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MONOCHROMATIC HOMOTHETIC COPIES
OF {1,1+s 1+s+t}

TOM C. BROWN, BRUCE M. LANDMAN AND MARNI MISHNA

ABSTRACT. For positive integers s and t, let f(s, t) denote the smallest positive
integer N such that every 2-colouring of [1.N] = {1,2,..., N} has a monochromatic
homothetic copy of {1,1+s 1+s+t}.

We show that f(s,t) = 4(s+1t) + 1 whenever s/g and t/g are not congruent to O
(modulo 4), where g = gcd(s, t). This can be viewed as a generalization of part of
van der Waerden's theorem on arithmetic progressions, since the 3-term arithmetic
progressions are the homothetic copies of {1,1+ 1,1+ 1+ 1}. We aso show that
f(s.t) = 4(s+t) + 1in many other cases (for example, whenever s > 2t > 2 and t does
not divide s), and that f(s,t) < 4(s+t) + 1for al s, t.

Thus the set of homothetic copies of {1,1+s 1 +s+t} is aset of triples with
a particularly simple Ramsey function (at least for the case of two colours), and one
wonders what other “natural” sets of triples, quadruples, etc., have simple (or easily
estimated) Ramsey functions.

1. Introduction. Vander Waerden’s Theorem on Arithmetic Progressions[5] states
that for every positive integer k there exists a smallest positive integer w(k) such that
for every 2-colouring of [1,w(k)] = {1,2....,w(k)}, there is a monochromatic k-term
arithmetic progression. (In other words, if [1, w(k)] is partitioned in any way into two
parts A and B, then either A or B must contain ak-term arithmetic progression.) The only
known non-trivial values of w(k) are w(3) = 9, w(4) = 35, w(5) = 178. Furthermore the
estimation of the function w(k) for large k is one of the most outstanding (and presumably
one of the most difficult) problemsin Ramsey theory. For a discussion of this, see[2].

The function w(k) is often called the Ramsey function for the set of k-term arithmetic
progressions. Landman and Greenwell ([3], [4]) considered the Ramsey function g(n)
of the set of all n-term sequencesthat are homothetic copies (see the definition below)
of {1,2,2+t.2+t+t2 ..., 2+t+t2+... +t"2} for some positive integer t. They
obtained a lower bound for g(n) and an upper bound for g (3), where the (r) indicates
that r colours are used. Other “ substitutes” for the set of k-term arithmetic progressions
wereintroduced in [1].

In contrast, in this paper we consider the Ramsey function associated with a much
smaller set of sequences, namely the set of homothetic copiesof {1,1+s,1+s+t} for
given positive integers sand t.

A homothetic copyof {1, 1+s, 1+s+t} isany set of theform {x, x+ys, x+ys+yt}, where
x andy are positiveintegers. From now on, let usagreeto usetheterm*“ (s, t)-progression”
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to refer to ahomothetic copy of {1,1+s,1+s+t}.

Instead of considering 3-term arithmetic progressions, as in the case k = 3 of
van der Waerden's theorem, we consider the set of (s, t)-progressions for given positive
integerssandt. (Notethat the (1, 1)-progressions are the 3-term arithmetic progressions.)

For positive integers s and t we define f (s, t) to be the smallest positive integer N
such that every 2-colouring of [1, N] has a monochromatic (s, t)-progression. Note that
f(s.t) = f(t, s). We will usethis fact several times.

We show that for all positiveintegerssandt, if s/g# Oandt/g # 0 (mod 4), where
g = ged(s. t), thenf (s, t) = 4(s+1t) + 1. A special caseof thisisw(3) =f(1,1) = 9. Thus
this result can be viewed as a generalization of the case k = 3 of van der Waerden’s
theorem.

We also show that f(s.t) < 4(s+t) + 1 for al sandt, and we show that even if
s/g=0ort/g= 0 (mod 4), the equality f(s.t) = 4(s+t) + 1 still holds, except for a
small number of possible exceptions. For example, we are unable to find the exact value
of f(4m, 1), although we show in Theorem 4 that 4(4m+ 1) < f(4m, 1) < 4(4m+1) + 1.
The remaining cases where f (s, t) is unknown are described in Section 4.

2. Upper bounds. First we give asimple proof of theweak bound f (s, t) < 9s+ 8t,
which is subsequently refined (in Theorem 2 below) to give the stronger bound f(s, t) <
4(s+1t) + 1. The equality w(3) = 9 will be used in our proof of this weak bound, but will
not be used again.

We prove f(s,t) < 9s+ 8t by contradiction. Assume that f(s,t) > 9s+ 8t, and let
[1, 9s+ 8t] be 2-coloured, using the colours Red and Blue, in such away that thereisno
monochromatic (s, t)-progression. Since w(3) = 9, the set {s, 2s, 3s, . .., 9s} contains a
monochromatic (say in the colour Red) 3-term arithmetic progression. Let us suppose,
in order to simplify our notation, that this Red progression is {s, 5s, 9s}. (In all other
cases, the argument is essentially the same.)

Consider the (s, t)-progressions {s, 5s, 5s+4t}, {5s, 9s, 9s+4t}, {s. 9s, 9s+8t}. Since
by assumption none of these is monochromatic, and s, 5s, 9s are all Red, it follows that
{5s+ 4t,9s + 4t, 9s + 8t} is a Blue (s, t)-progression, a contradiction, completing the
proof.

The following theorem will be useful in obtaining both upper and lower bounds for
f(s ).

THEOREM 1. Let s, t, ¢ be positive integers. Then f(cs, ct) = c(f (st) — 1) +1.

PROCOF. Let M = f(s,t). Let B be a2-colouring of [1, ¢(M — 1) + 1]. Since every 2-
colouring of [0, M — 1] contains a monochromatic (s, t)-progression, every 2-colouring
of {0,c,2c,..., (M — 1)c} containsamonochromatic (cs, ct)-progression. Hence, every
2-colouring of {1.c+1,2c+1,.... (M — 1)c + 1} contains a monochromatic (cs, ct)-
progression. Thus, f(cs,ct) <c¢(M —1) + 1.

On the other hand, we know there is a 2-colouring, B, of [1,M — 1] that
contains no monochromatic (s, t)-progressions. Define B’ on [1,c(M — 1)] by
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B'([c(i—1)+1,ci]) = B(i), fori=1,...,M — 1. We will show that B" avoids monochro-
matic (cs, ct)-progressions, which will complete the proof.

Assume, by way of contradiction, that X3, X2, X3 isa(cs, ct)-progression, contained in
[1, c(M —1)], that ismonochromatic under B'. Thenthereexistsr > O suchthat x3—x; =
rct,xo —xg =res. Lety; = [x/c] forj =1.2.3. Theny; — y, = [x3/c] — [x2/c] = rt,
and similarly y, —y; =rs.

Hence y1. y». ys is an (s, t)-progression. Also, B(y;) = B([x;/c]) = B'(x), for eachj.
Thiscontradictsour assumptionthat thereisno monochromatic (s, t)-progressionrelative
to the colouring B. ]

f(ca,...,ca) = ¢(M — 1) + 1, where f(ay, ..., a) denotes the least positive inte-

ger N such that every 2-colouring of [1, N] will contain a monochromatic homothetic
copyof {1,1+a;,1+a; +ay,..., 1+ +tag+- - +a}.

Note that this proof easily extends to a proof that if f(a,..., a) = M, then

THEOREM 2. For all positiveintegerssandt, f(s,t) < 4(s+t) + 1.

PrROOF. Lets, tbegiven. Wemay assumewithout lossof generality that s < t. Wemay
alsoassumethat gcd(s, t) = 1, forif weknew theresultinthiscasethen, with g = gcd(s, t),
Theorem 1 would givef(s,t) = g[f(s/g.t/g) — 1] +1 < gl4(s/g+t/g)+1 -1 +1=
4(s+1t) + 1.

Consider the following set of 20 triples contained in [1, 4(s + t) + 1], which are all
(s, t)-progressions:

{1,s+1,s+t+1}, {s+1,2s+1.2s+t+1},
{2s+1.3s+1,3s+t+1}, {3s+1.4s+1,4s+t+1}.
{1,2s+1.2s+2t+ 1}, {s+1,3s+1.3s+2t+1},
{2s+1,4s+1,4s+ 2t +1}, {1,3s+1.3s+3t+1},
{s+1.4s+1,4s+3t+1}, {1.4s+1.4s+4t+1},
{s+t+1,2s+t+1.2s+2t+1}, {2s+t+1 3s+t+1, 3s+2t+1},
{3s+t+1,4s+t+1 4s+2t+1}, {s+t+1 3s+t+1 3s+3t+1},
{2s+t+1,4s+t+1.4s+3t+ 1}, {s+t+1.4s+t+1 4s+4t+1},
{2s+2t+1,3s+2t+1,3s+3t+1}, {3s+2t+1,4s+2t+1 4s+3t+1},
{2s+2t+ 1, 4s+2t+1,4s+ 4t +1}, {3s+3t+1,4s+3t+1 4s+4t+1}.

It is straightforward to check (under the assumptionsthat s < t and ged(s, t) = 1) that
except inthecasess = 1, 1 <t < 3, the 15 integers which appear in these 20 triples
are distinct. It is then a simple matter to check all 2-colourings of these 15 integers and

verify that each 2-colouring has amonochromatic triple from the abovelist of 20 triples.
(If oneidentifiesthese 15 integers with the numbers 1, 2, . . . , 15 viathe correspondence

11 s+1—2 25+1< 3, 3s+1— 4, 4s+1 5,
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S+t+1— 6, 2s+t+1— 7 3s+t+1— 8, 4s+t+1— 9,
2s+2t+1+— 10, 3s+2t+1« 11, 4s+2t+1 «— 12,
3s+3t+1— 13 4s+3t+1— 14, 4s+4t+1 «— 15

the resulting set of 20 triples contained in [1, 15] has a particularly pleasing form.) The
casess=1,1 <t < 3canbechecked separately. Inall casesweobtainf (s, t) < 4(s+t)+1.

]
3. Lower boundsand exact valuesfor f(s,t).

THEOREM 3. Lets. t bepositiveintegers, andlet g = ged(s, t). If s/g # Oandt/g # O
(mod 4) thenf(s,t) = 4(s+1) + 1.

PrROOF. The proof splits naturally into two cases.

Casel. Assumethat s/gandt/garebothodd. Inview of Theorem 2, we only need
to show that f(s,t) > 4(s+1t) + 1.
First, assumeg = 1. Now colour [1, 4(s + )] as

101010---10010101- - - 01,

where each of thetwo long blocks haslength 2(s+t). Assumex, y, zis amonochromatic
(s, t)-progression. Theny = x+dsand z = y + dt, for some positive integer d. Let B; and
B, represent [1, 2(s+t)] and [2(s+ 1) + 1, 4(s+ 1)], respectively.

In cased is odd, then x and y have opposite parity, and y and z have opposite parity.
Since x and y have the same colour and opposite parity, xisin By, whileyisin B,. Hence
zisin By, so that y and z cannot have the same colour, a contradiction.

If d iseven, then x, y and z all have the same parity, so they all must be in the same
B;. Butthend(s+t) = z— x < 2(s+1), and henced = 1, a contradiction.

If g is unequal to 1, then by Theorem 1 and the case in which g = 1, f(s,t) =
olf(s/g.t/g)— 1] +1 > g[4(s/g+t/g) +1— 1] +1 = 4(s+t) + 1. Thisfinishesthe proof
of Case 1.

CAsE 2. Assume without loss of generality that s/g = 2 (mod 4). First we assume
thatg=1. Thens= 2 (mod 4) and t is odd.

By Theorem 2, we only need to provide a 2-colouring of [1, 4(s +t)] that contains no
monochromatic (s, t)-progression. Let C be the colouring 11001100- - - 1100 (i.e., s+t
consecutive blocks each having the form 1100).

We proceed by contradiction. Assume that X, y, z is a monochromatic (s, t)- progres-
sion. Sothereexistsad > O suchthaty—x = dsand z—y = dt. By theway C is defined,
if C(i) = C(j) andj—i iseven, then4 dividesj—i. Now sincez—x = d(s+t) < 4(s+t)—1,
we must have that d < 4. The cased = 2 isimpossible, for if d = 2, then C(2) = C(x),
z—x =d(s+1) iseven, but 4 does not divide z— x, a contradiction. Hence d is odd. But
then, sinces= 2 (mod 4), y— xisevenyet 4 doesn’t dividey — x, again acontradiction.

This showsthat f(s,t) > 4(s+1) + linthecaseg = 1.
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If gisunequal to 1, we proceed just as at the end of Case 1. ]

Supposethat s/g= 0 (mod 4), whereg = gcd(s. t). Thent/gis odd, and in the case
t/g =1, thatis, t divides s, we have the following resullt.

THEOREM 4. Let m, t be positive integers. Then either
f(dmt,t) = 4(4mt+t) —t+1 or f(4mtt) =4(4mt+t)+ 1.

PrOOF. By Theorem 1, it is sufficient to show that 4(4m+ 1) < f(4m, 1) < 4(4m+
1) + 1. By Theorem 2, we only need to show that 4(4m+ 1) < f(4m, 1). Thusit suffices
to find a 2-colouring of [1, 16m + 3] that avoids monochromatic (4m, 1)-progressions.
Let x bethe colouring LJAOBOC1DO0, where

A =00110011- - - 0011 has length 4m
B = 11001100 - - 11 haslength 4m — 2
C =11001100- - - 1100 has length 4m
D = 00110011 - - 0011 has length 4m.

Assumex, Yy, zisamonochromatic (4m, 1)-progression. We shall reach acontradiction.
We know there exists a positive integer d such that y — x = 4md and z— y = d. Hence,
d4m+1) < 16m+2,sothatd < 3. Let

S; =[2,4m+ 1] (correspondsto A above)

S = [4m+ 3, 8m] (correspondsto B above)

S =[8m+2,12m+ 1] (correspondsto C above)
S =[12m+ 3, 16m+ 2] (correspondsto D above).

Casel. d=1.Theny.zbelongtothesame§, for somel <i < 4. Denoteby i, )
the j-th element of S. We seethat y = Si. j) for some odd j. Note that for each even p,
if i =2 or 4, then x (S(i — 1.p)) is unequal to x (S(i.p— 1)). Now if i = 2 ori = 4, then
x=y—4m= Si—1,j+1), sothat (by the preceding remark), x (x) isdifferent from x (y),
acontradiction. Now if i =3andj > 1, theny — 4m= §2,j — 1), and x(X) = x(y — 4m)
is unequal to x(y), acontradiction. If i =3 andj = 1, thenx =4m+ 2 andy = 8m+ 2,
and these again have different colours.

Case2. d=2.Theny—x=8mandz—y=2.If x(y) = x(2 theny must be one of the
following: 4m+ 1, 8m, 12m+ 1; and sincey — x = 8m, thisreducesthe possibilitiesfor y
to only 12m+1. However we seethat x(4m+ 1) isunequal to x(12m+1), acontradiction.

CAase 3. d =3. Theny — x = 12mand z—y = 3. Clearly x belongs to [1.4m],
so that y belongs to [12m + 1, 16m]. Now [1,4m] has colouring 1 0011 - - - 001100 1
while [12m+ 1, 16m] has colouring 0100110011 - - - 001100. Hence, since x(xX) = x(Y),
y belongs to the set {12m+ 3,12m + 5,12m+ 7.....16m — 1}. Now z belongs to
[12m+ 4, 16m + 3], so let's compare the colouring of [12m+ 1, 16m] to that of [12m +
4,16m+ 3]: [12m+ 1, 16m] has colouring as noted above, while[12m + 4, 16m+ 3] has
colouring 0 11001100- - - 11 0. Hence, in order for x(y) = x(2), y must belong to the set
{12m+1,12m+2,12m+4.12m+86, ..., 16m}, a contradiction. "
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THEOREM 5. Lets, tbepositiveintegerssuchthats >t > 1andt doesnot divides. If
|s/t]isevenor |2s/t] iseven, where| | isthefloor function, thenf(s,t) = 4(s+t)+1. If
|s/t] and | 2s/t] areboth odd, thenf (s, t) = 4(s+t)+1 provideds, t satisfy the additional
conditions/t ¢ (1.5. 2).

PrOOF. Lets,t satisfy the hypothesesof thetheorem. By Theorems1 and 2, it suffices
to show that f (s, t) > 4(s+t) + 1 under the additional assumption that gcd(s, t) = 1, hence
throughout the proof we assume ged(s. t) = 1.

Leta=|s/t]andb=[2s/t]. Thens=at+r, where0 < r < t. Also, 2s = 2at + 2r,
soif 2r = t we would havet = 2. However, since gcd(s, t) = 1, the caset = 2 is already
covered by Theorem 3. Therefore we assume throughout the proof that 2r # t.

CAase 1. We assume that a is even and b isodd. Thenb = 2a+ 1.2r > t, and
20s+t)=2(at+r)+2t=(b—Dt+2r+2t = (b + 2t + (2r —1t).
Hence we can colour [1, 4(s +t)] asfollows. Let

C=QRQR: - QRQJRQRQ- - - RQRY,

whereQ =11---1and R=00---0 each have lengtht, J =00---0Oand J = 11---1
each have length 2r — t, and where each of Q and R appearsb + 2 times.

Supposex, Y, zisany (s, t)-progressionin[1, 4(s+t)] withy—x = ds, z—y = dt. Wewiill
show that {X, y, z} isnot monochromatic. Clearly d < 3, sinced(s+t) = z—x < 4(s+t)—1.

If d=2,thenz— x=2(s+t), so C(2) # C(x). (Thisis because the colouring on the
second half of [1, 4(s + t)] isthe reversal of the colouring on thefirst half.)

If d =3, then, sincez=y+3tand C(i) # C(i +t) forall i > 2(s+1), if C(y) = C(2)
wemust havey < 2(s+1); butthenx =y — 3s < 2t — s. However, the conditions s > t,
s=at+r,0<r <t,aeven, imply that s > 2t, hencex < 0, acontradiction.

Now assumethat d = 1 and C(y) = C(2). Since z =y +t, y must occur in the block J,
so C(y) = 0. Since J haslength 2r — t < r, we see that y — r must occur in the block Q
just to the left of block J, sothat y — at — r = x also occursin ablock Q, and C(x) = 1.

Hence there is no monochromatic (s, t)-progression with respect to the colouring C,
therefore f (s, t) > 4(s+t) + 1. Thisfinishes Case 1.

CAse 2. Weassumethat aisodd andbiseven. Againwehaves=at+r,0<r <t,
but now b =2a, 2r <t,and 2(s+t) = (b+ 2)t + 2r.
Now colour [1, 4(s + t)] with the colouring

where Q, Raredefined asin Case 1, and K = 11--- 1, K’ =00- - - 0 each have length 2r.

Assumex, Y, zisan (s, t)-progression contained in [1, 4(s+t)], withy—x =ds,z—y =
dt; thend < 3.

If d =2, thenasin Case 1, D(x) # D(2).

If d=3and D(y) = D(2), thenasin Case 1, y < 2(s+1). In fact, sinceK and R have
opposite colours, y < 2(s+1t) — 2r. On the other hand,y > 1+3s > 2s+t+r +1,
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so y is an element of the last occurrence of R in [1, 2(s + t)], hence D(y) = 0. Then
X=y—3s<2(s+t)— 2r —3s < t,s0 D(x) = 1 and D(x) # D(y).

Now assume d = 1 and D(y) = D(2). Then y belongs to the last occurrence of Rin
[1,2(s+1)],andy =i (mod t), where2r < i <t.Hence, sinceaisodd, x=y— (at +r)
liesin oneof the Q's, and D(x) = 1, D(y) = 0.

Thus, no monochromatic (s, t)-progression existsin [1, 4(s+t)], hencef(s,t) > 4(s+
t) +1.

CAsE 3. Weassumethat bothaandb areeven. Thens=at+r,b=2a,0 < 2r <t,
and2(s+t) = (b+2)t +2r. Notethat a > 2, sinces > t.

We definethe colouring E on [1, 4(s + t)] asfollows. Let us use the notation~ 0= 1
and ~ 1 = 0. Then we define, in turn,

(D E()=11<i<r,

2 E@{)=~E@{i-T1),r<ic<t,

(3) E()=~E(@{i —1),t<i<2(s+1),

(4) E@) =~ E(i —2(s+1)), 2(s+1) <i < 4(s+1).

That is,

E = XYXY - -- XYL YXYX- - YXL,

where X has length t and consists of [t/r ]| blocks, each block of length r, followed by
asingle block of lengtht — |t/r |r, the blocks alternating in colour; Y is the same as X,
except the coloursarereversed; L is X restricted to [ 1, 2r]; and L" isthe sameas L, except
the colours are reversed.

Letx,y, zbean (s, t)-progression containedin [1, 4(s+t)], withy —x = ds, z—y = dt.

If d = 2, then by (4), E(x) = ~ E(2).

If d=3and E(y) = E(2), theny < 2(s+t), hencex=y—3s< 2t—s=2t—(at+r) <
—r < 0, acontradiction.

If d = 1and E(y) = E(2), theny < 2(s+t). We consider two subcases.

Thefirst subcaseisy =i (modt),r+1 <i <t Thenyandy —r areinthe same
block (X.Y, or L), hence by (2) E(y) = ~ E(y —r). By (3), and the fact that a is even,
E(y) =~ E(y—r) =~ E(y—at—r) =~ E(x).

The second subcaseisy =i (modt), 1 <i <r. Since E(y) = E(2) = E(y +1), y must
belongtotheblock L, thatis,y = (b+2)t+i = (2a+2)t+i,1 <i <r.Sincex=y—s=
(Ra+Qt+i—at—r = (a+Dt+(i+t—r),and1l < i+t—r <t,by(SQYEX) =~ E(i +t —7).
Also, sincey = 2(s+t) —2r+i,wehavez=y+t = 2(s+t) + (i +t — 2r), so by (4),
E@=~E@{i+t—2r).Sncel <i+t—2r <t,(2) givesE(@ =E( +t—r) =~ E(X).

Thus, under the colouring E, there is no monochromatic (s,t)-progression in
[1,4(s+1)], hencef(s,t) > 4(s+1t) + 1.

Case4. Assumethat bothaandbareodd, ands/t ¢ (1.5, 2). It followsthat s = at+r,
0<r<tb=2a+lt< 2r,and2(s+t) = (b+2)t+(2r—t). Also,a > 3, asaconsequence
of theassumptions/t Z (1.5, 2).

Letp=t—r. Thenp < t/2. Definethe colouring F by setting, in turn,

(6 Fi)=1,1<i<p,
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(6) F) =~F(@i—p),p<i<t,
(7) Fli)=~F(@i —1t), t<i <2(s+t),
(@) F(i) =~ F(i —2(s+1)), 2(s+1) <i < 4(s+1).
That is,
F = ABAB- - - ABAM BABA. - - BABM',

where A and B are the same as the blocks X and Y in Case 3, except that p replacesr; M
is B restricted to [1. 2r — t]; and M’ is the same as M with the colours interchanged.

Let x,y, zbean (s, t)-progression containedin [1, 4(s+t)], withy — x = ds, z—y = dt.

If d =2, then by (8), E(X) = ~ E(2).

If d=3and E(y) = E(2), theny < 2(s+t), hence(sincea>3) x=y—3s<2t—s=
2t — (at +r) < 0, acontradiction.

If d=1and E(y) = E(2), theny < 2(s+1), and we again consider two subcases.

Thefirst subcaseisy = ut+i,1 <i <r.Thenl<i<i+p=i+t—r <t ,soby
(6), F(i + p) = ~ F(i). Using (7) and the oddness of a, we get F(X) = F(y —at —r) =
Fluu—(@+t+i+t—r)=Fut+i+t—r)=Fut+i+p)=~ Fut+i) =~ F(y).

The second subcaseisy = ut+i, r+1 < i < t. Since F(y) = F(y +t) and M
has fewer than i elements, y must belong to the last occurrence of the block A in
[1,2(s+1)]. Since 2(s+1) = (b+ 2t + (2t —r), this means that y = (b + 1)t +1i,
hence by (7), F(y) = F(i). Sncex =y—at—r = (b+ 1t +i — at —r, we have
FX)=~F(Gi—r)=F@i+t—r)=F(@+p) =~ F(@i) =~ F(y).

Thus, under the colouring F, there is no monochromatic (s,t)-progression in
[1,4(s+1)], hencef(s,t) > 4(s+1t) + 1. ]

4, Remarks. By Theorems 1 and 3, we would know the value of f(s,t) for al st
provided we knew the value of f(4m.t) when t is odd, and gcd(m,t) = 1. (Here we
are using f(s,t) = f(t,s).) Theorem 4 shows 4(4m+ 1) < f(4m,1) < 4(4m+ 1) + 1.
Theorem 5 takes care of many of the caseswheret > 1. For example, Theorem 5 shows
that f(4m, 3) = 4(4m+ 3) + 1 whenever 3 does not divide m. By examining the cases
not covered by Theorem 5, one sees that these are exactly the cases f(t + r,t) where
0<r<t<2r,and4dividest or 4dividest +r.

The computations f(4,1) = 20, f(8,1) = 36, f(12,1) = 52 suggest that perhaps
f(4m, 1) = 4(4m+1) for all m> 1.

For positive integers r.ay. ....a,, let f{0(y. . ... a,) denote the smallest positive
integer N such every r-colouring of [1, N] has a monochromatic homothetic copy of
{L1l+ay,..., l+ay+---+an}. Of coursefM(ay, ..., a,) always exists (by a statement

of van der Waerden’s theorem which involves any number of colours), but perhaps
one can say something about the rate of growth of f(ay,...,a,) as a function of
ay +--- + a,. The computations f@(1,1.1) = 35, f@(1.1,2) = 38, f?(1,1.3) = 44,
fA(1,1,4) =56, A(1, 1, 5) = 59 suggest that f @ (1. 1, n) does not grow linearly with n.
Perhapsf®@(1.1,n) ~ c2".

We have no idea of the growth rate of (s, t) asafunction of s+t.
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