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SOLVABILITY OF SOME 
SINGULAR BOUNDARY VALUE PROBLEMS 

ON THE SEMI-INFINITE INTERVAL 

DONAL O'REGAN 

ABSTRACT. Existence of solutions to the nonlinear boundary value problem on the 
semi-infinite interval ^{py')' = qf(t,y,py'\ 0 < t < oo,y(0) = 0,y(0 bounded on 
[0, oo), are established. In the process we obtain new existence results for boundary 
value problems on compact intervals. 

1. Introduction. This paper examines the existence of solutions to singular and 
nonsingular second order nonlinear differential equations 

(1.1) ( ^ ( / > ( 0 / ( 0 ) ' = q{t)f{t,y(t\p(t)y\t)y 0 < t < oo 
\ y\o) = 0, y{t) bounded on [0, oo). 

Throughout / : [0, oo) x (—oo, oo) x (—oo, oo) —> (—oo, oo) and/?, j : [0, oo) —> [0, oo) 
are assumed to be continuous. 

Boundary value problems on the semi-infinite interval have been examined exten­
sively over the last ten years or so with most of the results obtained for the nonsingular 
problem (p = q = 1); see [1, 2, 6, 7] and their references. However recently [4, 11,12] 
some results for nonsingular problems have been obtained. These papers were motivated 
by the Thomas-Fermi equation 

y" = r*yK 0<t<oo 

subject to the boundary condition corresponding to the isolated neutral atom 

7(0) = 1 , limX0 = 0. 
t—»oo 

The technique, in establishing existence of solution to (1.1), in this paper involves ob­
taining results on the finite interval [0, n], n E N* = {1,2,...} and then extending these 
results (using the Arzela-Ascoli theorem) to the semi-infinite interval. This technique 
was initiated in the papers [7, 12,14]. 

The discussion will be in three parts. Firstly we examine the following boundary value 
problem on the finite interval 

n y, { L
p(pyJ = qf(t,y,p/)9 0<t<n 

1 ' ^ U0)=>(») = 0 
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144 DONAL O'REGAN 

for each n G TV4". Various existence results for problems of the form (1.2) will be obtained 
by exploiting the properties of the zero set off. Partial results of this type may be found in 
[3, 5, 8, 9, 13]; however the results of this section are new and complement the existing 
theory. The following existence principle will be needed in Section 2; see [3, 10] for 
details. 

THEOREM 1.1. LetneN* be fixed. Assume 

(1.3) / : [0, oo) x R2 —* R is continuous, q G C(0, oo) with q > 0 on (0, oo) 

(1.4) pG C[0, oo) PI C1 (0, oo) together with p>0on (0, oo) 

and 

(1 5) [&$> <^assumeSo^SuP(s)q(s)dsdu<ooiff(t,u,v)=f^ 
[SoP(s)q(s)ds < oo otherwise, for any b > 0.. 

Now suppose there is a constant M$ > 0, independent of X, with 

max{sup[y(0|,sup\p(t)y'(t)\} < M 0 
[0,»] (0,«] 

for any solution y to 

n 6x I 'pipy')' = \qf(t,y,py'\ 0<t<n 
1 ' h \y(0)=y(n) = 0 

for each X G (0,1). Then (1.2) has at least one solution y G C[0,n] PI C?(0,«] with 
pyf GC[0,w]. 

Section 3 will now use the results of Section 2 to establish existence of solutions to 
(1.1). Again here the results are new and extend and complement the existing theory 
found in [4, 11, 12]. Finally it is easy to see that the linear problem 

iy"=y + M9 0<t<OO 

Uo) = o 
with M > 0 a constant, has exactly one bounded solution y{t) = Me~* — M. In this case 
linif_oo.K0 = —M. Now in Section 4, results in Section 3 are used to deduce possible 
values of lim^ooXO if such a limit exists. 

For notational purpose let BC2[0,oo) denote the space of functions u with w, pu' 
bounded and continuous on [0, oo) and (pu1)' continuous on (0, oo). 

2. Finite interval problems. This section obtains existence results for problems of 
the form (1.2). However our eventual goal to discuss (1.1) and the technique involves 
obtaining the Mo, in Theorem 1.1, independent of A and n; so in hindsight we will obtain 
Mo independent of A and n. If we were just interested in the finite interval problem we 
need only obtain Mo independent of A and so it will be obvious from our analysis that 
some of the assumptions given below can be relaxed. We just remark on this and will not 
discuss it further. 

We begin with a generalization of Theorem 2.1 of [7]. 
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THEOREM2.1. Suppose(1.3), (1.4) and (1.5) are satisfied. In addition assume either 

(2.1) there is a constantM > 0 with uf(t, w, 0) > Ofor \u\> Mandt G [0, oo) 

or 

{ there are constants M > 0, a > 0 with uf(t,u,z) > Ofor \u\ > M, 
t G [0,oo), z G (-cr,cr) andu ^ cit i = l , . . . ,w. Heref(t9chQ) = 0, 
t G [0 G oo) am/ / = 1, . . . , m 

holds. Also suppose 

j there are continuous functions %jj, </>: [0,oo) —-» [0,oo) w#/z [/*(̂ , w,z)| < 
( ' ) Uw(\z\)forue[-M,M] 

and 

(2.4) P2q<l> is bounded on [0, oo). 

Define H(z) = Jo ̂  du,z>0 which is strictly increasing and suppose 

(2.5) 2M sup p2?</> G dom(/r *). 
[0,oo) 

Then (1.2) has a solution y G C[0,«] H C2(0,«] wiYA /?y G C[0,«]. Moreover we have 

sup KOI < M sup \p(t)y'(t)\ < H~x (1M sup p2q<j>) = Mi 
[0,«] (0,«] [0,oo) 

anrf |(p(0y(0)7| < M2p(t)q(t)<t>(t), t G (0,AZ) w/*ereM2 = sup[(Wl] t/;(v). 

REMARK. Let Kx = M in (2.1) and ^ 2 = M in (2.2). Then (2.2) implies (2.1) 
with K\ = max{^2, |c,-|}. However for the semi-infinite problem (2.1), with ATi = 
max{AT2, |c,|}, may be too restrictive in some situations; see example (i) in Section 3. 

PROOF. Let y be a solution to (1.6)^. We first show that 

(2.6) supbWl <M. 
[0,n] 

To begin with suppose (2.1) is satisfied. Suppose \y(i)\ achieves a maximum at to € (0, n). 
Then/(f0) = 0 mdy(t0)y"(t0) < 0. Assume \y(t0)\ > M. Then 

y(to){p(to)y\t0j)' = \y(to)p(t0)q(t0y(t0,y(to),0) > 0, 

i.e. y(to)p(to)y" (to) > 0, a contradiction. Consequently \y(to)\ < M and (2.6) is proven in 
this case. 

Now suppose (2.2) is satisfied. Suppose \y(t)\ achieves a maximum at to G (0,n), so 

y'{to) = 0 and y(t0)y" (to) < 0. Assume \y(t0)\ > M. If>(*0) ^chi= 1, . . . ,m, we have 
a contradiction as before, so \y(to)\ < M. On the other hand suppose y(to) = ct for some 
i = 1,...,m, say c\. There exists by (2.2), t\,t2 G (0,n) withy(t) = ci for f G [/i,fe], 
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146 DONAL O'REGAN 

h < to < t2, andy(t) ^ c\ for t > t2 and close to t2 and t < t\ and close to t\. Then (2.2) 
implies that there exists intervals (t2,8) and (r, fi) with 

y{t)f{uy{t\p{t)y\t)) > 0 

for t G (t2,6) and f G (r,fi). Consequently J < 0 ( P ( 0 / ( 0 ) ' > 0 for t G fe,£) and t G 
(r, /i). Supposey(to) > 0. Then (py')' > 0 for t > t2 and close to t2 and ^ < t\ and close 
to ^i. This together with y'{t) = 0,t\ < to < t2 implies / < 0 for t < t\ and close to t\ 
a n d / > 0 for t > t2 and close to t2, which contradicts the maximality of y(to) = [y(*o)|. 
A similar contradiction occurs ify(to) < 0. So (2.6) is also true in this case. 

Now the boundary conditions imply that y' has at least one zero in (0, n). Conse­
quently, if for some t G [0, n] with p(t)y'(t) ^ 0, then there is an interval [/x, i/] containing 
/ on which py' maintains a constant sign and py' vanishes at one of the endpoints. To be 
definite assume py' > 0 on (//, v) andp{p)yf (/i) = 0. Then on (/i, i/), {py')' < pq<j>^(py') 
so 

<p2q<$>y' 
i\)(py') 

and integration from /i to t yields 

H(p{t)y'{tj) < \y(t)-y(»)] sup p2q<f>. 
[0,oo) 

Thus 

(2.7) \p(f)y'(f)\ < H~l {1M sup p2q<i>) = Mx. 
[0,oo) 

The same bound M\ is obtained if py' < 0 on (//, v) and/or py/ vanishes at v. 
Now Theorem 1.1 implies that (1.2) has a solution^. In addition the properties ofy 

given in the statement of the theorem follow from (2.6), (2.7), (2.3) together with the 
differential equation. • 

Next two results are presented which rely on the "zero set" of the nonlinearity/. The 
first establishes the existence of a nonpositive solution. We remark that an analogue result 
could be obtained for nonnegative solutions. 

THEOREM 2.2. Suppose (1.3), (1.4), (1.5) and (2.3) with u G [-M, 0] are satisfied. 
In addition assume 

(2.8) there is a constant M > 0 withf(t, u, 0) < Ofor u < —M and t G [0, oo) 

or 

I there are constants M > 0, a > 0 withf(t,u,z) < Ofor u < —M, 
t G [0,oo), z G (~CT,CT) andu ^ cif i = l , . . . ,m. Heref(t,ch0) = 0, 
t G [0,oo)andi = l,...,m 

hold. 
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(i) Suppose there exists s\,r\ with s\ < 0 < r\ and 

\f(t9u,ri) <0,te [O,oo)and-M<u <0andf(t,u,s{) <0,te [0,oo) 
^2A°\and-M<u<0 

and 

(2.11) / ( ' , 0 , 0 ) > 0 , *E(0,oo) 

hold. Then (1.2) has a solution y with 

s\ <p(t)y\f) <rxand -M<y(t) < 0 fort E [0,n], 

and 
\(p(t)y'(t))'\ <P(t)q(t)4>(t) sup V(M), / G (0,11). 

In addition if 

(2.12) f(t,u,z) > 0, t E [0,oo), u E [-M,0] andz E (sun) 

then {py')' > Ofor t E (0, n). 
(ii) Suppose there exists r\ > 0 with (2.11) and 

(2.13) f(t,u,r{)<0, te[0,oo)and -M<u<0 

holding. Define J(z) = JQ ^T du, z > 0 which is strictly increasing and suppose (2.4) 
and 

(2.14) M sup p2q<t> = N£ dom^r1) 
[0,oo) 

hold. Then (1.2) has a solution y with 

-J~\N) < p(i)y'{i) <rxand -M< y{t) < 0 forte [0,n], 

and 
I {p(f)y'(tj)'\ < P{t)q(f)(t>{t) sup MM), t E (0, n). 

[-J-HN),n] 

In addition if 

(2.15) f(t9 w,z) > 0, f E [0, oo), u E [-M, 0] a/w/ z E (-oo, n ) 

then (pyf)f > Ofor t E (0, n). 
(Hi) Suppose there exists s\ < 0 with (2.4), (2.11) and (2.14) holding. Also suppose 

(2.16) / ( ' ,w , s i )<0 , te[0,oo)and -M<u<0 

is satisfied. Then (1.2) has a solution y with 

s\ < p(t)y'(t) <r\N)and -M< y(t) < 0 forte [0,«], 
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and 

\{p(t)y'(t))'\<p(t)q(tW) sup V(M), te(0,n). 
[siJ~l(N)] 

In addition if 

(2.17) / ( / , w, z) > 0, * G [0, oo), u G [-M, 0] and z E (su oo) 

^ / i ( p / y > 0 / o r / E ( 0 , w ) . 
(iv) Suppose (2.4), (2.11) and (2.14) hold. Then (1.2) has a solution y with 

-J~\N) < p{t)y\i) < J~l(N) and -M< y(t) < 0 forte [0, n], 

and 

\{p(t)y\t))'\<p(t)q(t)<t>(t) sup V(M), t€(0,n). 

In addition if 

(2.18) f{t, u,z)>0, t£ [0, oo), u G [-M, 0] a«</ z G (-00,00) 

*Aen (py')' > Ofor t <E (0,n). 

PROOF, (i) Let y be a solution to 

( )X (&<))= * « ) = <> 

where 0 < X < 1 and 

M*,u,v) = 

/(f,0,v) + K, w > 0 
f(t,u,v), u<0,si<v<r{ 

f(t,u,ri), u<Q,v>n 
f(t,u,si), u<0,v<si. 

We will show that any solution y of (2.19)^ is a solution of(1.6)A. We first show that 

(2.20) -M < y(t) < 0, t G [0, n]. 

Suppose^ has a positive maximum at to G (0, n). Then 

a contradiction. Thusj> < 0 on [0,/i]. Nowjy > — M follows as in Theorem 2.1 since 
s\ < 0 < n . Thus (2.20) is true. 

REMARK. (2.20) is also true if A = 1. 
We now show 

(2.21) sx <p(t)y'(t)<ru tE[0,n]. 
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\fp(f)y'(t) ^ r\ then there exists t\ < t2 G [0,w] such that y(t) < 0,p(t)y'(t) > rx for 
t € (hJi) with p{t\)y\t\) = r\ and/KfeJt/Cfe) > H- Consequently 

0 <p{t2)y\h) -p{h)y\h) = foyVds = A £p(s)q(sV(s,y(s),rl) ds < 0, 

a contradiction. Thus/?(0/(0 < n for f € [0,w]. Similarly p(t)y'(f) > sx for t £ [0,n] 
and (2.21) follows. 

REMARK. (2.21) is also true if A = 1. 
Now Theorem 1.1 guarantees that (2.19)i has a solution y. Hence y is a solution of 

(1.2) and all the properties hold, 
(ii) Let j be a solution to 

( )A l7(0)=j(n) = 0 

where 0 < A < 1 and 

r/-(f,0,v) + «, K > 0 
/2ft ", v) = I f{t, u, v), u < 0, v < r, 

l/(f,w,r,), « < 0 , v > n . 

If j ' is a solution to (2.22)> then (2.20) holds. In addition, as in part (i), we have 

(2.23) P(t)y'{i)<ru te[0,n]. 

The fact that 

(2.24) -r\N)<p{t)y\t), t£[0,n] 

follows as in Theorem 2.1. Now Theorem 1.1 guarantees that (2.22)i has a solution y. 
Hence y is a solution (1.2) and all the properties hold. 

(iii) and (iv). The proof follows from a slight modification of the above arguments. • 
Of course we may obtain analogue results for nonnegative solutions and solutions 

with no fixed sign. We illustrate with one example. 

THEOREM 2.3. Suppose (13), (1.4), (1.5), (2.1) or (2.2), and (2.3) are satisfied. Sup­
pose there exists s\,r\ with s\ < 0 < r\ and 

fw/(r,w,r!) > 0, t G [0,oo) and -M <u< M and uf(t,u9sx) > 0, 
( * *\t € [09oo)and-M<u<M. 

Then (1.2) has a solution y with 

s\ <p(t)y'(t) <rxand - M < y ( t ) <M forte [0,n], 

and 

\{p(t)y'(t))'\ <PMM) SUP V>(M), t e (0,«). 
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PROOF. Let y be a solution to 

n 2fiv I \W1 = Wi(t,y,py'\ 0<t<n 

where 0 < A < 1 and 

(f(t9u,n)9 v>rx 

f(t9u9v)= I f(t,u,v), sx < v < n 
[f(t9U9SX\ V<SX. 

We will show that any solution^ of (2.26)A is a solution (L6)A. AS in Theorem 2.1 we 
have (2.6) holding (since sx < 0 < rx)9 z.e., 

- M < K 0 < ^ , *G[0,«]. 

We now show 

(2.27) j ! < p(t)y'(t) < n , f€[0,#i]. 

If p(i)y'{t) ^ n then one of the following conditions occur: 
(i) there exists tx < t2 G [0,/i] such thatX0 > 09p(t)yf(t) > rx for f G (/i,/2) with 

P(t\)y'(h) > rx mdp(t2)y
f(t2) = n 

or 
(ii) there exists tx < t2 G [09n] such that j ( 0 < 0,/?(0/(0 > rx for / G (^i,fe) with 

^ i ) / 0 i ) = rx mdp(t2)yf(t2) > rx. 
If (i) holds then 

0 >p(t2)y'{t2)-p{tx)y'{tx) = / ' V ) ' < f r = \ft
2p{s)q{sy{s,y{s\rx)ds > 0, 

a contradiction. If (ii) holds then 

0 <p(t2)y'(t2) ~p(tX)y'(tx) = ft
2(py')'ds = A Jt%(s)q(sy(s9y(s)9rx) ds < 0, 

a contradiction. Thus p(t)y'(t) < rx for t G [0,/i]. Similarly p(t)y'(t) > sx for * G [0,«] 
and (2.27) follows. Now Theorem 1.1 guarantees that (2.26)i has a solution^. Hencey 
is a solution of (1.2) and all the properties hold. • 

3. Global solvability. The results of Section 2 together with Arzela-Ascoli theorem 
will now imply the solvability of (1.1). 

THEOREM 3.1. Suppose (1.3), (1.4), (1.5), (2.1) or (2.2), (2.3), (2.4) and (2.5) are 
satisfied. In addition suppose 

rb 

(3.1) / p(s)q(s)(j)(s)ds < oo for any b > 0. 

Then (1.1) has at least one solution y G BC2[0, oo) with 

KOI < M9 \p{t)y'{i)\ < H~l {1M sup p2q<f>) for t G [0, oo). 
[0,oo) 
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PROOF. By Theorem 2.1 there exists a solution yn to (1.2) with 

sup 1^(01 < M, sup \p(t)y'n(t)\ < H~l (lM sup p2q<t>) = M! 
[0,«] [0,/i] [0,oo) 

and |(/?(/K(0)'| < M2p(t)q(t)<t>(t), t E (0,n) where M2 = sup[(Wl] V(v). Consequently 
for f, s E [0, w] we have 

iy.(o - ̂ ) i = I r -/-/,("K(")^i < ̂  I r -rri 
Ms /?(w) I M* /?(w)' 

and 
|pW/»(0-^y»(*) l = \£(p(u)y'„(u))'du\ <Mx\fsp(u)q(u)<j>{u)du\. 

Now define functions un on [0, oo) by un(x) = j>„(x) for* E [0,«] and W„(JC) = 0 for x > n. 
Each u„ belongs to C[0, oo) and is twice continuously differentiable on (0, oo) except 
possibly at x = n. Let S = {un}^. By the Arzela-Ascoli theorem there is a subsequence 
Nf ofN+ and functions z\,pz[ E C[0,1] with u„(x) —> ZI(JC),/?(JC)M^(X) —> ^(xjz'^jt) 
uniformly on [0,1] as n —• oo through iVJ. Let Afj = A^/{1}. Then by the Arzela-
Ascoli theorem there is a subsequence N\ of N\ and functions Z2,/?Z2 E C[0,2] with 
u„(x) —> Z2(JC),/?(X)M^(JC) —> /7(X)Z2(JC) uniformly on [0,2] as n —* oo through N%. Note 
since A ^ C M w e have z2 = zi on [0,1]. Let A^ = A/£/{2} and proceed inductively to 
obtain for k = 1,2,..., a subsequence A/£ C Nk_\ and functions z*,/?z£ £ Q0, A:] with 
W/i (x) —» z^(x), /?(X)W|J(JC) —• /?(x)z^(x) uniformly on [0, k] as « —• oo through A/£. Note 
since A/£ C A^-i we have z* = z*_i on [0, k — 1]. 

Define a function^ as follows. Fix x E [0, oo) and let k E A^ with x < &. Then define 
y(x) = Zjt(x). Now >> is well defined with y E C[0, oo) and /*/ E C[0, oo). Fix x and 
choose and fix k > x, k E AT4". Then 

~ Jo ~7v)l ^ M ^ A 5 ' M « ( 4 ^ K W ) * r f v + M « W ^ 
for w E A .̂ Let« —* oo through A/* to obtain 

Zk(x) = -̂  ^ o /t^*>^*>A^^c*>-^<*>4c»>) ^ ^ ( j f ^ j ) £ A 

~ L rtv)l P(s)<lW{s> zk(s)9p(s)z'k(s)) ds dv + zk(k)^. 

Thus 

and so (p(x)y(*)) = /7(x)^(jc)/(x,^(;c),^(jc)y(x)). Consequently fey')' E C(0,oo) with 
p(pyf)' = <lf(t>y>Py')> 0 < f < oo. It also follows immediately that \y(t)\ < M and 
\p(t)y'(t)\ < Mx for 0 < t < oo. • 
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THEOREM 3.2. Suppose (13), (1.4), (1.5), (2.3) with u G [-Af,0], (2.8) or (2.9), 
(2.11) and (3.1) are satisfied. 

(i) Suppose (2.10) holds. Then (1.1) has at least one solution y G BC2[0, oo) with 
-M < y{t) < 0, si < p(t)y'(i) < r\ for t G [0, oo). If in addition (2.12) is satisfied then 
ipy')' > 0 on (0,oo). 

(ii) Suppose (2.4), (2.13) and (2.14) are satisfied. Then (1.1) has at least one solution 
y G BC2[0,oo) with -M < y(t) < 0, -J~l(N) < p{t)y'{t) < rxfort G [0,oo). If in 
addition (2.15) is satisfied then (py1)' > 0 on (0, oo). 

(Hi) Suppose (2.4), (2.14) and (2.16) are satisfied. Then (1.1) has at least one solution 
y G BC2[0,oo) with -M < y(t) < 0, s{ < p(t)yf(t) < J~\N)for t G [0,oo). If in 
addition (2.17) is satisfied then (py1)' >0on (0, oo). 

(iv) Suppose (2.4) and (2.14) are satisfied. Then (1.1) has at least one solution y G 
BC2[0,oo) with -M < y(t) < 0, -J~l(N) < p{i)y'(t) < J~x(N)for t G [0,oo). If in 
addition (2.18) is satisfied then ipy')' > 0 on (0, oo). 

PROOF. Essentially the same reasoning as in Theorem 3.1 (except we now use The­
orem 2.2) yields the result, i.e., we obtain a solutiony G BC2[0, oo) with the appropriate 
bounds on \y\ and \py/\. m 

In addition we have 

THEOREM 3.3. Suppose (1.3), (1.4), (1.5), (2.1) or (2.2), (2.3), (2.25) and (3.1) are 
satisfied. Then (1.1) has at least one solution y G BC2[0, oo) with —M < y(t) < M, 
sx <p(t)y'(i)<rxforte[0^). 

EXAMPLES, (i) Consider the boundary value problem 

(3 2) I M W = ^ +^XV + <02(2 - W ( 3 + fyry, 0 < t < oo 
K ' > \ y(0) = 0, y(t) bounded on [0, oo) 

withO <a< l9a + fj>-l,m> l,/i > l a n d c ^ O . 
To show that (3.2) has a solutiony G BC2[0, oo) we will apply Theorem 3.2(i). Let 

p(t) = ta,q(t) = t^ 

f(t,u,z) = (u + \){u + c)2(2 - z)m(3 + zf. 

It follows easily that (1.3), (1.4), (1.5) and (3.1) are satisfied since 0 < a < 1 and 
a + / 3 > - l . N o w i f - l <c< 1, withe ^ 0, then (2.8) holds with M= 1. However if 
c > 1 or c < — 1, (2.9) holds with M = 1, a = 1 say, and c\ = c. 

REMARK. It is not a good idea to chooseM = \c\ in (2.8) if c > 1 or c < — 1 because 
of (2.12). This example illustrates why (2.8) may be too restrictive in some situations 
when examining the semi-infinite problem (see Section 4). 

Let si = - 3 and rx = 2. Certainly (2.3), (2.10) and (2.11) are satisfied. Also (2.12) 
is true since M = 1. 

Thus Theorem 3.2(i) implies that (3.2) has at least one solution>> G BC2[0, oo) with 
- 1 < y{t) < 0, - 3 < / V ( 0 < 2 for r G [0, oo) and (fy')1 > 0 on (0, oo). 
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(ii) Next consider 

(3 3) I ^ w = ^(1 +>7)(2 - w<3+^,)W' ° < ' < °° 
v ' ; } j,(0) = 0, j (0 bounded on [0, oo) 
w i t h 0 < a < l , a + / 3 > - l , 2 a + /? = 0,m > 0, w > OandO < m + /* < 2. 

To show that (3.3) has a solution>> G BC2[0, oo) we will apply Theorem 3.1. It is easy 
to check that (1.3), (1.4), (1.5), (3.1) and (2.1), with M = 1, hold. 

Let/?(0 = P, q(t) = fl, <j)(t) = 2 and tf\z\) = (2 + |z|f(3 + \z\f. Certainly (2.3) is 
true and (2.4) follows since 2a + f3 = 0. Finally (2.5) is satisfied since J£° —r- du = oo. 
Consequently Theorem 3.1 implies (3.3) has at least one solutiony G BC2[0, oo). 

(iii) Consider 

lf = (l+y)(A+yT, 0<t<oo 
v ; 1X0) = 0 , j (0 bounded on [0,oo) 

with^ > 0, m > 1 and^ > 0 , 1 < (m_f)(I-i) i f w > 2-
To see that (3.4) has a solution 7 G BC2[0,oo) we will apply Theorem 3.2(iii). Let 

p = q = <j> = l,f(t,u) = (w + \){A + z)m and s\ = —A. It is also easy to check that 
(1.3), (1.4), (1.5), (3.1), (2.8) with M = 1, (2.11), (2.16) and (2.17) hold. Also with 
I/J(Z) = (A + z)m, z > 0 we have 

r — —- du = 00 if\<m<2 
(A + u)m ~ -

whereas 

r u A2~m 

- {A+uJ* (m-2)(m-l) l W > * 
Thus (2.14) is satisfied. Consequently Theorem 3.2(iii) implies that (3.4) has a solution 
y GBC2[0,oo). 

4. Semi infinite problem. We will now use the results of Section 3 to discuss the 
boundary value problem 

lpipy')'= qfif^py'), 0 < f < o o 
\y(0) = 0, lim^ooXO exists. 

THEOREM 4.1. Suppose (1.3), (1.4), (1.5), (2.3) with u G [-M,0], (2.8) or (2.9), 
(2.11) and (3.1) are satisfied. 

(i) Suppose (2.4), (2.14) and (2.18) hold. In addition assume the following: 

(Let (3> 0andc> 0 be fixed. Then for all u with M>u+M> (3 and 
J t > c there exists a constant K > 0 (which may depend on (3 and c) with 
\f(t, w, z) > Kfor z G [—J~l (N), J"l (N)]. Here J and N are as described 
[in (2.14) 

(4.1) 

and 

(4.2) i\imt^OQ(AJt
b^SbP(z)q(z)dzds-Bfb^) =)+oofor any constants A > 

W,B>0andb>0. 
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Then the boundary value problem 

(4 3) I lpipy')' = qf(Uy,py'\ 0 < / < oo 
V ' ' b(0) = 0, l im^ w ( / ) = - M 

has at least one solution y E BC2[0, oo). 
(ii) Suppose (2.4), (2.13), (2.14) and (2.15) are satisfied. In addition assume the fol­

lowing: 

r ds 
—— = oo for any b > 0 
P(s) 

(4.5) 

Let (3 > 0 and c > 0 be fixed. Then for all u with M>u+M>f3 and 
t>c there exists a constant K > 0 (which may depend on (3 and c) with 
f(t,u,z) > Kg{z)forz E [-J-l(N),n). HereJandN are as described in 
(2.14); also g: R —> R is such that g(0) > 0 and g has no negative zero s 
and its first positive zero is r\ 

and 

(4.6) 

(4.7) 

Let G(z) = SLf-um ~jzh)> —J l(N) < z < r\- Assume for any constants 

A>0andb>0 that l i m , ^ J'b ^G~l(A g p{z)q(z) dz) ds = +oo. 

Then (4.3) has at least one solution y E BC2[0, oo). 
(Hi) Suppose (2.4), (2.14), (2.16), (2.17), (4.2) and (4.4) are satisfied. In addition 

assume the following: 

Let (3 > 0, c > 0 and a, with s\ < a < J~l(N), be fixed. Then for all u 
with M>u+M>/3 and t>c there exists a constant K > 0 (which may 
depend on f3, c and a) withf(t,u,z) > Kforz E [a, J~l(N)]. Here J and 

IN are as described in (2.14). 

Then (4.3) has at least one solution y E BC2[0, oo). 
(iv) Suppose (2.10), (4.2) and (4.4) are satisfied. In addition assume the following: 

Let j3 > 0, c > 0 and a, with s\ < a < r\, be fixed. Then for all u with 
M > u + M > (3 and t > c there exists a constant K > 0 (which may 
depend on (3, c and a and a function g\: R —•* R withf(t, u,z) > Kg\{z) 
for z E [a,r\). Here g\, g\ (0) > 0, has no negative zero's and its first 
[positive zero is r\ 

and 

[Let Gx{z) = fSi^rySl<z< n . Assume $ ^ = oo and 
(4.9) 

{ lim,_>oo Si jk)Gx
x(A Slp(z)q(z)dz) ds = +oo for any constants A > 0 

iandb>0. 
Then (4.3) has at least one solution y E BC2 [0, oo). 

PROOF. Theorem 3.2 implies there existsy E BC2[0, oo) with ^{py')' = af(t,y,py'), 
0<t< oo, j<0) = 0 and in addition -M < y(t) < 0 on [0, oo) and {p}/)' > 0 on (0, oo). 

(4.8) 
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Thus py' is nondecreasing on (0, oo). If there exists a £ G (0, oo) with p(Qy'(Q = 0 
then p(t)y'(t) > 0 forf > £ so j i s monotonic for t > £. On the other hand if no such £ 
exists then y is monotonic. The above together with — M < y(t) < 0 on [0, oo) implies 
lim^oo^O exists. Consequently lim^ooXO = <* with a G [—M, 0]. It remains to show 
a = —M. To do this we assume — M < a < 0. 

(i) From Theorem 3.2 we know that -J'l(N) < p{t)y'(t) <J~\N) for t G [0, oo). 
Also since Y\mt-,OQy(t) = a there exists a c > 0 with>>(0 +M > \{a+M) > 0 for t> c. 
Now assumption (4.1) guarantees the existence of a constant K > 0 with (py')' > pqK 
for / > c. Integration from c to t (t > c) yields 

P(t)y'(t) >p(c)y'(c) + K^p(z)q(z)dz>-J-1(N)+K^p(z)q(z)dz 

and another integration from c to f yields 

)it) >\{oc-M)~r\N) /* A + ^ /* _ L fSp(z)q(z)dzds. 
2 Jc p(s) Jc p(s) Jc 

Now (4.2) implies y(t) is unbounded on [0, oo), a contradiction. Thus Hm^ooXO = — M. 
(ii) From Theorem 3.2 we know that -J~\N) < p(i)y'(f) < rx for t G [0, oo). We 

now claim that in fact —J~l(N) < p{t)y'(i) < r\ for t G [0,oo). To see this suppose 
p(j])y'(r]) = r\ for some r\ G [0,oo). Then since {py')' > 0 we have p(i)y'(f) = n for 
t > 7] and so y(i) = n JJJ - ^ +.y(77) f° r * > ?7- Now (4.4) implies y(t) is unbounded on 
[0, oo), a contradiction. Consequently —J~X(N) < p(i)y'(i) < r\ for t G [0, oo). Also as 
in (i), there exists a c > 0 with y{i) + M > \{a + M) > 0 for t > c. Now assumption 
(4.5) guarantees the existence of a constant K > 0 with (py7)' > pqKgipy') for f > c. 
Integration from ctot(t> c) yields 

tpWif) du ^ /•/>(>)/(') du ^ „ [* , x , x , 

J-J-*(N) g(u) ~ McVic) g{U) ~ Jc ^ V " V 

Now this implies for t > c that 

p(t)y'(t)>G-l(K^p(z)q(z)dz) 

since G: [— J_1(AT),n) —* [0,oo) is strictly increasing. Another integration from ctot 
yields 

><0 > ^(a-M) + J^)G-l[K^p(z)q(z)dz)ds. 

Assumption (4.6) implies y{i) is unbounded on [0,oo), a contradiction. Thus 
lim^ooXO = - M . 

(iii) From Theorem 3.2 we know that sx < p{i)y'{t) < J~\N) for / G [0,oo). We 
now claim that there exists to G [0, oo) with s\ < p{i)y'(t) < J~l(N) for t > to. To see 
this suppose p(j])yf(r]) = s\ for some rj G [0,oo). Now {py')' > 0, t G [0,oo) implies 
either p{t)y'{f) = s\ for t > r/ or there exists £ > r\ with p{t)y'{i) = s\ on [77, £] and 
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p(f)y'(f) > s{ on (£,oo). If p(f)y'(f) = sx for t > rj then y(i) = sx § ^ + y(r]), which 
contradicts the boundedness of y on [0, oo). Thus our claim is established with to = £. 

Also as in (i), there exists a c > 0 with y(t) + M > \{a + M) > 0 for t > c. 
Let d = max{c,f0} + 1. Note/?(0>>'(0 > p(d)y'(d) > s\ for t > d. Assumption (4.7) 
guarantees the existence of a constant K > 0 (which may depend on d) with {py')' > pqK 
for t > d. Integration from d to t(t> d) yields 

p(t)yf(t)>Sl+K^p(z)q(z)dz. 

Another integration from dtot yields 

1 r' ds r* 1 rs 

m>-2(«-m+sxjd —+KJd—jdp(Z)q(Z)dZds, 
which contradicts the boundedness of y on [0, oo). Thus \imt-^00y(t) = —M. 

(iv) From Theorem 3.2 we know that s\ < p(f)y'(t) < r\ for t G [0, oo). As in (ii) 
and (iii) there exists to £ [0,oo) with s\ < p{i)y'(t) < r\ for t > to. Also there exists 
a c > 0 with y(t) + M > \(a + M) > 0 for t > c. Let d = max{c,f0} + 1. Note 
P(t)y'(f) > P(d)y'(d) > s\ f° r t>d. Now assumption (4.8) guarantees the existence of a 
constant AT > 0 (which may depend on d) with {py')' > pqKg\(py') for t > d. Integration 
from d to t (t > d) yields 

rpiO/it) du ^ r/K0/(0 du ^ F, /* x , x f 

/ —TT > / —TT > K / P(z)<l(z)dz' 
Jsi £ l (" ) ~ •Wfo'W) gl(w) ~~ •" 

Now this implies for / > J that 

/>(0/(0 > G^(Kfdp{z)q{z)dz) 

since Gi: [si, n ) —> [0, oo) is strictly increasing. Another integration from d to t yields 

jKO > ^(a-m^J^)Gil(K^p(z)q(z)dz)ds9 

which contradicts the boundedness of y on [0, oo). Thus lim,_^oo.y(0 = ~ ^ - • 

REMARK. From the above analysis we see that if (4.6) is relaxed to 

lim^oo Sbj7s)G~l (^ SbP(z)q(z)dz) ds > M, for any constants^ > 0 and b > 0 

then existence of a solution in Theorem 4.1(ii) is again guaranteed. A similar remark 
applies to (4.2) and (4.9). 

EXAMPLES, (i) Consider the semi infinite problem 

( y = ( l + yXA+y'T, 0<t<oo 
y' ' b ( 0 ) - 0 , l i m ^ o o X O ^ - l 

with/I > 0,m > 1 and^ > 0, a < (m4x«-i) i f m > 2-
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Now example (iii) in Section 3 implies 

| y" = (1 +y)(A + /)»», 0 < t < OO 
\ y(0) = 0, y{t) bounded on [0, oo) 

hasasolutionj G BC2[0,oo). To see that (4.10) has a solution we apply Theorem 4.1 (iii). 

In this case/? = q = l,s\ = —A andM = 1. Clearly (4.2) and (4.4) are true and (4.7) 

follows with K = f3(A+ a)m. Consequently (4.10) has a solution^ G BC2[0, oo). 

(ii) Consider 

f / = (1 +7)(2 -yTQ +/)" , 0 < t < oo 
K } \ y(0) = 0, l i m , ^ y(t) = - 1 

with/w > 1 and« > 1. 

Now example (i) in Section 3 implies 

f y" = (l +y)(2 - y>"(3 +y')\ 0<t<oo 
\ y(0) = 0, y(i) bounded on [0, oo) 

has a solution^ G BC2 [0, oo). To see that (4.11) has a solution we apply Theorem 4.1 (iv). 
In this case/? = q = 1, s\ = —3, r\ = 2 andM = 1. Clearly (4.2) and (4.4) are true. To 
see that (4.8) is satisfied let gi(z) = ( 2 - z ) m a n d ^ = /3(3+a)w.NowGi(z) = f_3 ^z^r , 
—3 < z < 2 so 

G^\z) = 2- 5e~z if m = 1 whereas G^\z) = 2 - ((m - l)z + 5l-m)^ if m > 1. 

In addition if m = 1 then 

/*' ^ ) G F ' (̂  fb !*&&)&) ds = fb
 Gr' ( ^ - V) ds = 2(t -b) + j(e~A^ - 1) 

whereas if m > 1 and m ^ 2 then 

jT'Gf1 (^(s-6)) * = 2 ( / - ^ 

while if m = 2 then 

y* G71 (^(5 - 6)) * = 2{t -b)- ln(f + 5'1) + ln(Z> + 5"1). 

It is now easy to see that (4.9) is satisfied. Existence of a solution to (4.11) now follows 
from Theorem 4. l(iv). 
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