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GENERALISED SECOND-ORDER DERIVATIVES OF CONVEX
FUNCTIONS IN REFLEXIVE BANACH SPACES

JAMES LOUIS NDOUTOUME AND MICHEL THERA

Generalised second-order derivatives introduced by Rockafellar in the finite dimen-
sional setting are extended to convex functions defined on reflexive Banach spaces.
Our approach is based on the characterisation of convex generalised quadratic
forms defined in reflexive Banach spaces, from the graph of the associated subdif-
ferentials. The main result which is obtained is the exhibition of a particular gen-
eralised Hessian when the function admits a generalised second derivative. Some
properties of the generalised second derivative are pointed out along with further
justifications of the concept.

1. INTRODUCTION

Generalised second-order derivatives of extended real-valued functions have been
extensively studied and used from many points of view in the last decade in nonsmooth
analysis as the following nonexhaustive list of works developed by Borwein and Noll,
Cominetti and Correa, Do, Hiriart-Urruty, Loewen and Zheng, Ndoutoume, Noll, Penot,
Rockafellar, Seeger,... shows. The desire to obtain second order expansions (Taylor's
expansion for example) for nonsmooth functions, by means of differential tools based on
epiconvergence of second order differential quotients led Rockafellar in [13] to introduce
"generalised" quadratic functionals (see the precise definition later), which may be
extended real-valued, as giving second derivatives of convex functions at certain points
of nonsmoothness. More precisely, given an arbitrary lower semicontinuous extended
real-valued proper (that is, not identically equal to +oo) convex function / : Rn —>
RU{-|-oo}, a point x where / is finite and a point x* £ df(x) (the convex subdifferential
of / at x), according to Rockafellar [13] (see also Borwein and Noll [5]), / is said to
have a generalised second derivative (or to be second differentiable in the generalised
sense) at x relative to x*, if the second order difference quotients (A^ 'fj (•) :=

l/t2{f(x + t-) — /(x) — t(x*, •)} epiconverge to a convex generalised quadratic form
denoted by f'J x, (as t j 0+). The linear and symmetric operator Tx>x* such that
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56 J.L. Ndoutoume and M. Thera [2]

fx,x'(h) = */2{TXtX*(h), h) for every h £ D o m / ^ , (the effective domain of fx\x.) is
then called the generalised Hessian of / at x relative to x*.

The main ingredient of this approach is the characterisation of convex generalised
quadratic forms defined on Kn, which are exactly convex functions q: Rn ->MU {+00}
for which the graph of the subdifferential mapping dq is a vector subspace. In [13] this
property results from geometric considerations, namely from the fact that the graph
of a maximal monotone operator defined on Rn, is a finite dimensional Lipschitzian
manifold; it means that it can be viewed locally as the graph of a Lipschitzian mapping
from R n to Rn.

An infinite dimensional version of this approach for second derivatives of con-
vex functions in terms of generalised quadratic functionals and Clarke's tangent cone
to the graph of the subdifferential mapping of df, has been provided recently by
Ndoutoume [11]. The main tool used in this context is the so-called Moreau-Yosida
approximation. More precisely, it has been proved in [11] that a lower semicontinuous
proper convex function q defined on a Hubert space, is a generalised quadratic form
if and only if for each e > 0, qe (the Moreau-Yosida approximate of index e of q)

is a convex quadratic form. An immediate consequence of this result is that when a
lower semicontinuous proper convex function / defined on a Hilbert space admits a
generalised second derivative at x relative to x* S df(x), then the mapping which to
h £ Dom/ j j . , assigns A°(h) (here A°(h) stands for the element of minimal norm in
the closed convex subset df'x\x*{h)) is a generalised Hessian of / at x relative to x*.

Another significant contribution to the characterisation of convex generalised
quadratic forms, within the framework of Hilbert spaces, has been provided by Bor-
wein and Noll in [5] and has led to comparable results to those given in [13].

It is purpose of the present paper to examine the corresponding question for non-
smooth convex functions defined on reflexive Banach spaces. We assume the reader is
familiar with elementary definitions and techniques from convex analysis (see [16] for
instance). We limit ourselves to the presentation of basic definitions and properties
pertaining to the generalised second order derivative of convex functions defined on a
reflexive Banach space, mentioning at the end further related developments. The paper
is organised as follows:

2. Convex generalised quadratic forms;

3. Generalised second derivatives of convex functions;
4. Application to an optimal control problem.

In the sequel, unless we specify the contrary, X will be a reflexive Banach space

and X* will represent its continuous dual. We recall that a function q: X —> M. is
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called a quadratic form when it can be written as

(1.1) q(h) = -(L(h),h) for all h G X,

where L: X —> X* is a symmetric linear continuous operator. It is well-known that
quadratic forms on X are exactly the functions q: X —> R for which the gradient
V<j>: X —* X* (in the Gateaux sense) is linear and continuous (see [10] for details).

Throughout the following, as usual, for an extended real-valued lower semicontin-
uous proper convex function q: X —> R U {+00}, we denote by

Dom? := {x G X | q(x) < +00},

the domain of q;

epig := {(x, r)eX xR\r^ q(x)}

the epigraph of q;

8q(u) := {z e X* I 9(v) ^ q{u) + (z,v- u), for aU v e X }

the conrez subdifferential of j at u ,

i*(0g) := | J dg(z)

the range of 9g;
:={xeX\ dq(x) # 0}

the domain of 9g; and finally,

Graphdg := {(a;, z*) G X x X* | x* G 0g(a:)}

the graph of 9g.

2. CONVEX GENERALISED QUADRATIC FORMS

We begin with:

DEFINITION 2.1 : A function q: X —> R U {+00} is called a generalised quadratic
form on X, if Dom q is a linear subspace of X and if there exists a linear symmetric
operator L from Domg to X*, such that q may be represented as

(2.1) q{h)=-(L{h),h), for all h G Domg.
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If furthermore the operator L appearing in (2.1) is closed, then q is referred to as a

purely quadratic form (see [5] for further details).

Among the generalised quadratic forms on X, we shall only be interested here in

those that are convex and which may be characterised as follows:

PROPOSITION 2 . 1 . Given a generalised quadratic form g : X - * i U {+<»},
the following statements are equivalent:

(i) q is convex;

(ii) q is non negative (that is q(x) ^ 0 for every x £ Domq).

PROOF: It suffices to remark that when q is a generalised quadratic form on X,
then for all x, y £ Domg, and for all A £ [0, 1], one has:

(2.2) A(A - l)q(x -y)= q{\x + (1 - A)») - Ag(«) - (1 - X)q(y).

and the proof follows. 0

Otherwise, the following elementary fact may be observed:

PROPOSITION 2 . 2 . Let q be an extended real-valued function defined on X.

The following statements are equivalent:

(i) q is a convex generalised quadratic form on X.

(ii) Dom q is a vector subspace of X, q is positively homogeneous of degree 2

and non negative on Dom q. Moreover, for every v £ Dom q, the mapping

defined by u 6 Dom t—> q(u + v) — q(u) — q{v) is tinear and symmetric.

P R O O F : Trivial. D

We now turn to our main concern in this section; namely the characterisation of
convex generalised quadratic forms defined in reflexive Banach spaces, from the graph
of the associated subdifferentials. For that purpose, we need to recall the concept of
complementary subspaces:

Two subspaces M and N of X are declared to be algebraic complements in X when:
(i) M + N = X and (ii) M l~l JV = {0}.

Algebraic complements are said to be topological complements, if the projection onto M

along N, that is, the mapping defined by P(m + n) = m is continuous. This obviously
forces M and N to be closed subspaces of X. In the setting of Banach spaces, every
subspace admits by Zorn's Lemma an algebraic complement. Moreover, closed algebraic
complements are always topological complements. It is no longer true that a closed
subspace of X admits a topological complement. For instance, the space Co of all real
sequences converging to zero has no topological complement in the space of bounded
real sequences. However, in a Banach space, any finite dimensional subspace, any closed
subspace of finite codimension (that is, which admits an algebraic complement of finite
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dimension) is topological complemented. Finally, the fact that every closed subspace
admits a topological complement characterises Hilbert spaces. For further details the
reader is referred to [9], [6] and [8].

The following elementary fact may be observed:

LEMMA 2 . 3 . Let q be a convexiower semicontinuousgeneralised quadratic form

on X, with the following representation:

(2.3) q(h) = \(T{h), h), for all h£ Domg.

Then

(i) R(dq) = T(Dom q) + (Dom q)1-;

(ii) D(dq) = Dom q;

(iii) Graph dq is a linear subspace of X X X*;

(iv) dq satisfies the symmetry property, that is,

{u, u*), (v, w*) e Graph9? = > (u, v*) = {v, u*).

PROOF: Let us prove that for all x £ Domg, one has

(2.4) dq{x) = T{x) + 1

Indeed, consider y* G X* such that y* — T(x) £ (Domg)1; since Domg is a linear

subspace, for all u € Dom q, we then have:

(2.5) (y*,u-x) = (T(x),u-x).

Furthermore, since

(2.6) q(u) - q(x) = i(T(x), u-x) + 1-(u- x, T(u - x)) + \{x, T(u - x)),

using the fact that

(2.7) l-{u - x , T(u -x))>0

it follows from (2.6) that

(2.8) q{u) - q(x) > \{T{x), u-x) + \(T(x), u - x).

From (2.5), using the symmetry of T, we get

(2.9) q{u) - q(x) > (y*, u - x) for all u £ Dom q.
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That means that y* £ dq(x).

Conversely, if y* £ dq(x), for all t > 0 and for all u £ Domg, one has:

(2.10) (y*, tu) ^ q(x + tu) - q(x) = t(T{x), u) + y (T(«), ti).

Dividing (2.10) by t > 0 we get

Hence, by passing to the limit as t —> 0+, we obtain

(2.12) (y* - T(x), u) ^ 0, for all u £ Domg.

As Domg is a linear subspace, this yields, (y* — T(x), u) — 0 for all u 6 Domg, and

therefore y* — T(x) G (Domg) , as desired.

The proof of assertion (ii) is trivial since it suffices to observe that by virtue of

(2.4), we have T(x) € dq(x) for all x £ Domg. Assertions (iii) and (iv) are immediate

consequences of (2.4). D

REMARK 2.1. Lemma 2.3 specifies that a necessary condition for a lower semicontin-
uous proper convex function to be a generalised quadratic form, is that its effective
domain coincides with the domain of the associated subdifferential mapping. Hence,
without loss of generality, we shall restrict hereafter our attention to the convex func-
tions which satisfy this property.

LEMMA 2 . 4 . Let q: X —> R U {+00} be a lower semicontinuous proper convex

function such that Graph dq is a tineas subspace of X X X*. Assume that g(0) = 0
and Domg = D(dq). Then,

(i) g is positively homogeneous of degree 2 and non negative on Domg;
(ii) Dom g is a linear subspace of X;

(iii) (Domg)J- = 5g(0).

PROOF: Let us prove assertion (ii) via Rockafellar's integration method (see [17]
for details), according to which for every x £ X, we have

n

(2.13) q(x)= sup{g(0) + V(ag (x i _ 1 ) 1 z , - x i _ 1 ) } .

The supremumis taken over all finite chains c(0, x) (that is XQ — 0, x\ • • • xn-i, xn = x

such that zoi zi> X2, • • • xn-i belongs to D(dq). For any finite chain c(0, a:) and for
all t £ ]R+, since dq[tu) = tdq(u) for every u £ Domg, one has

n
t2(2.14) t2 ^(dqixi-i), Xi - Xi-i) = (dqitXi-i), t(Xi - a s ^

P=i
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from which we derive

t2 sup {g(0) + Xi - xi-i

( 2 1 5 )
= sup {g(0) + V(dg(j/;_i), yi - yi-i)}.

c(0,tz) p = 1

This means: t2q(x) = q(tx), that is q is positively homogeneous of degree 2. Let us
now verify that Domg is a linear subspace of X. Consider (t, l i ) £ l x Domg; since
q(th) = t2q(h), necessarily th G Dom?. On the other hand, consider hi, h2 G Domg.
By using the fact that q is convex and positively homogeneous of degree 2, one has

(2.16) q{hx + ft2) = 4g (^~Y^) < 2(9(/n) + q{h2)) < +oo,

and therefore hi + h2 & Dom q.
Let us now prove that (Domg)1 = dq(0). Consider z* G (Domg) ; then for all

u 6 Domg one has (z*, u) = 0; consequently

(2.17) q(u) > g(0) + {z*,u-0}, for all u e Domg,

that means z* G dq(0). Conversely, pick z* G dq(O); then for all u G Domg, and for
all t > 0, one has q(tu) ^ (z*, tu). Since q(tu) = i2g(u), we get tq(u) ^ («*, u) for all
< > 0. Letting t go to zero, we obtain 0 ^ (z*, u) for all u G Domg. Using the fact
that Domg is a linear subspace, it follows: (z*, u) — 0 for all u G Domg. That means
z*G(Domg)"L. Q

We are finally able to characterise convex generalised quadratic forms from the
graphs of the associated subdifferentials.

THEOREM 2 . 5 . Let q: X —> RU{+oo} be a lower semicontinuous proper convex
function such that Domg = D(dq) and q(Q) = 0. Then the following statements are
equivalent:

(i) Graph dq is a linear subspace of X x X*;
(ii) g is a convex generalised quadratic form on X.

PROOF: Let us prove the implication (i) =>• (ii). We denote by 5(9g(0)) an alge-
braic complement of dq(0) in R(dq). Consider x G D(dq). We first claim that for all
y,y' G dq(x), one has

(218) projS(e9(0)) (y) = projs ( e , ( 0 ) ) {y'),
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that is, the projection of y onto S(dq(0)) coincides with the projection of y' onto
S(dq(0)). Indeed, set y = Vl + y2 and y' = y[ + y'2 with yuy[ G S(dq(O)) and
V2, y'2 £ dw(0). Since the graph of dq is a linear subspace and y, y' G dq(x), it follows:

(2.19) y-y'=yi-y[-{v2- y'2) e dg(0),

that is, yi -y[S S(dq{0)) D dq(O). Hence 1/1 - y[ - 0 and (2.18) holds true. Let us
now set for all y G dq(x)

(2.20) r(as) := projs (8, (0 ) ) (y).

Since c?g(O) and S(dg(0)) are algebraic complements in R(dq), then T is obviously
linear on Doing. In summary, we have proved that for each x G Domg = D(dq), one
has

(2.21) Oq(x) = T(x) + 0,(0),

where T(ai) denotes the unique vector defined in (2.21). From here, the rest of the
proof is similar to that given in [5] within the framework of Hilbert spaces. Indeed,
observing that T(x) £ dq(x) for all x G Domg, one has for all f g R

(2.22) q(x+tx)-q(x)>(T(x),tx),

that is,

(2.23) (2t + t2)q{x) > (T(x), tx).

Dividing (2.23) by positive (respectively negative) t, and letting t go to zero, we obtain:

q[x) = -(T(x), x), for every x G Domq.

On the other hand, since for all x, y G Doing,

(T(x), y) ̂  j(q(x + ty) - ,(*)) = \{(T{x)t y) + (T(y), x) + (t(T(y), y)),

letting t go to zero, we deduce that T is symmetric on Dom q. This ends the proof of the

implication (i) => (ii). The reverse implication (ii) => (i) is an immediate consequence

of Lemma 2.3. D

We are interested now in the duality point of view. For that purpose, we recall
that the Legendre-Fenchel conjugate of q is the functional q* defined by:

«•(*') :=sup{(**, a ) - « ( * ) } .
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THEOREM 2 . 6 . (Conjugacy) Let g: X —> R U {+00} be a lower semicontinuous

proper convex function such that Domg = D(dq) and g(0) — 0. Tien q is a convex
generalised quadratic form on X if and only if q* is a convex generalised quadratic

form on X*.

PROOF: It is an immediate consequence of Theorem 2.5 and the fact that dq and

dq* are inverse to each other. D

Recall that for a convex function q: X —* KU {+00}, the Moreau-Yosida approxi-
mate of q of index A > 0 is denoted by q\ and is denned by

(2.24) qx(h)=inix{q(X)+±\\x-h\\2}, for all h £ X.

In the sequel we shall suppose as in [2, Theorem 1.20] that X is a reflexive Banach
space such that X and X* are equipped with strictly convex and Kadec norms. We
shall denote by (C) this class of Banach spaces which includes the class of Banach
spaces which are uniformly convex along with their duals (for instance LP(T, B, /i),
with fi <r-finite and 1 < p < +00, Wk'p(Q), with Q, bounded, k £ ]1, +oo[, k £ N).
In the class (C), the infimum in (2.24) is attained at a unique point denoted by J'fe.
It should also be observed that in the class (C), the metric projection on any convex
closed set is single-valued and continuous. Throughout the paper we shall denote by
A°(x) the element of minimal norm in the closed convex set dq(x) := min llxll.

THEOREM 2 . 7 . Let X be of class (C), and let q: X -> R U {+00} be a lower
semicontinuous proper convex function such that Domg = D(dq) and q(0) = 0. The
following statements are equiavlent:

(i) Graph dq is a linear subspace of X x X*;

(ii) TAe mapping x G Domg i-> A°(x) is linear and symmetric. Moreover, q

admits the representation:

q(h) = |(A°(&), h), for all he Domg.

PROOF: Let us firstly prove that under assumption (i), equality: q(h) —
l/2(A°(h), h) holds true for all h £ Domg. In reality, we are going to prove that
this equality holds true whenever q is positively homogeneous of degree 2. In fact, for
all a; £ Domg = D(dq), and for all t £ R, we have

(2.25) q{th) + ^ ||te - th\\2 = t2 (q(x) + ^ ||> - fe||2) , A, h £ X.

Hence,

(2.26)
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From (2.26), we get q\(th) = t2q\(h). Consequently, since q\ is Prechet differentiable,
then one obtains: Vq\(th) = tVqx(h). As a result

(2.27) ^9x(th) = (VqxW, h) = t(Vqx(h), h).

By integrating (2.27) on [0, 1], we get:

(2.28) qx{h) - qx(0) = [\vqx{h), h)t dt,
Jo

from which we derive

(2.29) qx(h)=hvqx{h),h), for all h £ X.

Letting A go to zero and using the fact that Vq\(h) —> A°(h) for all h £ D(dq) (see
[1] for instance), we get

(2.30) q(h) = ]-{Aa{h), h), for all h £ Dom?.

Let us prove now that A0 is linear on Domg. Indeed, let x £ Domg = D(dq). Since
A°(x) is the element of least norm in dq(x), we have

(2.31) \\A°{x)\\

Using the fact that dq{x) = T(x) + dq(0) (see the proof of Theorem 2.5), we deduce

from (2.31) that:

\\A°(x)\\ = | K - r(:0|| = ̂ mino) ||W - T{x)\\,

where wo denotes the projection of T(x) on dq(0). That means that

.40(a;) = T(x) - projS g ( 0 ) T{x), for all x £ Domg.

The linearity of T implies that of A0 . Moreover, the symmetry property of A0 is easily

obtained from the relation:

{A°(u), v) - (T(u), v) for all u, v £ Domg.

The implication (ii) =$> (i) is an immediate consequence of Theorem 2.5. D
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3. GENERALISED SECOND DERIVATIVES OP CONVEX FUNCTIONS

Generalised second derivatives of extended real-valued functions, as defined by

Rockafellar [13] within the framework of finite dimensional spaces, requires in the

present setting the concept of Mosco-convergence of sets (see Attouch's book [1] or

the survey [3]). Let (X, T ) be a first countable topological space. Given a sequence

{Cn C X | n G N} of subsets of X, the r-lower limit of the sequence {Cn \ n G N},

denoted by T- lira inf C n is the closed subset of X defined by
n—>oo

T-liminf C n := {x G X \ 3(xn)nGti -^ x such that xn G Cn(Vn G N)} .

The r-upper limit of the sequence {Cn | n G N}, denoted by T-hmsupCn is the
n—>oo

closed subset of X defined by

T-limsupCn ~ \x £ X \ 3(n t )A € N , 3{a;*}A6N -^ x, such that xk G CnJVfc G N)\ .
n—»<x> *• >

DEFINITION 3.1: The sequence {Cn | n e N} is declared Kuratowski-Painleve

convergent for the topology T, or briefly r-convergent, if the following equality holds:
r- lim sup CnT- lim inf Cn.

Its limit, denoted by C = T-lim Cn, is the closed subset of X equal to this common

value

C = T-lim inf Cn = T-lim sup C n = T- hm C n .
n—»oo n—»oo n—»oo

When X is a normed linear space, the sequential weak upper limit of a sequence

{Cn | n G N} of subsets of X is defined by

seq -w- hm sup Cn := \x G X | 3(njt)fcGN, 3(xk)k€yxk ^ x,

such that xk G Cnjt (Vfc G N)} .

DEFINITION 3.2: A sequence {Cn \ n G N} of subsets of a normed linear space X

is said to Mosco converge to a set C, and we write C = M- hm Cn, if:
Tl—>0O

seq -w- lim sup Cn Q C C hm inf Cn .
n-.oo n-»oo

Equivalently, C = M- limn_oo Cn, if and only if both of the following conditions hold:

(i) for each x G C, there exists a sequence {xn \ n G N} norm converging to

x such that xn G Cn for each n G N;

(ii) for each subsequence {nk | k G N} and {asjt | fc G N} such that xj, G Cnj t ,

the weak convergence of {xk \ k G N} to i £ C forces x to belong to C.
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It is an immediate consequence of these definitions that Mosco convergence implies
Kuratowski-Painleve convergence and that the two notions coincide whenever X is finite
dimensional. It turns out that Mosco-convergence is a basic concept when considering
sequences of convex sets in reflexive Banach spaces.

DEFINITION 3.3: Let X be a normed space and {/, fn \ n £ N} be a sequence of

functions from X into ]RU{+oo}. We say that / is the Mosco-epi-limit of the sequence

{/„ | n £ N}, and we write / = M — epi lim / „ , if the sequence {epi/n | n G N} Mosco
n—>oo

converges to epi / .
This is equivalent to saying that, for any x £ X, the two following statements

hold:

(i) for any {xn} -^ x, then f{x) ^ liminf/n(xn)
Tl—>OO

and

(ii) for each x £ X, there exists {xn} A x such that limsup/n(zn) ^ / (*) .
n—*oo

This notion of convergence can be characterised in many other equivalent ways,
but we do not need to go into the details here; see [1] or [3] for additional description
and references.

Consider now a lower semicontinuous proper convex function / : X —> M. U {+00}
and a point x £ X where / is finite. Given a point x* £ df(x), we introduce the
second-order difference quotient as follows:

(3.1) (A[21/) » := ±{f(x + th) - f{x) - t{x\ h)}.

Different types of second-order directional derivatives can be introduced if one considers

different types of convergence for the family (A^ 'f) as (t J, 0). The pointwise

version has been studied in a detailed way in Seeger [18]. The epigraphical version

has been investigated in Rockafellar [14]. What is looked for there as a generalised

second order derivative of / at x relative to x*, is some generalised quadratic form as

a substitute for {V2/(a;)ii) v). This leads in the present setting to consider the following

definition: / will be said to have a generalised second order derivative at x relative to

x* if the functions ( A [ 2 ' / ) Mosco converge to a convex generalised quadratic form,

denoted by / " , . , (as t J. 0). In this case the linear symmetric operator TXlX* such that

(3.2) / £ . . = (TT,x.(h), h) for all ft £ Dom/;',..

is called the generalised Hessian of / at x relative to x*. The next theorem explains
our desire already expressed in the first part of this work, to obtain a characterisation

https://doi.org/10.1017/S0004972700013897 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013897


[13] Generalised second order derivatives 67

of convex generalised quadratic forms from the graph of the associated subdifferential
operator.

THEOREM 3 . 1 . Let f:X-+ RU{+oo} be a lower semicontinuous proper convex

function. Suppose x £ D o m / and consider x* £ df(x). Then f has a generalised

second derivative at x relative to x* if and only if the family of sets

[Grapha/-(»,««)]
1 * Jt>«

converges in the Kuratowslri-Painleve sense (as t J, 0} to a linear subspace.

PROOF: It suffices to observe that Graph<?(A^/J coincides with

[(Graph9/ — (x, x*))/t] and then to combine Attouch's subdifferential convergence

Theorem [1, Theorem 3.66] with Theorem 2.5. D

COROLLARY 3 . 2 . Let X be of class (C). Let f: X -> RU {+00} be a lower
semicontinuous proper convex function. Suppose x E D o m / and consider x* £ df(x).
Assume that / admits a generalised second derivative at x relative to x* denoted by
f'x'x* • Then the mapping ft £ Domq i-» A0(ft), (where A0(ft) denotes the element of
minima/ norm in the closed convex set dfx'x*(h)) is a generalised Hessian of f at x
relative to x*.

PROOF: It is an immediate consequence of Theorem 2.6. D

THEOREM 3 . 3 . (Conjugacy) Let f: X —» K U {+00} be a lower semicontinuous

proper convex function. Suppose x £ D o m / and consider x* £ df(x). Then f admits

a generalised second derivative at x relative to x* if and only if /* admits a generalised

second derivative at x* relative to x. Under these conditions, we have:

cr:...)* = (/-.-)"•
PROOF: Observing that ( ( A [ 2 ' / ) ^ = ( ( A [ 2 ) / * ) , ) , the result follows

from the continuity of the Legendre-Fenchel transformation with respect to Mosco con-

vergence (see [1]). D

Let us recall that the eqisum (or infimal convolution) of two convex lower semicon-

tinuous proper functions / and g is denned by / + g{x) := inf {/(«) + g(y — x)}.
e yEX

COROLLARY 3 . 4 . Let f:X —* RU {+00} be a lower semicontinuous proper

convex function. Let ip be a function constructed from f in either of the following

ways.

(i) ip := f + g where g is a convex function of class C2 on X;
(ii) <p = f + g, where g is the conjugate of a convex function ft of class C2

on X.
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Then, for a given pair (x, x*) G Graphs/ , / admits a generalised second derivative
at x relative to x* if and only if <p has a generalised second derivative at w relative
to w*, where (w, w*) := (x, x* + V</(a:)) (respectively (w, w*) := (x + V/i(a:*), x*) in
case (ii)).

PROOF: (i) is trivial, (ii) follows from the combination of Theorem 3.3 and the

formula (f + 9) =f* + h. D

COROLLARY 3 . 5 . Suppose that X is a Hilbert space and let f:X -> R U
{+00} be a lower semicontinuous proper convex function and let f\ be its Moreau-

Yosida approximate of index A > 0. Tien, for a given (x, z) G Graph 0 / , / admits

a generalised second derivative at u — (I + Xdf) (x) relative to z if and only if f\

admits a second generalised derivative at x relative to z.

PROOF: It suffices to observe that f\ = f + g with g(x) = (1/2A) ||a;||2 and

£*(?) = (A/2) IH2. D

We now give some elementary examples in order to clarify the meaning of / " „ .
(the generalised second derivative of / at x relative to x*).

EXAMPLE 3.1. Let / : X —» R be a Frechet differentiable convex function in a neigh-
bourhood of x £ X. If / is twice Frechet differentiable at x, then / admits a gen-
eralised second derivative at x relative to x* — V/(x), with V2/(a;) as a generalised
Hessian. In other words

The reader will note that the converse is true when X is finite-dimensional (see [7,

Proposition 4.1] for a proof).

EXAMPLE 3.2. Let f:X—> RU{+oo} be a convex generalised quadratic form. Then,
for all {x, x*) G Graph df, it is readily seen that

Km - [ G r a p h s / - (a;, x*)]
no t

exist and coincides with Graph df. That means / admits a generalised second deriva-
tive at x relative to x* and / " „ • coincides with / .

EXAMPLE 3.3. Let X be of class (C) and let / : X -» R U {+00} be a lower semi-

continuous proper convex function. Given (x, x*) 6 Graph0/, assume that the second

order difference quotient functions

Jh) = i { / ( x + th) - f(x) - t(x*f h)} Vft G X
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Mosco epiconverge (as t | 0) to some function $ such that $(0) ^ —oo. It is well-
known in this case (see [7] for example) that $ is a lower semicontinuous proper convex
and positively homogeneous of degree 2 function. If we assume in addition that Dom $
coincides with D(d$), then we can prove as in Theorem 2.6 that $ may be represented
as:

l(A°(h), h) Vft € Dom$.
2

Here A0(ft) stands for the element of minimal norm of the closed convex subset d$(h).
Hence, under the above assumptions, it is readily seen that / admits a generalised
second derivative at x relative to x* , if and only if the mapping A0 : Dom $ —* X* is
linear.

EXAMPLE 3.4. Consider a convex integrand / : fl x KdU {+00} with the correspond-
ing integral If(x) = / n /(u>, x(w))du on a; € 1^(0) (1 < p < +00), the space of p-
integrable measurable functions x from a measurable space 0 to Rd. We recall the
well-known fact that when / / is proper, one has that: an element x* of L9(Cl) be-
longs to dlf(x) if and only if x*(u) belongs to dfu>(x(w)) for almost all w 6 Q, where
/„(•) = / ( w , •) (with 1/p + l/q — 1) (see [15] for details). Assume that /„,(•) admits a
generalised second derivative at x(u) relative to x*(u>) for almost all u € fi. It follows
that / / also admits a generalised second derivative at x relative to x*, and

Jn

For the proof, we first recall the well-known fact (see [7, Theorem 5.5] for instance)

that the existence of the Mosco-epi-limit of the second order difference quotients

(1,) = !{/(«, «(«) + !«)-/(«,»(»))-<<«•(«),«)}

(as t I 0) for almost all w 6 f2, implies the existence of the Mosco-epi-limit of the

second order difference quotient functions

1

(as < I 0). Moreover, if we set q = Mosco-epi- lim ( A j ' / / ) , it follows that
t-.o+ V J x,x*

Then, using the fact that for almost all u € fl, f'J^^*^ is a convex generalised

quadratic form, we can deduce from Proposition 2.2 that q is also a convex generalised

quadratic form.

We conclude this section with the following comment:
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COMMENT 3.1. We observe that when the function / is twice Frechet differentiate at
x, then df" x, (with x* — V/(z)) coincides with V2f(x) (the second Prechet derivative
of / at i ) . In this case, the symmetry property (see (iv) Lemma 2.3) of dfxx, can be
rewritten as follows:

<V2/(z)«, v) = (u, V2f(x)v) V«, n e X.

This means that the linear mapping V2 f{x): X —> X* is self-adjoint. We are all familar
with this property of the second order Prechet derivative. In a nondifferentiable setting
where dfx x» can be considered as a substitute for V2/(x), the symmetry property of
&fx x* plays a r°l e parallel to the one played by the well-known symmetry property of
the Hessian of a function at a given point. For more background on the usefulness of
the symmetry property of dfxx, within the framework of Hilbert spaces, we refer the
reader to [12]. In this case, the symmetry property of dfxx, was proved by using the
Moreau-Yosida approximation (see [12, Theorem 2.1]).

4. APPLICATION TO AN OPTIMAL CONTROL PROBLEM

We consider the following nonsmooth control problem:

{ minimise the function g(y) + h(u)

over all (y, u) subject to the state system (variational inequality)

Ay + dF(y) 3 Bu + f

where A is a linear operator from the state space X (which is a reflexive Banach space)

to X* (its topological dual), dF is a subgradient operator (that is, the subdifferential of

a lower semicontinuous proper convex function F on X), and B is a linear continuous

operator from the space of controls U (which is also a reflexive Banach space) to X*.

g is of class C1 on X and h is a lower semicontinuous proper convex function on U.

We observe the following:

THEOREM 4 . 1 . (First-order optimaiity conditions). Let (y,u) be any optimal

solution for problem (V), and set r := Bu — Ay + f. Assume that F has a gener-

alised second derivative at y relative to f and the linear mapping A is weak to norm

continuous, that is, for every sequence {xn | n £ N} such that xn —» x in X, then

A(xn) >̂ A(x) in X*. Then

8h(u),

where Z* denotes the adjoint of the linear Lipschitz mapping Z: X —> X* defined by

Z(v) =(A + dF^y1 o B{v), for all ue U.
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PROOF: The proof relies strongly on the fact that Graph dFjj- is a linear subspace.
Indeed, let us first recall that for all u G U, the variational inequality

A(y) + dF(y) 9 Bu + f

admits an unique solution denoted by y(u). Moreover, the mapping u \-* y(u) is
Lipschitz (see [4, Theorem 2.1] for details). Then, for every v G U and A > 0, we have

(4.1) g(y(u + Xv)) + h(u + Xv) > g{y(u)) + h(u).

Set Z\{y) := (y(u + Xv) —y(u))/X. Then, using the fact that g is of class C1, we get

(4.2) o(X) - (Vgmu)), Zxiv)) < ^ + A ; ) ' ^ ) .

Since the mapping u t-» y(u) is Lipschitz, the family \Z\ | A > 0} is bounded. Hence,

there exists Z(v) such that Z\n(v) —> Z(v) for some An J, 0. Noticing that

(4.3) B(u) - A(y(u)) + f + Xn[B(v) - A(ZXn{v))} G &F{y(u) + XnZXn{v))

holds for all n £ N, it follows that

(4.4) B(v) = A{Z{v)) G dF^{Z{v)).

Then,

(4.5) Z(v) = (A + dF^)'1 o B(v).

/ \-i

Since dFy^ has a closed linear graph, then I A + dF^- I is obviously a linear Lips-
chitz mapping. This implies that Z is linear and Lipschitian. Hence, by virtue of (4.2),
we get:

(4.6) (-V5(y), Z(v)) ^ h\u, v),

where
, h{u + Xv) - h(v)

h[u, v) = hm — r i—L.v ' Ajo A

Then,

(4.7) (-Z*(Vg(y)), v) < h'(u, v).

(4.7) being true for every v 6 U, this yields

-Z*(Vg(y)) G dh{u),

and the proof is complete. U
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