β )

such that λ is a strong cardinal and κ is strong reflecting strongs”.

While our proof will not need the assumption that κ is strong reflecting strongs,
we defined tame trees in this particular way because we believe tame failures of UBH
give inner models of ADR + “Θ is regular”. The full proof of this claim will appear in
a future publication.

Towards a contradiction, we assume that there is a tame iteration tree T on V with
two cofinal well-founded branches b and c, and the conclusion of the Main Theorem
fails. Let Mb = MT

b , Mc = MT
c , M = M(T), δ = δ(T), δ+

b = (δ+)Mb , δ+
c = (δ+)Mc ,

πb = πT
b , and πc = πT

c . Finally, let κ0 < κ1 < κ2 be such that:

• κ0 is the first strong reflecting strongs in V ;
• κ1 is the first strong above κ0 in V ;
• since T is tame, we have that all the extenders used in T have critical point > κ1.

Hence we can choose an inaccessible κ2 > κ1 and κ2 is below the critical point of
any extender used in T.

Suppose g ⊆ Coll(ω,<κ1) is V -generic. To make the notation as transparent as
possible, we will confuse our iteration embeddings that act on V with their extensions
that act on V [g]. Thus, for instance, πb : V [g] → Mb[g] etc. Working in V [g], fix a
hod pair (P,Σ) ∈ V [g] below κ1 such that P ∈ HCV [g] and λP = 0.

Lemma 5.2 (Key Lemma) For every hod pair (P,Σ) below κ1 such that λP = 0,
Proj(κ1, κ2,Σ) holds.

Given the Key Lemma we can easily get a contradiction by using Theorem 4.1
(applied with κ0 in place of µ, κ1 in place of κ and κ2 in place of λ). It is then enough
to show that the Key Lemma holds which is what we will do in the next few lemmas.
Towards the proof of the Key Lemma, we fix a hod pair (P,Σ) below κ1. Since clause
(b) of Proj(κ1, κ2,Σ) follows from Lemma 2.5, we will only establish clause (a).

We will only verify clause (a) of Proj(κ1, κ2,Σ) for Σ-cmi operators defined ac-
cording to Definition 3.1(i) as those defined according to Definition 3.1(ii) can be
handled in a very similar manner. Let us then fix such a Σ-cmi operator F. Notice
that it follows from Lemma 3.5 that for every ξ, both in Mb[g] and in Mc[g], F is
ξ-extendable. We then let Fb and Fc be the two Ord-extensions of F in Mb[g] and
Mc[g] respectively.

We say F can be lifted if for any x ∈ HMb[g]
δ+ ∩ HMc[g]

δ+ , we have Fb(x) = Fc(x), and
(LpFb (x))Mb[g] is compatible with (LpFc (x))Mc[g] (i.e., one is an initial segment of the
other).

We first present a simple lemma which illustrates some of the key ideas that we
will use.
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Lemma 5.3 Suppose x,M ∈ Mb ∩Mc are such that M is a sound x-premouse such
that ρ(M) = x. Then M E LpMb (x) if and only if M E LpMc (x).

Proof Suppose N is a countable hull of M in V . Then by an absoluteness argument
using that HC is in both Mb and Mc, N is a countable hull of M both in Mb and Mc.
Hence, the claim follows.

Unfortunately, the lemma does not immediately generalize to F-mice, since the
absoluteness used in the proof is not in general true. Fixing an N as in the proof that
is a countable submodel of M E (LpFb (x))Mb , it is still true that N can be realized as a
countable hull of (LpFb (x))Mb and (LpFc (x))Mc in Mb and Mc via certain embeddings
jb : N → M and jc : N → M in Mb and Mc respectively. However, it is not clear, in
the case F is an iteration strategy, that F jb

b and F jc
c (i.e., the pullbacks of Fb and Fc) are

the same strategies. The following lemma in fact shows that they have to be the same.

Lemma 5.4 F can be lifted.

Proof We already know that F can be extended to Fb and Fc. It remains to show
that whenever x ∈ Mb ∩ Mc, Fb(x) = Fc(x) and (LpFb (x))Mb 17 and (LpFc (x))Mc are
compatible. We show the second clause as the first is only a special case. Assume
towards a contradiction that (LpFb (x))Mb and (LpFc (x))Mc are not compatible. Let
Sb = (LpFb (x))Mb and Sc = (LpFc (x))Mc . Fix an elementary σ : W → Vε[g] for
some very large ε18 such that W is countable in V [g], (T, b, c,P, F, x) ∈ rng(σ) and
if (U, d, e,Q,G, y) = σ−1(T, b, c,P, F, x), then σ[lh(U)] is cofinal in lh(T). Let η =

|P|M[g]
= |P|V [g]. Note that η < κ1 by the definition of P. By our choice of κ1,

cp(πb) > η and cp(πc) > η. Since η ∈ rng(σ), let ν = σ−1(η). Also, let Md = MU
d ,

Me = MU
e , and (Gd,Ge) = σ−1(Fb, Fc). We now have that in W , (LpGd (y))Md is not

compatible with (LpGe (y))Me .
Let σξ : MU

ξ → MσU
ξ be the copy maps. We have that σβ ∈ MσU

0 = V [g] and

there are m : Md → MσU
0 and n : Me → MσU

0 such that σ0 = m ◦ πU
β,d and σ0 =

n ◦ πU
β,e. Let H = σβ(G∗) ∈MσU

β , where

G∗ = σ−1
(

(πb)−1(F)
)

= σ−1
(

(πc)
−1(F)

)
∈MU

0 .

Let Rd = (LpGd (y))Md and Re = (LpGe (y))Me . Finally, let Wd = m(Rd) and
We = n(Re). Notice that σβ �Q = m �Q = n �Q and m(Gd), n(Ge) both extend H.
But now, in V [g] = MσU

0 , Rd and Re can be compared as the both are G+-iterable
where G+ is σ0-pullback of H.

Next, we show that M[g] � “M#,F
1 exists and is <δ-iterable”. This will complete

the proof of the Key Lemma. Suppose not. Without loss of generality, assume that
δ+

b ≤ δ+
c . By our assumption, in M[g], the F-closed core model KF derived from a

17This means that whenever π : (N,P∗, x∗)→ (M,P, x) is such that M�LpFb (x) and N is countable
transitive, then N has a unique ω1 + 1 Λ-strategy where Λ is such that whenever R is an iterate of N and
U ∈ N is a tree on P∗ according to Λ then Λ(U) = F(πU) ∈ R.

18We will confuse this Vε[g] with V [g] during the proof.
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Kc,F that is constructed (up to δ) using extenders with critical point > κ2 exists and
is 1-small.19 The following claim then gives us a contradiction.

Claim LpFb (KF) � δ is Woodin.

Proof Recall that we assume (δ+)Mb ≤ (δ+)Mc and this along with the proof of [16,
Claim 4] in turns imply that LpFb (KF) E LpFc (KF) and hence LpFb (KF) ∈ Mb ∩
Mc. By the proofs of [16, Theorem 4.1] and [3, Theorem 2.2], LpFb (KF) � δ is
Woodin.

The claim together with the fact that there is a proper class of strong cardinals (in
M[g]) imply that M[g] � “M],F

1 exists and is<δ-iterable.” By the agreement between
V and M, we have that V [g] � “M],F

1 exists and is <κ2-iterable.” This finishes the
proof of the Main Theorem.

6 On the Strength of ¬UBH without Strongs

It is possible to prove a similar lower bound for ¬UBH by somewhat strengthening
the hypothesis yet dropping the assumption that there are proper class of strong car-
dinals. In this section, we state the result. Its proof is mostly due to the second author
and will appear elsewhere.

Given an iteration tree T of limit length and α < lh(T), we let T≥α be T starting
from α and T≤α = T �α + 1. Similarly, we define T<α and T>α.

Theorem 6.1 Suppose T is a normal tree on V with two well-founded branches b and
c such that if α = sup(b∩ c), then δ(T) ∈ rng(πT

α,b)∩ rng(πT
α,c) and T≥α ∈ MT

α . Then
in some homogenous extension of V there is a transitive model M such that R,Ord ⊆ M
and M � “ AD+ + θ0 < Θ ′ ′. In particular, there is a non-tame mouse.

The hypothesis of Theorem 6.1 includes, among other trees, alternating chains.
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