
Canad. J. Math. Vol. 51 (2), 1999 pp. 266–293

Spectral Estimates for Towers of Noncompact
Quotients
Anton Deitmar and Werner Hoffman

Abstract. We prove a uniform upper estimate on the number of cuspidal eigenvalues of the Γ-automorphic
Laplacian below a given bound when Γ varies in a family of congruence subgroups of a given reductive linear
algebraic group. Each Γ in the family is assumed to contain a principal congruence subgroup whose index in
Γ does not exceed a fixed number. The bound we prove depends linearly on the covolume of Γ and is deduced
from the analogous result about the cut-off Laplacian. The proof generalizes the heat-kernel method which
has been applied by Donnelly in the case of a fixed lattice Γ.

Introduction

If ∆ is a self-adjoint operator with discrete spectrum bounded from below and N(λ) is
the number of its eigenvalues (counted with multiplicity) not exceeding λ, we call N the
spectral counting function of ∆. Let X be a symmetric space of the noncompact type and
Γ0 an arithmetic lattice in the isometry group G of X. For each torsion-free subgroup Γ
of finite index in Γ0, let ∆Γcus be the restriction of the Laplacian on Γ \ X to the cuspidal
subspace of L2(Γ \ X). In this paper we derive an upper bound for the spectral counting
function of∆Γcus which is uniform in Γ. In fact, we consider the slightly more general case
L2(Γ \X,Γ \ E), where E is a homogeneous hermitian vector bundle over X. The emphasis
is on noncompact quotients Γ \ X. For a single lattice Γ, the result has been proved by
Donnelly [6], and we will use his approach.

Our spectral estimate for the cuspidal Laplacian will be an immediate consequence of an
analogous estimate for the cut-off Laplacian (also called pseudo-Laplacian)∆ΓT introduced
in [10, p. 489]. For a fixed lattice Γ, the estimate for ∆ΓT was proved in [10] by an easy
adaption of the method of [6] and played a significant role in the proof of the trace-class
conjecture. Our generalization of this result is a prerequisite for a forthcoming paper, where
we study limit multiplicities of subsets of the unitary dual of G when Γ \ X goes up in a
tower.

Actually, our estimates apply to more general families than just towers. However, we
cannot consider arbitrary families of lattices and not even arbitrary towers. So we have
to be more precise. Recall that the principal congruence subgroup of level N in GLn(Z)
is defined as the kernel Γn(N) of the residue map GL(n,Z) → GLn(Z/NZ). Let G be a
connected reductive linear algebraic Q-group.

Definition A family T of subgroups of G(Q) will be called a family of bounded depth in
G(Q) (with respect to a faithful Q-rational representation η : G → GLn) if there exists a
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natural number D with the following property: For each Γ ∈ T there is a natural number
N such that Γn(N) ∩ η

(
G(Q)

)
is a subgroup of η(Γ) of index at most D.

It is easy to see that this notion is independent of the choice of η. Now assume that G is
semisimple (this assumption will be weakened below) and put G = G(R), X = G/K, where
K is a fixed maximal compact subgroup of G. We fix a unitary representation τ of K on
a finite-dimensional Hilbert space Vτ . Then Eτ := G ×K Vτ is a homogeneous hermitian
vector bundle over X endowed with a canonical G-invariant connection∇ and a Bochner-
Laplace operator ∆ = ∇∗∇. If Γ is torsion-free, then EΓτ := Γ \ Eτ is a hermitian vector
bundle over the locally-symmetric space Γ \ X inheriting a Laplacian ∆Γ. Let ∆ΓT be the
corresponding cut-off Laplacian with coefficients in the bundle EΓτ . Its definition will be
recalled in the first section. We shall prove (see Corollary 17 in Section 6) that for a family
T of bounded depth in Γ0 the spectral counting function NΓT (λ) of∆ΓT satisfies the estimate

NΓT (λ) ≤ C[Γ0 : Γ](1 + λ)d/2,

where d = dim X and C > 0 is independent of Γ ∈ T and λ ≥ 0. In a final section, we give
an adelic version, which is slightly more general if G does not have the strong approximation
property.

An inspection of our proof shows that the bounded depth assumption is unnecessary
for Γ0 \ X compact. We do not know whether in the general case some restriction of this
kind is necessary or whether this is only a drawback of our method.

Following [6], we shall derive our result by von Neumann bracketing from analogous
spectral estimates for cuspidal Laplacians with von Neumann boundary conditions on cer-
tain submanifolds of Γ\X. However, the method does not immediately carry over. Starting
from the heat kernel on the symmetric space X, Donnelly obtains the heat kernel F(t, x, y)
of the quotient Γ∩P\X for a parabolic P by averaging. Next he produces a kernel F̄(t, x, y)
by projecting F on the cuspidal subspace. Lastly he modifies F̄ by adding a single-layer po-
tential to end up with the kernel Ē(t, x, y) satisfying the boundary conditions. Actually, the
kernel F̄ does not have the short-range asymptotic of a heat kernel because of the averaging
over horospheres implicit in its construction, and Propositions 5.6 and 5.7 of [6] become
valid only after replacing the distance in X by the distance in N \ X. However, the method
of [13] Donnelly refers to relies on the jump relations for single-layer potentials which have
only been proved for the undisturbed heat kernel. Moreover, it would not be easy to carry
out the proof of Proposition 6.1 in [6] because the boundary does not have the asserted
simple description outside a compact set. Thus, the proof of the main result of [6] is in-
complete. Our present paper fills this gap in the prerequisites of [10], because any single
lattice in G constitutes a family of bounded depth.

Since we are going to let Γ vary, we would face the additional problem of keeping track
of the growing boundary in doing the necessary estimates. Therfore we proceed differently
in that we incorporate the boundary conditions already on the universal covering and then
follow the other steps. The method of single-layer potentials seems to become unman-
ageable for such noncompact manifolds with boundary, and we construct the heat kernel
by a new method, which may also be useful in other situations. Namely, we construct a
parametrix which already satisfies the boundary conditions.

As in [6], a majorant for the heat kernel on the universal cover yields an estimate for
the heat kernel on the quotient by averaging over Γ ∩ P. However, instead of bounds
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obtained from the compactness of Γ ∩ N \ N and of other quotients we have to include
additional arguments to see how the bounds vary if the quotient changes. It is for this
reason that we can only admit families of bounded depth. A key step in [6] consists in
expressing a difference of heat kernel values as a path integral. For fixed Γ, the length
of this path is uniformly bounded and can therefore be estimated by the distance of its
endpoints. However, the subdomains we consider are not geodesically closed in general,
and for varying Γ the minimal length of a path connecting two points is not bounded
by a fixed multiple of their distance in X. Since the heat kernel majorant is expressed in
terms of that latter distance, we have to compare various metrics. Finally, the proof of
Proposition 5.6 in [6] uses the boundedness of the averaging operator over horospheres, but
the norm of this operator varies with Γ. In effect, we have to rewrite the whole argument.

Following [10], we use a decomposition of Γ \ X into pieces indexed by all Γ-conjugacy
classes of parabolic Q-subgroups, as this seems most natural and admits the easiest de-
scription of the boundaries. If the truncation parameter grows, however, only the pieces
associated to the minimal parabolics will shrink. Thus, if one wanted to recover the results
of [6] concerning the upper limit of the spectral counting function, one would have to use,
as in that paper, another covering of Γ \ X consisting of a compact part and its comple-
ments in the Siegel domains for the minimal parabolics. One should also be able to make
the estimates uniform in the K-type and to handle the Laplacian on Γ \ G using the ideas
of [11] and [8].

Acknowledgement The second author would like to express his gratitude to the Institute
for Advanced Study in Princeton for hospitality and financial support during the fall term
1997, when this paper was completed.

1 A Parametrix Construction

In this section we will construct a parametrix for the heat equation on certain noncompact
manifolds with boundary. Our purpose is to obtain uniform estimates. The new feature
is that the parametrix will already satisfy the boundary conditions. Certainly, our method
would work under some general assumptions on bounded geometry, but we did not explore
what their exact formulation should be. Instead, we require a certain group invariance,
which will be granted in our applications (cf. Prop. 2), albeit in a non-straightforward way.

We consider a hermitian vector bundle E endowed with a metric connection over a pos-
sibly noncompact Riemannian manifold Ω with boundary. We assume that Ω is given as a
subdomain with smooth boundary in a complete Riemannian manifold X and that E ex-
tends over X. Then, by imposing Dirichlet or von Neumann boundary conditions, we ob-
tain a self-adjoint extension∆Ω of the Bochner-Laplace operator∆ = ∇∗∇ in the Hilbert
space of square-integrable sections. This can be proved by adapting the method of [4].
Indeed, Proposition 1.1 in [4] remains true if one replaces the truncated cone considered
there by its intersection with R × Ω. In the proof, this produces new boundary terms in
Green’s formula, which vanish, however, due to the boundary conditions. In this way one
proves propagation speed one with respect to the distance in the surrounding manifold X.
By subdividing a given time interval finer and finer, one gets the same with respect to the
distance inside Ω. Having proved the existence of the self-adjoint extension∆Ω, it is easy
to deduce from the spectral theorem and Sobolev’s embedding theorem that the Schwartz
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kernel of the heat operator exp (−t∆Ω), t > 0, on the interior ofΩ×Ω is a smooth section
EΩ(t, x, y) of E � E∗. This heat kernel is clearly determined by the property that, for fixed
y, it is a solution of the Cauchy problem for the heat equation with initial value equal to
the delta distribution at y.

In order to obtain bounds on the heat kernel, we will now construct a right parametrix.
This is a smooth section HΩ(t, x, y) of E � E∗ depending smoothly on t > 0 and such that

BΩ(t, x, y) :=

(
∆x +

∂

∂t

)
HΩ(t, x, y)

is smooth, too. We also require that HΩ(t, x, y) as a function of x satisfy the boundary
conditions for each fixed y and t , be compactly supported and tend to the delta distribution
at y as t → 0.

Lemma 1 Suppose that there exists a subgroup S of the isometry group of X leaving Ω in-
variant. Suppose further that S \ Ω is compact and that the action of S lifts to an action on
E by automorphisms. Then, given c > 4, δ > 0 and t0 > 0, there exists a right parametrix
HΩ(t, x, y) for the heat equation on Ω with von Neumann boundary conditions and coeffi-
cients in E satisfying the estimates

|HΩ(t, x, y)| ≤ Ct−d/2e−ρ(x,y)2/ct ,

|∇xHΩ(t, x, y)| ≤ Ct−(d+1)/2e−ρ(x,y)2/ct ,

|BΩ(t, x, y)| ≤ C

for all 0 < t ≤ t0 and some C > 0, where d = dim X and ρ denotes the geodesic distance in
X. Moreover, the value HΩ(t, x, y) depends only on the geometry of the 2δ-neighborhood of y
in X and vanishes for ρ(x, y) ≥ δ.

Proof As a preparation for our later construction, let us consider the case when Ω is a
compact domain in X with smooth boundary. The results of [7] easily extend to the
bundle case and show that EΩ(t, x, y) exists and satisfies the estimates we require of the
parametrix. (The case of the differential form bundle with different boundary conditions
is done in [13].) Let us denote the smallest possible constant in the estimates by C(Ω). If
ωz is an embedding of a d-dimensional ball B into X preserving the interior unit normal
and depending smoothly on z ∈ Z for some manifold Z, then C

(
ωz(B)

)
is locally bounded

on Z. In fact, pulling back everything under ωz and trivializing the bundle, one reduces the
proof to the case of a fixed domain and a differential operator with coefficients depending
smoothly on z, which can be handled by the methods of [7]. Moreover, the pulled-back
heat kernel depends smoothly on z.

Before proceeding to the actual construction for an unbounded domain Ω, let us out-
line the basic idea. We manufacture the parametrix, considered as a function of the first
variable x, from the heat kernel of a bounded subdomain by means of a cut-off function.
For this subdomain we take a neighborhood Ω(y) of the varying point y, which is simply
a ball with center y if y is far from the boundary of Ω, but which nestles to that boundary
when y comes close to it. The deformation of the ball into Ω(y) is done by a retraction ψ+
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of some neighborhood of Ω onto Ω. We use the heat kernel with von Neumann boundary
conditions on the boundary of Ω(y), which coincides with the boundary of Ω in a small
neighborhood of y. To obtain the parametrix, we multiply by a cut-off function χ sup-
ported in that neighborhood. The boundary conditions are not affected because we make
sure that the normal derivative of χ vanishes on the boundary. For this purpose, we use a
retraction ψ− of Ω onto some subdomain.

We will now carry out the construction under certain assumptions on Ω which we will
formulate in due course. Afterwards we will see that they are justified in the situation
of the lemma. At first, we assume that there exists ε1 > 0 such that the map ϕ : ∂Ω ×
]−ε1, ε1[ → X given by ϕ(x, r) = expx(rνx) is an embedding and that the distance of any
ϕ(x, r) from ∂Ω equals |r|. Here νx denotes the inner unit normal vector ofΩ at x and expx
the exponential map of X at the point x. Let Ω+ be the union of Ω with the range of ϕ.

We choose two functions η+, η− ∈ C∞(R) such that η±(r) = r for r ≥ ε±, where
0 < ε± < ε1. We require that η+(r) = 0 for r ≤ −ε+, and η ′+(r) > 0 for r > −ε+ while
η−(r) = ε−/2 for r ≤ 0 and η ′−(r) > 0 for r > 0. Now we define smooth maps ψ+ : Ω+ →
Ω and ψ− : Ω→ Ω as follows. We put ψ±

(
ϕ(x, r)

)
= ϕ
(
x, η±(r)

)
and ψ±(x) = x if x ∈ Ω

is not in the range of ϕ.
For each y ∈ Ω, let Ω(y) be the image under ψ+ of the ball around y with radius ε2,

where ε+ < ε2 < ε1. We assume that ε2 can be chosen as close to ε+ as to ensure that, for
any y ∈ Ω, no normal vector to ϕ(∂Ω × {−ε+}) is tangent to that ball. Then Ω(y) has a
smooth boundary, and each point inΩ has a neighborhood Z in X such thatΩ(y) = ωy(B)
for y ∈ Z, where ωy is some smooth family of embeddings. Thus the remarks made at the
beginning of the proof apply to Ω(y). It is clear that Ω(y) contains a neighborhood of y
in Ω.

Now we want to multiply EΩ(y)(t, x, y) by a cut-off function. Thus, let η ∈ C∞0 (R+)
be such that η(r) = 1 for r ≤ ε3 and η(r) = 0 for r ≥ 2ε3, where ε3 > ε−, and put

χ(x, y) = η
(
ρ
(
ψ−(x), y

))
. This is a smooth function satisfying von Neumann boundary

conditions in x and being equal to 1 in a neighborhood of the diagonal. We assume that
ε− and hence ε3 can be chosen so small that suppx χ(x, y) ⊂ Ω(y) for all y ∈ Ω. Then
EΩ(y)(t, x, y) is smooth on the support ofχ(x, y), andχ(x, y) vanishes for ρ(x, y) ≥ δ. If we
now define HΩ(t, x, y) = χ(x, y)EΩ(y)(t, x, y), this is a smooth section of the pull-back of
E � E∗ to R+×Ω×Ω satisfying the required support condition. If (x, y) ∈ suppχ∩∂Ω×Ω,
then x ∈ ∂Ω(y) by our assumption. Hence HΩ satisfies von Neumann boundary conditions
in x at ∂Ω. Since χ equals one in a neighborhood of the diagonal, we see that HΩ is the
required parametrix.

It is clear that the assumptions made during the construction are satisfied locally. Since
by hypothesis the whole structure is S-invariant, the same ε∗’s work for all points in one
S-orbit. The compactness of S \ Ω guarantees that they can be chosen globally. Moreover,
since C

(
Ω(sy)

)
= C
(
Ω(y)

)
for all s ∈ S, y ∈ Ω, we see that HΩ satisfies the required

estimates with a constant C independent of y.

2 Heat Kernels on the Universal Cover

In the present section we first recall a partition of the symmetric space X into domains X(P)
indexed by the parabolic Q-subgroups of G. Actually, we are after their projections on the
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quotient Γ \X. Among those projections, only Γ \X(G) is compact, and the other ones are
sometimes simply called cusps. For the time being, however, we stay with X. We smooth
out the edges of X(P) and prove estimates for the heat kernel with von Neumann boundary
conditions on the resulting domain X̃(P).

First we fix some notation, which will be used in the rest of the paper. We shall gener-
ally denote linear algebraic Q-groups by calligraphic letters, their sets of R-rational points
by the corresponding roman letters and the Lie algebras by the corresponding lower-case
gothic letters. For any linear algebraic Q-group H, let H1 be the common kernel in H =
H(R) of the absolute values of all Q-rational characters of H and put AH = H/H1. If M is
a Levi subgroup of G, we can identify AM with AM(R)0, where AM is the maximal Q-split
torus in the center of M, and then M = M1 × AM .

For our fixed connected reductive Q-group G, we set X = G1/K. Let P be a parabolic
Q-subgroup of G with unipotent radical N and M any Levi component of P defined over
Q . Then AM is also called a Q-split component of P. Let XP be the M1-orbit of the trivial
coset in N \X. This is a symmetric space isomorphic to M1/KP, where KP is the projection
of K ∩P to M. One has P1 = M1N , hence AM

∼= AP. If P ′ ⊂ P, we define AP
P ′ = AP ′ ∩M1.

Then aP ′ = aP
P ′ ⊕ aP, and we write the projection aP ′ → aP as H 7→ HP. Let aP+

P ′ be the
subset of aP

P ′ where all the roots of AM ′ in n ′ ∩m are positive, and define

+aP
P ′ = {H ∈ aP

P ′ | (H,H ′) ≥ 0 ∀H ′ ∈ aP+
P ′ },

where we have chosen Euclidean structures on all the aP compatible with G(Q)-conjugation
and with the decompositions aP ′ = aP

P ′ ⊕ aP.
Now we describe the decomposition of X connected with the truncation operator ΛT

(cf. [1] or [12] for details). Given K and an arithmetic subgroup Γ0 of G(Q), one can think
of the truncation parameter T as of a family of points TP ∈ aG

P indexed by the parabolic
Q-subgroups such that

• γ · P1 exp(TP)K = P ′1 exp(TP ′)K for γ ∈ Γ0 and P ′ = γPγ−1,
• TP = (TP ′)P for P ′ ⊂ P.

Any such T is determined by the values TP for P in a set of representatives of Γ0-conjugacy
classes of maximal parabolic Q-subgroups. Thereby the set of truncation parameters be-
comes an affine space with the partial ordering given by T < T ′ iff T ′P−TP ∈ aG+

P for all P.
For P =MN defined over Q , the projection of Γ0 ∩ P on M is an arithmetic subgroup ΓP

0

of M, and we get a truncation parameter TP for ΓP
0 by setting TP

Q∩M = TQ for each Q ⊂ P.
Let X(G,T) be the set of all x ∈ X with the property that for any proper (equivalently:

any maximal) parabolic Q-subgroup P of G the image of x in N \ X does not belong to
the set exp(+aG

P + TP)XP. Then X(G,T) is Γ0-invariant, and Γ \ X(G,T) is compact for
any arithmetic subgroup Γ ⊂ Γ0. More generally, define X(P,T) to be the set of all x ∈ X
whose image in N \ X belongs to

exp(aG+
P + TP)XP(M,TP).

For T large enough, X is the disjoint union of the subsets X(P,T), where P runs through
the parabolic Q-subgroups of G including G itself (see [1, Lemma 6.4], [12, Theorem 3.4]).
We shall usually fix such T and simply write X(P) for X(P,T).
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Since we now have the necessary notation, let us recall the definition of the cut-off Lapla-
cian. As Eτ is a homogeneous bundle, there is a (right) action r of G1 on its sections. We can
view sections of EΓτ as Γ-invariant sections of Eτ , thereby making the Laplacian ∆Γ mean-
ingful even for Γ with torsion (cf. [5]). Let L2

T(Γ \ X, EΓτ ) be the set of all f ∈ L2(Γ \ X, EΓτ )
which have the following property for all proper (equivalently: all maximal) parabolic Q-
subgroups P of G: Whenever the image of x in N \X belongs to exp(+aG

P + TP)XP, then the
constant term

∫
Γ∩N\N

(
r(n) f

)
(x) dn

of f along P vanishes. Note that, for T large enough, the restriction of ΛT to L2(Γ \ X, EΓτ )
is the orthoprojector onto L2

T(Γ \ X, EΓτ ) (as follows from [2, Lemma 1.1], or [12, p. 39])
andΛT(1) is the characteristic function ofΓ\X(G,T). Now∆ΓT is defined as the selfadjoint
operator in L2

T(Γ \ X, EΓτ ) associated to the quadratic form ‖∇ f ‖2 on the intersection of
the Sobolev space H1(Γ \ X, EΓτ ) with L2

T(Γ \ X, EΓτ ). This cut-off Laplacian differs from
that defined in [10] by an additive constant depending on τ .

The domains X(P) have non-smooth boundary, and it is difficult to study the heat ker-
nels for boundary value problems on them. Therefore we shall now define modified do-
mains X̃(P). If we are given a Euclidean space V , there is a standard procedure to smooth
out any convex polytope C , say, with nonempty interior in V . Namely, we choose ε > 0
and η ∈ C∞(R) with η(x) > 0, η ′(x) > 0 for x < 0 and η(x) = 1 for x ≥ 0. There is a
unique minimal set Φ of affine functionals on V with slope one such that

C = {v ∈ V | ϕ(v) ≥ 0 ∀ϕ ∈ Φ}.

Now we put

C̃ =
{

v ∈ V |
∏
ϕ∈Φ

η
(
ϕ(v)
)
≥ η(−ε)

}
.

Then C̃ has a smooth boundary, and C ⊂ C̃ ⊂ {v ∈ V | ϕ(v) ≥ −ε ∀ϕ ∈ Φ}. We fix η
and ε once and for all. Then C̃ is determined by C and will be called its smooth hull.

To apply this to X(P), recall that there is a synthetic description of these domains.
Choose T0 small enough such that X is the union of the sets X(P0,T0) over all mini-
mal parabolic Q-subgroups P0. A special case of Langlands’ Combinatorial Lemma
([1, Lemma 6.3], [12, p. 321]) states that, for each P0, the vector space aG

P0
is the disjoint

union of the cones

aG
P0

(P,T) := −aP
P0

+ aG+
P + TP0

over all P containing P0, where −aP
P0
= −+aP

P0
. We denote by XP0,T0 (P,T) the set of all

x ∈ X(P0,T0) whose image in N0 \ X belongs to exp
(
aG

P0
(P,T)

)
XP0 . If T is large enough

depending on T0, then X(P,T) is the disjoint union of the sets XP0,T0 (P,T) over all minimal
P0 contained in P. If we now replace each aG

P0
(P,T) by its smooth hull ãG

P0
(P,T), we get

sets X̃P0,T0 (P,T), whose union over P0 ⊂ P we denote by X̃(P,T) and call the smooth
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hull of X(P,T). One can check that, for T large enough, X̃(P,T) is a domain in X with
smooth boundary and that X(P,T) ⊂ X̃(P,T) ⊂ X

(
P,T(P)

)
, where T−T(P) can be made

arbitrarily small by the choice of ε. Moreover, γX̃(P,T) = X̃(γPγ−1,T) for each γ ∈ Γ0.
Let us fix a unitary representation τ of K and consider the Bochner-Laplace operator∆

in the bundle Eτ over X. For each P, let ∆P be the self-adjoint extension of ∆|X̃(P) with
respect to the von Neumann boundary conditions. These boundary conditions amount to
the vanishing of the covariant derivative in the normal direction.

Proposition 2 Let EP(t, x, y) be the heat kernel on X̃(P) with von Neumann boundary con-
ditions and coefficients in Eτ . Then for any c > 4 and t0 > 0 there is a constant C with

|EP(t, x, y)| ≤ Ct−d/2e−ρ(x,y)2/ct ,

|∇xEP(t, x, y)| ≤ Ct−(d+1)/2e−ρ(x,y)2/ct

for 0 < t ≤ t0, where ρ denotes the geodesic distance in X.

Since∆P is self-adjoint, we have EP(t, y, x) = EP(t, x, y)∗ for each x, y ∈ Ω, so actually
it does not matter to which argument the covariant derivation applies. Using the bounded-
ness of xN e−x on [0,∞[ for N ≥ 0, one may deduce a bound for the derivative in the form

Ct−d/2ρ(x, y)−1e−ρ(x,y)2/ct . First we prove:

Lemma 3 Given δ > 0, there exists a right parametrix HP(t, x, y) for the heat equation on
X̃(P) with von Neumann boundary conditions and coefficients in Eτ vanishing for ρ(x, y) ≥ δ
and satisfying the estimates in Lemma 1.

Proof In general, there exists no subgroup S of G leaving X̃(P,T) invariant and such that
S \ X̃(P,T) is compact, so Lemma 1 is not immediately applicable. We shall decompose
X̃(P,T) into pieces such that each piece is part of a domain to which Lemma 1 applies. The
restrictions of the parametrices provided by that lemma will match together and form the
parametrix for X̃(P,T).

To get an idea, consider first the analogous case of a convex polytope C in a Euclidean
space V . If Φ is the set of affine functionals defining C , any v ∈ C determinesΦ(v) = {ϕ ∈
Φ | ϕ(v) = 0}, and the set of all v for which Φ(v) equals a given subset of Φ is called a
face of C . Each face F of C determines a piece C̃F of the smooth hull consisting of all v ∈ C̃
whose closest point in C belongs to F. Now C̃ is the disjoint union of the pieces C̃F over
all faces (including the interior of C). This decomposition is not yet good enough, because
C̃F ∩ ∂C̃ need not be parallel to F. Therefore one has to decompose C̃ with respect to a
polytope smaller than C obtained by subtracting a constant from each ϕ ∈ Φ.

To understand the boundary of the domain X(P), recall that it is fibered by horospheres
over a domain in N \X which is isomorphic to the direct product of the simplicial cone aG+

P

and the manifold with corners XP(M). The faces of aG+
P are parametrized by the parabolic

Q-subgroups P ′′ containing P, while the faces of XP(M) are parametrized by the parabolic
Q-subgroups P ′ contained in P. Thus the faces of X(P) are parametrized by pairs (P ′,P ′′)
sandwiching P.

Now let us define the pieces of X̃(P,T) precisely. For parabolic Q-subgroups P ′ ⊂ P ⊂

P ′′ and truncation parameters T ′ < T < T ′′ we let X̃P ′ ′,T ′ ′

P ′,T ′ (P,T) be the set of all elements
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of X̃(P,T) whose projection on N \X lies in exp
(
aG

P (P ′ ′,T ′′)
)
XP(P ′∩M,T ′). If T ′ is large

enough, then X̃(P,T) is the disjoint union of the pieces X̃P ′ ′,T ′ ′

P ′,T ′ (P,T) over all P ′ contained

in P and all P ′′ containing P. Clearly, for each γ ∈ Γ0, the γ-translate of X̃P ′ ′,T ′ ′

P ′,T ′ (P,T) is
obtained by replacing P ′, P and P ′′ by their respective γ-conjugates.

We can give a synthetic description of these pieces as we did for X̃(P,T). In explicit
terms, X̃P0,T0 (P,T) was defined as the set of all x ∈ X whose image in N0 \ X belongs to

exp
(
aG

P0
(P0,T0) ∩ ãG

P0
(P,T)

)
XP0 .

Here we may replace aG
P0

(P0,T0) by aP
P0

(P0,T0) + aG
P , because both sets have

the same intersection with ãG
P0

(P,T) for T � T0. Now one sees that

X̃P ′ ′,T ′ ′

P ′,T ′ (P,T) is the union over all minimal P0 contained in P ′ of the preimages of

the sets exp
(
C(P0,T0, P ′,T ′, P,T, P ′′,T ′′)

)
XP0 under the map X → N0 \ X, where

C(P0,T0, P ′,T ′, P,T, P ′′,T ′′) stands for

((
aP

P0
(P0,T0) ∩ aP

P0
(P ′,T ′)

)
+ aG

P (P ′ ′,T ′′)
)
∩ ãG

P0
(P,T).

For T ′ � T � T ′ ′ this set has a decomposition compatible with aG
P0
= aP ′

P0
⊕ aP ′′

P ′ ⊕ aG
P ′ ′ .

Firstly, the set aP
P0

(P ′,T ′) has the same intersection with aP
P0

(P0,T0) as with aP ′
P0

(P0,T0) +

aP
P ′ , and secondly, the set aP ′

P0
(P ′,T ′) + aP ′′

P ′ + aG
P ′ ′(P ′ ′,T ′′) has the same intersection with

ãG
P0

(P,T) as with aP ′
P0

+ ãP ′′

P ′ (P,T) + aG
P ′ ′ . Therefore C(P0,T0, P ′,T ′, P,T, P ′′,T ′ ′) equals

(
aP ′

P0
(P0,T0) ∩ aP ′

P0
(P ′,T ′)

)

+
((

aP
P ′(P ′,T ′) + aP ′ ′

P (P ′ ′,T ′′)
)
∩ ãP ′′

P ′ (P,T)
)

+ aG
P ′′(P ′ ′,T ′ ′).

The component in aP ′′

P ′ is a partially smoothed-out compact polytope. Let us denote by
D(P0,T0, P ′,T ′, P,T, P ′′,T ′′) the following larger set obtained by smoothing out this com-
ponent completely and enlarging the other components:

aP ′

P0
(P0,T0) +

((
aP

P ′(P ′,T ′) + aP ′ ′

P (P ′ ′,T ′′)
)
∩ aP ′′

P ′ (P,T)
)∼

+ aG
P ′′ ,

Taking the union over all minimal P0 in P ′ of the preimages under the map X → N0 \ X
of the sets exp

(
D(P0,T0, P ′,T ′, P,T, P ′′,T ′′)

)
XP0 , we get the domain

˜̃XP ′ ′,T ′ ′

P ′,T ′ (P,T) = P ′1AG
P ′ ′ exp

((
aP

P ′(P ′,T ′) + aP ′′

P (P ′ ′,T ′ ′)
)
∩ aP ′ ′

P ′ (P,T)
)∼

K/K.

This domain in X is invariant under P ′1AG
P ′ ′ , compact modulo this action, and has a smooth

boundary. Thus Lemma 1 applies to it and yields a parametrix satisfying uniform estimates.
The subset aP

P ′(P ′,T ′)+aP ′ ′
P (P ′ ′,T ′′) of aP ′′

P ′ intersects the boundary of ãP ′ ′

P ′ (P,T) in the
same set in which it intersects the boundary of

((
aP

P ′(P ′,T ′) + aP ′ ′

P (P ′ ′,T ′′)
)
∩ aP ′′

P ′ (P,T)
)∼
.
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Thus

X̃P ′ ′,T ′ ′

P ′,T ′ (P,T) ∩ ∂X̃(P,T) = X̃P ′ ′,T ′ ′

P ′,T ′ (P,T) ∩ ∂ ˜̃XP ′ ′,T ′ ′

P ′,T ′ (P,T).

If T ′ � U ′ � T � U ′′ � T ′ ′, then the 2δ-neighborhood of X̃P ′ ′,U ′ ′

P ′,U ′ (P,T) in X̃(P,T) is

contained in X̃P ′ ′,T ′ ′

P ′,T ′ (P,T). Hence the parametrix construction is applicable to X̃(P,T) as

long as y remains in X̃P ′ ′,U ′ ′

P ′,U ′ (P,T), and on this subset the resulting function HP(t, x, y) co-

incides with the parametrix on ˜̃XP ′ ′,T ′ ′

P ′,T ′ (P,T). This means that the parametrix construction

works for X̃(P,T), because this domain is the union of the sets X̃P ′ ′,U ′ ′

P ′,U ′ (P,T) over all the
(finitely many) P ′′ containing P and all P ′ contained in P. Note that there are only finitely
many such P ′ up to (Γ0 ∩ P)-conjugacy, and since the construction is equivariant, one can
choose a uniform constant in the estimates for all of them. Hence we have these estimates
for HP, too.

Proof of the Proposition Let BP(t, x, y) := (∆x + ∂
∂t )HP(t, x, y) and define recursively

E0
P(t, x, y) = HP(t, x, y),

Ei+1
P (t, x, y) =

∫ t

0

∫
X̃(P)

Ei
P(t − t ′, x, z)BP(t ′, z, y) dz dt ′.

Note that the inner integral is always over a compact subset. Thus we also get a recursive
formula for ∇xEi

P(t, x, y) by differentiating under the integral sign. If we extend HP, BP

to X × X by setting them equal to zero if x or y is outside X̃(P), we may extend the inner
integral to all of X. Trivially, the estimates of the lemma remain valid on the open dense
subset X \ ∂X̃(P). Thus the method of estimating the convolutions used in [5] applies
literally and yields the asserted estimates for

EP(t, x, y) =
∞∑
i=0

(−1)iEi
P(t, x, y)

and its covariant derivative. Since HP satisfies von Neumann boundary conditions in x, so
does EP. And since HP is a parametrix, we obtain

(
∆x +

∂

∂t

)
EP(t, x, y) = 0, lim

t→0

∫
X̃(P)

EP(t, x, y) f (y) dy = f (x).

These facts identify EP as the heat kernel sought for.

3 Lattices and Injectivity Radius

In this section we provide two prerequisites for the proof of majorants for heat kernels on
quotients. First we introduce a more restrictive notion of bounded depth than that defined
in the introduction and derive some consequences we shall need. In the proof of the main
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result, Theorem 16, it will then be easy to drop this restriction. Secondly, we will estimate
the injectivity radius on the quotient as a function of the lattice. To begin with the first
objective, remember that Γn(N) ⊂ GLn(Q) denotes the principal congruence subgroup of
level N .

Definition A family T of subgroups of G(Q) will be called a family of strictly bounded depth
in G(Q) if there exists a faithful Q-rational representation η : G→ GLn, a natural number
D and, for each Γ ∈ T, a natural number N(Γ) such that

Γn

(
DN(Γ)

)
∩ η
(
G(Q)

)
⊂ η(Γ) ⊂ Γn

(
N(Γ)

)
∩ η
(
G(Q)

)

for all Γ ∈ T.
It is easy to see that [Γn(1) : Γn(N)] is a multiplicative arithmetic function of N ,

which for a prime power pk, k > 0, equals pkn2∏n
l=1(1 − p−l). Consequently, [Γn(N) :

Γn(DN)] ≤ Dn2
. This shows that any family of strictly bounded depth is a family of

bounded depth. Using the representation η, we identify G with a Q-subgroup of GL(n).
Note that all Γ ∈ T are contained in the lattice Γ0 := Γn(1) ∩ G(Q).

Lemma 4 Let T be a family of strictly bounded depth in G(Q) and P a parabolic Q-subgroup
with unipotent radical N. Then there exist a lattice Γn in the Lie algebra n of N and a natural
number Dn such that, for all Γ ∈ T,

exp
(
DnN(Γ)Γn

)
⊂ Γ ∩ N ⊂ exp

(
N(Γ)Γn

)
.

If M is a Levi component of P defined over Q , then the projections ΓP of Γ ∩ P on M for all
Γ ∈ T make up a family of strictly bounded depth in M, for which one can choose N(ΓP) =
N(Γ).

Proof The first assertion can be easily shown using the following fact. There exists a natural
number Dn such that for all natural numbers N we have:

• If x ∈ Matn(DnNZ) is nilpotent, then exp x ∈ Γn(N),
• if g ∈ Γn(DnN) is unipotent, then log g ∈ Matn(NZ).

Indeed, exp x − 1 and log g are given by universal polynomials in x resp. g − 1 of degree n
with coefficients in Q and vanishing constant term.

Let A be the maximal Q-split torus in the center of M, Φ the set of roots of A in n and
Π the set of weights of A in V = Qn. Then there exists an ordering on a∗ such that the
elements of Φ are positive. Let $1, . . . , $r be the elements of Π in increasing order, Vi the
weight space corresponding to $i and Wi =

∑
j≥i V j . Then the Vi are M(Q)-stable, the

flag {Wi} is P(Q)-stable, and N(Q) acts trivially in Wi/Wi+1.
To prove the second assertion, we use more abstract notation. Namely, if L is a lattice in

a Q-vector space V , we write ΓL(N) = {x ∈ GLQ(V ) | (x − 1)L ⊂ NL}. Take a family T

of strictly bounded depth in G(Q) and write L for the lattice Zn in the definition. Let LP be
the direct sum of the lattices (L + Wi+1)∩Vi . Then there are natural numbers D ′P, D ′′P such
that D ′PL ⊂ LP, D ′′P LP ⊂ L, and we put DP = D ′PD ′′P D.
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Let p ∈ P(Q) and denote by m its projection on M(Q). Then m|Vi = p|Wi/Wi+1
. If

p ∈ Γ ∩ P(Q), then (p − 1)L ⊂ N(Γ)L, hence (m − 1)LP ⊂ N(Γ)LP. Conversely, if
(m− 1)LP ⊂ DPN(Γ)LP, then

(m− 1)L ⊂ D ′−1
P (m− 1)LP ⊂ D ′′P DN(Γ)LP ⊂ DN(Γ)L.

We have proved

ΓLP

(
DPN(Γ)

)
∩M(Q) ⊂ ΓP ⊂ ΓLP

(
N(Γ)

)
∩M(Q),

as desired.

Now we come to the estimate of the injectivity radius. Sometimes it is convenient to
replace the distance function ρ on X by another function. Choose a K-invariant scalar
product b on Rn with respect to which G is self-adjoint in the sense of [9]. Let ‖x‖2 denote
the Hilbert-Schmidt norm of x ∈ Matn(R) with respect to b and put, for g ∈ GLn(R),
‖g‖ = ‖g‖2 + ‖g−1‖2. Then we have ‖gh‖ ≤ ‖g‖ ‖h‖ and ‖g‖ ≥ 2. Therefore the function
(g, h) 7→ log ‖g−1h‖ on GLn(R) × GLn(R) is left-invariant under the diagonal subgroup
and satisfies the triangle inequality. If we pull ρ back to G, there exists C > 1 such that

C−1(log ‖g‖ − 1) ≤ ρ(1, g) ≤ C(log ‖g‖ + 1)

for all g ∈ G. It suffices to check this for b being the standard scalar product. By the K-
biinvariance of both sides we may also suppose that g = diag(et1 , . . . , etn ). Now ‖g‖ =
2
∑n

i=1 cosh ti ≤ 2
∏n

i=1(e|ti | + 1) ≤ 2n+1 exp
∑n

i=1 |ti |. On the other hand,
∏n

i=1 e|ti|/2 ≤
(
∑n

i=1 e|ti|)n ≤ 2n−1‖g‖n. Now note that the Cartan involution of GLn(R) determined by
the choice of b restricts to the Cartan involution corresponding to K, hence the two polar
decompositions are compatible.

Lemma 5 Suppose that B is a subset of G/K invariant under Γn(N0) ∩ G for some natural
number N0 and such that Γn(N0) ∩ G \ B is compact. Then there exist positive constants
c, d such that for any N ≥ N0, any x ∈ B and any nontrivial γ ∈ Γn(N) ∩ G we have
ρ(x, γx) ≥ c log(N − d).

Proof Since Matn(Z) \ {0} is discrete in Matn(R), the set

{(x, x−1 yx) | x ∈ Γn(N0) ∩ G \ B, y ∈ Matn(Z) \ {0}}

is closed in
(
Γn(N0)∩G\B

)
×
(
Matn(R)

)
by the continuity of multiplication. But Γn(N0)∩

G \ B is compact, so the projection of this subset on the second component is closed. As
it does not contain 0, there is some c1 > 0 such that ‖x−1 yx‖2 ≥ c1 for all x ∈ B and
y ∈ Matn(Z) \ {0}. This implies ‖1 + Nx−1 yx‖2 ≥ c1N −

√
n for all N ∈ N. Thus, for

x ∈ B and γ ∈ Γn(N) we have ‖x−1γx‖ ≥ c1N −
√

n. It remains to pass from ‖ . ‖ to ρ.
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4 Metrics on Horospheres

The aim of this section is to provide estimates for the diameters and pinching constants of
horospheres in Γ \ X which will be needed in the next section. To begin with, we consider
metrics on horospheres in the universal covering X. The restriction of the Riemannian
metric of X to a smooth submanifold Y gives rise to some inner metric ρY , say. If some Lie
subgroup U of G acts freely on such submanifold, the latter has the structure of a principal
U -bundle. In this bundle we can define a standard connection by declaring the orthogonal
complements of the vertical subspaces to be the horizontal ones.

Lemma 6 Let P be a parabolic subgroup of G with unipotent radical N. Let U ⊂ R be
normal subgroups of P, of which U is unipotent. Given x ∈ X, the standard connection in
the principal U -bundle Rx has zero curvature tensor. If we denote the horizontal submanifold
through x by Y (x) = Y U

R (x), then for y1, y2 ∈ Y (x) and u1, u2 ∈ U we have

ρRx(u1 y1, u2 y2) ≥ ρRx(y1, y2) = ρY (x)(y1, y2)

with equality only for u1 = u2. Moreover, if S is a unipotent subgroup of P with U ⊂ S ⊂ R,
then Y U

R (x) is the union of all Y U
S (y) with y running through Y S

R(x).

Thus we see that ρRx induces a metric ρU
Rx on U \ Rx such that the natural map Y (x)→

U \ Rx is an isometry. We have chosen our counterintuitive placement of sub- and super-
scripts in order to be in accordance with the usual notation aP ′

P , etc., for objects labeled by
pairs P ⊂ P ′ of parabolic subgroups. If N ⊃ N ′ are the corresponding unipotent radicals,
we can consider Y N ′

N (x).

Proof If we show that the standard connection in the U -bundle Px has zero curvature, the
same is true for any Rx by restriction, and the remaining properties follow easily. We shall
prove the vanishing of the curvature in the U -bundle Px by simply exhibiting the horizontal
submanifolds Y (x). Due to the transitivity of P on X, it suffices to do so for x = eK, the
trivial coset in X = G1/K.

Let θ be the Cartan involution corresponding to K and M the θ-stable Levi component
of P. The Riemannian metric on G/K is determined by the restriction of some Ad-invariant
θ-invariant bilinear form to the orthogonal complement s of k in g. By definition, the
projections of n and m on s are orthogonal. Let v be that complement of u in n whose
projection is orthogonal to that of u. Let (X,Y ) ∈ u× v and m ∈ M. From the nilpotency
of n we get 〈Ad(m)X,Y 〉 = 0 and thus

〈X − θX,Ad(m)Y − θAd(m)Y 〉 = 〈Ad(θm−1)X − θAd(θm−1)X,Y − θY 〉 = 0,

which shows that v is M-invariant.
Let V = exp v. The differential of the product map U ×V ×M → G at (u, v,m) maps

the left translate of (X,Y,Z) ∈ u×v×m to the left translate of Ad(vm)−1X+Ad(m)−1Y +Z.
(Here, left translation on V is meant with respect to the identification V ∼= U \ N .) This
shows that the Jacobian determinant of the product map is nonzero, whence Y (eK) :=
V MK/K is a submanifold, and that Y (eK) intersects each U -orbit orthogonally.
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Lemma 7 There exists a constant C > 1 with the following property. If U ⊂ R are unipotent
subgroups of a parabolic subgroup P of G, then for all x ∈ X and y ∈ Y (x) we have

C−1ρ(x, y) ≤ log
(
1 + ρY (x)(x, y)

)
≤ Cρ(x, y).

Proof Since there are only finitely many parabolics P up to G1-conjugacy, it suffices to
prove the lemma for fixed P. Due to the transitivity of P on X, we may again suppose that
x is the trivial coset. As we saw in the proof of Lemma 6, Y (eK) = exp(v)K/K, where v is a
complementary subspace of u in r. Since U \ R is abelian, the exponential map v→ U \ R
is an isomorphism. Thus

ρY (eK)

(
eK, exp(X)K

)
= |X|

for X ∈ v, where | . | is the Euclidean norm on n coming from the pull-back of the bilinear
form on s considered in the proof of Lemma 6. Since exp X for X ∈ n and log x for x ∈ N
are given by polynomials of degree at most n, we have

C−1
1 |X|

1/n ≤ ‖ exp X‖ ≤ C1(1 + |X|)n

for some C1 > 1. Passing from ‖ . ‖ to ρ, we obtain the assertion for ρ(eK, y) ≥ C2.
However, in a compact neighborhood of the trivial element in n ∼= N , the Euclidean metric
on n is equivalent to the restriction of ρ to N .

Corollary 8 In the same situation, we have

C−1ρU (x, y) ≤ log
(
1 + ρU

Rx(x, y)
)
≤ CρU (x, y).

for y ∈ U \ Rx.

Indeed, we may choose for y the representative in Y (x) = Y U
R (x) ⊂ Y U (x), and then

ρU
Rx(x, y) = ρY (x)(x, y) and ρU (x, y) = ρ(x, y) by Lemma 6.

Before considering metrics on horospheres in Γ\X, we introduce some notation. If X is
a metric space and U , Γ are groups of isometries of X such that Γ normalizes U , we define

pinch(U \UΓx) = inf {ρ(x, uγx) | u ∈ U , γ ∈ Γ, γ /∈ U}.

This is the minimal distance between the Γ-translates of the coset of x in U \ X. If ρ comes
from a Riemannian metric and U \ X → UΓ \ X is a universal covering of a manifold,
then pinch(U \ UΓx) is the minimal length of a non-contractible loop in UΓ \ X with
basepoint x.

Let us return to our previous notation. If P is a parabolic Q-subgroup of G, we define, as
usual, HP : X → aG

P by requiring the equality exp HP(pK) = P1 p in AP for all p ∈ P. Due
to the definition of a truncation parameter, we have HP ′(γx)− TP ′ = Ad(γ)

(
HP(x)− TP

)
for γ ∈ Γ0 and P ′ = γPγ−1.
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Lemma 9 Given a family of strictly bounded depth in G(Q), there exists a constant C > 1
with the following property. Let P be any parabolic Q-subgoup of G with Q-split component A,
and let U ⊂ R be normal unipotent Q-subgroups of P such that A acts on u \ r by a root α.
Then for all Γ ∈ T and x ∈ X(P) we have, with respect to the metric ρU

Rx,

diamU
Rx

(
U (Γ ∩ R) \ Rx

)
≤ CN(Γ)e−α(HP(x)−TP),

pinchU
Rx

(
U \U (Γ ∩ R)x

)
≥ C−1N(Γ)e−α(HP(x)−TP).

Proof First we consider fixed P only. Write x = pK with p ∈ P. As we have seen in the
proof of Lemma 6, there is a complementary subspace v of u in r stable under some Levi
component M of P such that Y (x) = p exp(v)K/K. Since A acts on u\ r by scalars, U \R is
abelian, and the map ϕ : v→ U \ Rx given by ϕ(X) = p exp(X)K is an isometry for some
Euclidean metric on v. Moreover, exp(X1)ϕ(X2) = ϕ

(
Ad(m−1)X1 + X2

)
for X1, X2 ∈ v,

where m denotes the projection of p on M. By Lemma 4,

DnN(Γ) Ad(m−1)Γv ⊂ ϕ
−1
(
U \U (Γ ∩ R)

)
⊂ N(Γ) Ad(m−1)Γv,

where Γv = (Γn + u) ∩ r. After conjugating M and v, if necessary, by an element of P, we
may suppose that M = M(R), where M is the centralizer of A and, in particular, defined
over Q . As A acts on v via α, it remains to show that

sup
m∈M1

mKP∈XP(M)

diam
(
Ad(m−1)Γv \ v

)
<∞, inf

m∈M1

mKP∈XP(M)

pinch
(

Ad(m−1)Γv

)
> 0.

with respect to our Euclidean metric on v. This metric is stable under KP, so the functions
of which we take sup resp. inf really depend only on mKP ∈ XP ∼= M1/KP. These functions
are continuous, nonvanishing and invariant under the stabilizer of Γn in M. Since Γn lies
in the set of Q-rational points of n, it is easy to find an arithmetic subgroup ΓM of M(Q)
contained in ΓP

0 and stabilizing Γn. Then ΓM \ XP(M) is compact, and the assertion for
fixed P follows.

Note that the preceding argument could have been reduced to the case of Γ = Γn(N) ∩
G(Q). This is a normal subgroup of Γ0, for which both sides of the asserted inequalities are
unchanged if we replace P by one of its Γ0-conjugates. Since there are only finitely many
Γ0-conjugacy classes of parabolic Q-subgroups, C can be chosen independently of P.

5 Majorants on Quotients

In this section we shall prove the main technical estimate, which will provide majorants for
the heat kernels on the quotient spaces Γ ∩ P \ X̃(P,T). For this one has, in particular, to
sum the inverse of the distance function from a fixed point x ∈ X over the lattice points
in the intersection of the horosphere Nx with a ball B in X. Basically we follow the usual
method of bounding such a sum by the integral over the intersection of Nx with a larger
ball B ′. Naively, one would replace the values in the lattice points by the integrals over
disjoint neighborhoods divided by their common volume. To make the estimates strong
enough, we would like to maximize the volume of these neighborhoods by setting them
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equal to the translates of a fundamental domain for the action of Γ ∩ N . However, such
fundamental domains depend on Γ, hence so does B ′ in an uncontrollable way. We over-
come this difficulty (and other ones) by decomposing Γ ∩ N according to a filtration of N
depending on x and by adapting the fundamental domains to this filtration.

To begin with, we prepare the notation for defining the fundamental domains. Let P be
a parabolic Q-subgroup of G, N its unipotent radical and A a Q-split component. Given
x ∈ X(P,T), we write the set Φ of roots of A in n as {α1, . . . , αl} in such a way that
αi

(
HP(x)−TP

)
≤ αi+1

(
HP(x)−TP

)
. Since HP(x)−TP ∈ a+

P , the sum of the root subspaces
for the roots αi , . . . , αl is a normal Lie subalgebra for each i. Let Ni be the corresponding
normal unipotent subgroup of P. For unification, we write N0 = P, Nl+1 = {1}. The
restriction of the Riemannian metric of X to Nix defines some inner metric, which we
denote by ρi . In particular, ρ0 = ρ. If y ∈ Nix and j > i, let y j(x) be the element in
N j y of minimal ρi-distance from x. This element is unique by Lemma 6, because it is the
result of the horizontal transport of x from the fiber N jx to the fiber N j y with respect to
the standard connection on the N j-bundle Nix. The last assertion of Lemma 6 shows that,
if we replace i by any k < i, we get the same result. That is why we have not included i in
the notation y j(x). Another consequence is that y j

(
yi(x)
)
= y j(x) for j > i. The metric

ρ
j
i induced by ρi on N j \ Nix is characterized by ρ j

i (x, y) = ρi

(
x, y j(x)

)
.

For each i, we set

F̃Γi (x) = {y ∈ Ni+1 \ Nix | ρ
i+1
i (y, x) < ρi+1

i (y, γx)

∀ γ ∈ Γ ∩ Ni+1 \ Γ ∩ Ni with γ 6= 1}.

This is a fundamental domain for the action of Γ ∩ Ni+1 \ Γ ∩ Ni on Ni+1 \ Nix. Now we
define recursively FΓl+1(x) = {x},

FΓi (x) =
⋃

y∈F̃Γi (x)

FΓi+1

(
yi+1(x)

)
.

for 1 ≤ i ≤ l. Clearly, γFΓi (x) = FΓi (γx) for γ ∈ Γ∩Ni . Finally, we put FΓN (x) = FΓ1 (x). Of
course, this construction depends on the choice of the filtration {Ni}, which is not unique
for some x.

Lemma 10 The set FΓi (x) is a fundamental domain for the action of Γ ∩ Ni on Nix. More-
over, there exists C > 0 with the following properties for all parabolic Q-subgroups P, all
x ∈ X(P,T), i = 1, . . . , l and Γ ∈ T:

(i) If y ∈ Ni+1 \Nix is in the closure of F̃Γi (x) and γ ∈ Γ∩Ni+1 \Γ∩Ni is nontrivial, then

ρi+1(x, γy) ≥ C−1 log
(
1 + N(Γ)e−αi (HP(x)−TP)

)
.

(ii) With respect to the metric ρ we have

diam
(
FΓi (x)

)
≤ C log

(
1 + N(Γ)e−αi (HP(x)−TP)

)
.

(iii) Any two elements of the closure of FΓi (x) can be connected in this set by a piecewise smooth
path whose length is at most CN(Γ)e−αi (HP(x)−TP).
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Proof If γ ∈ Γ∩Ni and y ∈ FΓi (x)∩γFΓi (x), we see by projecting on Ni+1\Nix that F̃Γi (x)∩
γF̃Γi (x) 6= ∅, hence γ ∈ Γ ∩ Ni+1. Now yi+1(γx) = γyi+1(x), and we get FΓi+1

(
yi+1(x)

)
∩

FΓi+1

(
γyi+1(x)

)
6= ∅ by intersecting with Ni+1 y. This shows by induction that the (Γ∩Ni)-

translates of FΓi (x) are disjoint.
Suppose we have already shown that the (Γ ∩ Ni+1)-translates of the closure of FΓi+1(x)

cover Ni+1x for any x. Let y ∈ Nix. Then it is easy to see that there exists γ ∈ Γ ∩ Ni

such that γyi+1(x) = (γy)i+1(x) is in the closure of F̃Γi (x) modulo Ni+1. By the induction
hypothesis there exists γ ′ ∈ Γ ∩ Ni+1 such that γ ′γy is in the closure of FΓi+1

(
γyi+1(x)

)
.

This means that γ ′γy is in the closure of FΓi (x).
(i) For y and γ as in the statement we have by definition

ρi+1
i (x, γx) ≤ ρi+1

i (x, γy) + ρi+1
i (γx, γy) ≤ 2ρi+1

i (x, γy).

The left-hand side is bounded from below by pinchi+1
i

(
Ni+1 \Ni+1(Γ∩Ni)x

)
, for which we

have the lower bound from Lemma 9. It remains to use the resulting inequality together
with Corollary 8.

(ii) It suffices to bound ρ(x, y) for y ∈ FΓi (x). It is clear that x = yi(x) and y = yl+1(x).
Since y j+1(x) ∈ F̃Γj

(
y j(x)

)
for j = i, . . . , l, we have

ρ j

(
y j+1(x), y j (x)

)
= ρ

j+1
j

(
y j+1(x), y j (x)

)
= inf

γ∈Γ∩N j

ρ
j+1
j

(
y j+1(x), γy j (x)

)

≤ diam j+1
j

(
N j+1(Γ ∩ N j) \ N j y j(x)

)
.

Lemma 9 provides a bound for this diameter, and Lemma 7 shows that

ρ
(

y j+1(x), y j (x)
)
≤ C log

(
1 + ρ j

(
y j+1(x), y j (x)

))
.

Now the assertion follows from the triangle inequality and the choice of our filtration.
(iii) It suffices to connect x with any y ∈ FΓi (x) by a path with the required properties.

For j ≥ i, let Y j+1
j (x) be the horizontal submanifold through x in the N j+1-bundle N jx.

This is a Euclidean space projecting isometrically on N j+1 \ N jx. By definition, y j+1(x) lies

in the inverse image of F̃Γj
(

y j(x)
)

in Y j+1
j

(
y j(x)

)
. Since this is an intersection of half-spaces

in Y j+1
j

(
y j(x)

)
, it contains the straight line connecting y j(x) with y j+1(x), whose length

equals ρ j+1
j

(
y j(x), y j+1(x)

)
. Applying the bound on diam j+1

j

(
N j+1(Γ ∩ N j) \ N j y j(x)

)
from Lemma 9, we get the assertion.

Our next result contains an analogue of Lemma 4.2 in [5] adapted to our situation as
well as a generalization of Lemma 3.3 in [6] which takes care of the dependence on the
lattice.

Proposition 11 Given a family T of strictly bounded depth in G(Q) and a positive number
r ′, there exist positive constants C, c such that for all Γ ∈ T with N(Γ) large enough, all proper
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parabolic Q-subgoup P, all x ∈ X(P), y in the closure of FΓN (x) and r ≥ 1 we have

#{γ ∈ Γ ∩ P | γ 6= 1, ρ(x, γy) ≤ r} ≤ CN(Γ)−1e2ρP(HP(x)−TP)ecr,

∑
γ∈Γ∩N
γ 6=1

ρ(x,γy)≤r ′

ρ(x, γy)−1 ≤ CN(Γ)−1e2ρP(HP(x)−TP)αP(x).

Here we denote, as usual, by ρP the half-sum of roots with multiplicities. Moreover, we set

αP(x) = minα∈Φ
(

1 + α
(
HP(x) − TP

))
, where Φ is the set of roots of a in n. (This factor

may be omitted if the minimum is obtained at α with dim nα > 1.) If P = G, then the first
estimate is still true if one omits the factor N(Γ)−1.

Proof Let us fix a filtration {N1, . . . ,Nl} adapted to x as above and let Γi be the set-
theoretic difference of Γ ∩ Ni and Γ ∩ Ni+1. We shall prove the estimates for each Γi and
for the remaining subset of Γ ∩ P separately.

Fix 1 ≤ i ≤ l and let y be in the closure of FΓN (x), γ ∈ Γi . We may apply Lemma 10(i)
to Ni+1 y, which is in the closure of F̃Γi

(
yi(x)
)

, concluding that there exists ε > 0 such that

ρi+1
(

yi(x), γy
)
≥ ε log

(
1 + N(Γ)e−αi (HP(x)−TP)

)
=: pΓi (x).

In the case that ρi+1
(
x, yi(x)

)
≥ 1

2 pΓi (x) we get

ρi+1(x, γy) ≥ ρi+1
(
x, yi(x)

)
≥

1

2
pΓi (x),

while in the case that ρi+1
(
x, yi(x)

)
≤ 1

2 pΓi (x) we get

ρi+1(x, γy) ≥ ρi+1
(

yi(x), γy
)
− ρi+1

(
yi(x), x

)
≥ pΓi (x)−

1

2
pΓi (x).

Therefore, in any case we have

pΓi (x) ≤ 2ρi+1(x, γy) ≤ 2ρ(x, γy).

Now let z ∈ FΓi
(
γyi(x)

)
= γFΓi

(
yi(x)
)
= γFΓN (x) ∩ Ni y. Then

ρ
(

yi(x), z
)
≤ ρ
(

yi(x), x
)

+ ρ(x, γy) + ρ(γy, z).

The first term equals ρi(γy, x) and is bounded by ρ(x, γy), while the last term is bounded

by diam
(

FΓi
(
γyi(x)

))
. It follows from Lemma 10(ii) that there is a constant C > 0 inde-

pendent of i > 1, x ∈ X(P), the parabolic P and Γ ∈ T such that

diam
(

FΓi (x)
)
≤ C pΓi (x).
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Applying this and the bound on pΓi (x) just derived, we get

ρ
(

yi(x), z
)
≤ 2(1 + C)ρ(x, γy).

On the one hand this shows that

⋃
γ∈Γi

ρ(x,γy)≤r

FΓi
(
γyi(x)

)
⊂ Bi

(
yi(x), cr

)
(1)

(disjoint union by Lemma 10), where c = 2(1 + C) and Bi(y, r) denotes the ball of radius r
around y in Ni y with respect to the restriction of ρ. On the other hand, it implies that

∑
γ∈Γi

ρ(x,γy)≤r

voli
(

FΓi
(
γyi(x)

))
ρ(x, γy)−1 ≤ c

∫
Bi(yi (x),cr)

ρ
(

yi(x), z
)−1

dz,(2)

where dz is the Riemannian measure on Ni y coming from ρi and voli the corresponding
volume.

For fixed r = r ′, one can prove more. Lemma 10(i) can be applied to the Ni+1-orbit of
z ∈ FΓi

(
γyi(x)

)
for γ ∈ Γi and gives

ρ
(

yi(x), z
)
≥ ρi+1

(
yi(x), z

)
≥ pΓi (x).

If ρ(x, γy) ≤ r ′, we may replace the logarithm in pΓi (x) by a linear function and get

ρ
(

yi(x), z
)
≥ ε ′N(Γ)e−αi

(
HP(x)−TP

)

for some ε ′ > 0 independent of i, x, Γ and P. Indeed, by the above,

pΓi (x) ≤ ρ
(

yi(x), z
)
≤ cρ(x, γy) ≤ cr ′,

which was fixed. The upshot is that we may actually replace the domain of integration in (2)
by the set-theoretic difference of the balls Bi

(
yi(x), cr ′

)
and Bi

(
yi(x), ε ′N(Γ)e−αi (HP(x))

)
.

So we have to estimate integrals of the type

∫
Bi (x,r ′)\Bi (x,ε ′)

ρ(x, z)−1 dz

for fixed r ′ and varying ε ′ > 0, i, x and P. Such an integral remains unchanged if we
replace x and Ni by gx and gNig−1, resp., for some g ∈ G1. Thus we may fix P and suppose
that x = eK. If we pull ρ back under the embedding exp : ni → Ni → NiK/K ⊂ X,
its restriction to a compact subset is equivalent to the Euclidean metric on ni . Hence the
integral is bounded independently of ε ′ for dim Ni > 1. Now suppose that dim Ni = 1.
After passing to the Euclidean metric, the integral evaluates as c ′max

(
1 + log(r ′/ε ′), 0

)
with c ′ > 0. Using this and the fact that N(Γ) > 1, the right-hand side of (2) for fixed
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r = r ′ can be estimated by C ′
(

1 + αi

(
HP(x) − TP

))
for some C ′ > 0 independent of i, x

and P. If i > 1, this term will be absorbed by the terms with smaller i.
In the case i = 0, we lack a bound for the diameter of a fundamental domain for ΓP in

XP(M). Therefore, we consider

FΓ0 (x) =
⋃

y∈B0(x,r0)

FΓ1
(

y1(x)
)

instead, where B0(x, r0) denotes the ball of radius r0 around x in N \ X. We may replace T

by the subset of those Γ for which N(Γ) is greater than a given number. Then Lemmas 4
and 5 yield a constant r0 > 0 such that pinch(ΓPx0) ≥ r0

(
1 + log N(Γ)

)
for all x0 ∈ XP(M)

and all Γ ∈ T. For this choice of r0, it is easy to show as in the proof of Lemma 10 that the
sets FΓ0 (γx) for γ ∈ Γ∩P are pairwise disjoint. Moreover, it is clear that there exists C0 > 0
such that diam

(
FΓ0 (x)

)
≤ C0

(
1 + log N(Γ)

)
. Replacing Γ by Γn

(
N(Γ)

)
∩ G(Q) decreases

r0 while replacing it by Γn

(
DN(Γ)

)
∩ G(Q) increases C0. Since the principal congruence

subgroups are normal in Γ0, we see as above that r0 and C0 can be chosen independently
of P.

If γ ∈ Γ ∩ P, γ /∈ Γ ∩ N and y ∈ Nx with ρ(x, γy) ≤ r, then r ≥ r0

(
1 + log N(Γ)

)
.

If, moreover, z ∈ FΓ0 (γy), then ρ(x, z) ≤ ρ(x, γy) + ρ(γy, z) ≤ r + diam
(
FΓ0 (y)

)
≤ c0r for

c0 = 1 + C0/r0. Therefore

⋃
γ∈Γ∩P
γ /∈Γ∩N
ρ(x,γy)≤r

FΓ0 (γy) ⊂ B0(x, c0r),(3)

where B0(x, r) denotes the ball of radius r around x in X with respect to ρ.
To obtain the asserted inequalities from (1), (2) and (3), it remains to calculate the

Riemannian volume of FΓi (x) and Bi(x, r) with respect to ρi . The push-forward of the Haar
measure on Ni under the map Ni → Nix is proportional to this Riemannian measure, since
both are invariant. If we pull the Riemannian metric g back under P→ G/K = X, we have
gpx = gx−1 px. The inner automorphism p → x−1 px of P scales the invariant measure on
Ni by e−2ρNi (HP(x)), where ρNi

(
HP(x) − TP

)
≤ ρP

(
HP(x) − TP

)
, and leaves that on N\P

unchanged. Thus we get

voli
(
FΓi (x)

)
= vol(Γ ∩ Ni \ Nix) = C ′ vol(Γ ∩ Ni \ Ni)e−2ρNi (HP(x)−TP)

for i ≥ 1. We see that vol
(
FΓi (x)

)
is left Ni-invariant. Thus

vol
(
FΓ0 (x)

)
= C ′0 vol(Γ ∩ N \ N) vol

(
B0(x0, r0)

)
e−2ρP(HP(x)−TP).

Note that by Lemma 4 the volume of Γ ∩ Ni \ Ni grows at least linearly in N(Γ) (except
in the case P = G). The usual conjugacy argument shows that the lower bound we get
is uniform in P. Finally, we have to show that vol

(
Bi(x, r)

)
grows at most exponentially

in r. Using Lemma 6, one reduces this to the analogous assertions about balls in M/KP and
Ni+1 \ Ni , which are well known.
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Corollary 12 Given a family T of strictly bounded depth in G(Q) and a constant c > 0,
there exists a constant C > 0 such that for all Γ ∈ T with N(Γ) large enough, all parabolic
Q-subgoups P, all x ∈ X(P) and y in the closure of FΓN (x)

∑
γ∈Γ∩P
γ 6=1

(
ρ(x, γy)−1 + 1

)
e−cρ(x,γy)2

≤ CN(Γ)−1e2ρP(HP(x)−TP)αP(x).

Indeed, by Lemmas 4 and 5 there exists r0 > 0 such that pinch
(
N \ N(Γ ∩ P)x

)
≥ r0

for all Γ ∈ T with N(Γ) large enough. As we just remarked in the proof, r0 can be chosen
independently of P. Now we follow [6], p. 246: In the terms with ρ(x, γy) < r0 we replace
the exponential factor by 1 and apply the second estimate, while in the remaining terms we
replace ρ(x, γy)−1 by r−1

0 and apply the first estimate and the argument from [5], p. 491.

6 Heat Kernels on Quotients

We are now in a position to construct and estimate the heat kernels on the quotients Γ ∩
P \ X̃(P), which will allow us to prove the main result, viz. the spectral estimates for the
cut-off Laplacian.

Since Eτ is a homogeneous bundle, G1 also acts on its sections. However, we now prefer
to view sections of Eτ as functions f : G1 → Vτ satisfying f (xk) = τ (k−1) f (x) for all
x ∈ G1 and k ∈ K. Then the aforementioned action is simply given by left translation.
Let G̃(P) be the inverse image of X̃(P) in G1. Then we may view EP(t, x, y) as an End(Vτ )-
valued function on R+ × G̃(P)× G̃(P). For x, y ∈ G̃(P) and t > 0, put

EΓP (t, x, y) =
∑
γ∈Γ∩P

EP(t, x, γy).

By Proposition 2 and the results of [5], this sum converges absolutely on compact subsets
of R+ × G̃(P) × G̃(P), and the same is true after termwise covariant differentiation. EΓP is
the heat kernel on Γ ∩ P \ X̃(P) with coefficients in the bundle EΓ∩P

τ and von Neumann
boundary conditions, since it has all its characteristic properties.

Lemma 13 For any family T of strictly bounded depth in G(Q) there exists a constant C > 0
with the following property. Let P ⊂ P ′ be parabolic Q-subgoups, of which P ′ is maximal,
with unipotent radicals N ⊃ N ′. Let A be a Q-split component of P. Then for all Γ ∈ T with
N(Γ) large enough, all x ∈ G̃(P), all y, z ∈ N ′x and 0 < t ≤ 1 we have

|EΓP (t, x, y)− EΓP (t, x, z)| ≤ Ct−d/2
(
1 + e(2ρP−α)(HP(x)−TP)αP(x)

)
,

where αP is as in Proposition 11 and α is the only fundamental root of A in n which does not
vanish on aP ′ .

Proof Choose an ordering {α1, . . . , αl} of the roots of A in n adapted to xK, which gives
rise to a filtration {Ni} of N and the fundamental domains FΓi (x) of Γ ∩ Ni in NixK/K. If
i is that number with αi = α, then the other roots of A in n ′ are of the form α j with j > i,
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in other words, N ′ ⊂ Ni . Thus y, z ∈ Nix, and since EΓP (t, x, y) is (Γ ∩ Ni)-invariant, we
can choose yK, zK in the closure of FΓi (x). By Lemma 10(iii), we can connect them inside
this closure by a piecewise smooth path c whose length is bounded by a constant times
N(Γ)e−α(HP(x)−TP). Let c̃ be the lift of this path which connects y and z in Nix ⊂ G̃(P). We
have

EΓP (t, x, y)− EΓP (t, x, z) =
∑
γ∈Γ∩P

(
EP(t, x, γy)− EP(t, x, γz)

)
.

Due to the first estimate in Proposition 2, the term with γ = 1 is bounded by C1t−d/2 for
some C1 > 0. We write the other terms as

EP(t, x, γy)− EP(t, x, γz) =

∫
c̃

X̃uEP(t, x, γu) du,

where the measure du is defined by the normal parametrization of the path c ⊂ X trans-
ferred to c̃ and X̃u is the tangent vector of c̃ at the point u according to this parametrization.

For any smooth function f : G̃(P)→ Vτ satisfying f (xk) = τ (k−1) f (x) we have

X̃u f (u) =
d

dt
f
(
exp(tX)u

)∣∣∣
t=0
=

d

dt
f
(

u exp
(
t Ad(u−1)X

))∣∣∣
t=0

for some X ∈ n. If we decompose Ad(u−1)X = Y = Y k + Y s according to the Cartan
decomposition g = k⊕s, then the component of X̃u corresponding to Y s is just the tangent
vector Xu of c, and

Xu f (u) = ∇Xu f (u)− τ (Y k) f (u),

where f is interpreted as a section of Eτ in the first term. Suppose for a moment that
u ∈ P; then Y ∈ n. Since the projection n → s is injective, there exists C2 > 0 such
that |Y k| ≤ C2|Y s| for all Y ∈ n and a fixed K-invariant norm on g. By K-invariance, the
same is true for any u. Moreover, as there are only finitely many parabolic subgroups up to
K-conjugacy, C2 is independent of P. Since Xu is a unit vector for the Riemannian metric
on X, we get

|X̃u f (u)| ≤ |∇ f (u)| + C3| f (u)|

for some C3 > 0. Now it follows from Proposition 2 that the integrand is bounded by

C4t−d/2
(
ρ(x, γu)−1 + 1

)
e−ρ(x,γu)2/c

for some C4 > 0. Applying the preceding corollary, we obtain our assertion.

We again consider sections of Eτ as Vτ -valued functions on G1. Let L2
cus

(
Γ ∩ P \ X̃(P),

EΓ∩P
τ

)
be the subspace of L2

(
Γ∩P \ X̃(P), EΓ∩P

τ

)
consisting of all functions whose constant

terms along proper parabolic Q-subgroups containing P vanish. Since X̃(P) is invariant
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under N , this makes sense. Let ΛP be the orthoprojector of L2
(
Γ ∩ P \ X̃(P), EΓ∩P

τ

)
onto

that subspace. Then

ΛP f (x) =
∑

P ′⊃P

(−1)dim aG
P ′

∫
Γ∩N ′\N ′

f (nx) dn,

where the sum is over all parabolic Q-subgroups P ′ containing P and the Haar measures
on their unipotent radicals N ′ are normalized so that the quotients appearing have total
mass one.

Let∆ΓP be the Laplacian with von Neumann boundary conditions on Γ∩ P \ X̃(P) with
values in the bundle EΓ∩P

τ . Since ΛP commutes with both ∆ and the normal covariant
derivation at the boundary, it reduces ∆ΓP and defines a restriction ∆ΓP,cus. Therefore the

heat kernel for the von Neumann problem in L2
cus

(
Γ ∩ P \ X̃(P), EΓ∩P

τ

)
, i.e., the kernel of

exp(t∆ΓP,cus), equals

ĒΓP (t, x, y) = ΛPEΓP (t, x, y),

where it is immaterial to which of the spatial variablesΛP applies because EP is N ′-invariant
and N ′ is normalized by Γ ∩ P for each P ′.

Proposition 14 Given a family T of strictly bounded depth in G(Q) and a parabolic Q-
subgoup P, there exist constants C > 0, ε > 0 such that for 0 < t ≤ 1, all Γ ∈ T with N(Γ)
large enough and all x ∈ X̃(P)

|ĒΓP (t, x, x)| ≤ Ct−d/2e(2−ε)ρP(HP(x)−TP).

Proof In the case P = G we have ĒΓG = EΓG, ρG = 0, and by the argument from [5, p. 491],
the assertion follows immediately from Proposition 2 and the first estimate in Proposi-
tion 11.

Now we consider the case P 6= G. Let A be a Q-split component of P and Ψ the set of
its fundamental roots in n. For each subset F of Ψ, let nF be the sum of the root subspaces
in n corresponding to those roots which cannot be written as sums of elements of F alone.
By assigning to each such F the normalizer of NF := exp nF in G, we put the subsets ofΨ in
bijection with the Q-parabolics containing P. For any locally integrable (Γ ∩N)-invariant
function f on G̃(P) with values in a finite-dimensional Hilbert space V , we write

fF(x) =

∫
Γ∩NF\NF

f (nx) dn.

Let us fix α ∈ Ψ and write Nα = NΨ\{α}. Then NF\{α} = NFNα, and ΛP f (x) equals

∑
F⊂Ψ

(−1)#(F) fF(x) =
∑
F⊂Ψ
F3α

(−1)#(F)

(
fF(x)−

∫
Γ∩Nα\Nα

fF(nx) dn

)
.

The value of the integral is contained in the convex hull of the set { fF(nx) | n ∈ Γ ∩ Nα \
Nα}, and so is fF(x). Hence the difference is bounded by the diameter of this compact set in
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V , which is realized by two of its elements fF(x ′F,α) and fF(x ′ ′F,α), say, where x ′F,α, x ′ ′F,α ∈ Nαx.
Thus

|ΛP f (x)| ≤
∑
F⊂Ψ
F3α

| fF(x ′F,α)− fF(x ′ ′F,α)|.

Let us apply this to EΓP (t, x, y) as a function of its last argument. We obtain a sum of in-
tegrals over Γ ∩ NF \ NF, and for each integrand the preceding lemma provides a bound
independent of the variable of integration. Hence there exists C > 0 such that

|ĒΓP (t, x, x)| ≤ Ct−d/2
(
1 + e(2ρP−α)(HP(x)−TP)αP(x)

)
.

Since α ∈ Ψ was arbitrary, we may now take the minimum over all α and use the fact that
maxα∈Ψ α(H) ≥ ερP(H) for all H ∈ a+

P and some ε > 0.

Lemma 15 If λ1 ≤ λ2 ≤ · · · and
∑∞

n=1 e−tλn ≤ Ct−m for 0 < t ≤ 1, then for λ ≥ 0 we
have N(λ) := max{n | λn ≤ λ} ≤ Ce(1 + λ)m.

Proof We have ne−tλn ≤
∑n

k=1 e−tλk ≤ Ct−m. If λ ≥ 0, we may put t = (1 + λ)−1, which
is in the required interval. For λn ≤ λ we then obtain n

e ≤ ne−λn/(1+λ) ≤ C(1 + λ)m, as
claimed.

Let ∆̃Γcus denote the direct sum of the operators∆ΓP,cus over all parabolic Q-subgroups P

(including G itself) up to Γ-conjugacy and ÑΓ(λ) its spectral counting function.

Theorem 16 If T is a family of bounded depth in Γ0, then there exists a constant C > 0 such
that for all Γ ∈ T and all λ ≥ 0 we have

ÑΓ(λ) ≤ C[Γ0 : Γ](1 + λ)d/2.

Proof First suppose that T is a family of strictly bounded depth. Since there are only finitely
many Γ0-conjugacy classes of parabolic Q-subgroups, we may fix one of them, say C, and
consider only the subsum ∆ΓC,cus of ∆ΓP,cus over P ∈ C up to Γ-conjugacy. Now X̃C :=⋃

P∈C X̃(P) is a disjoint union, and Γ \ X̃C is isometric the disjoint union of the manifolds
Γ ∩ P \ X̃(P) over all P ∈ C up to Γ-conjugacy. The cuspidal heat kernel ĒΓC(t, x, y) of the
von Neumann problem on this union equals ĒΓP (t, x, y) if x, y ∈ Γ∩ P \ X̃(P) and vanishes
if x, y are in different components. We have to estimate

∫
Γ\X̃C

trτ ĒΓC(t, x, x) dx.

If N(Γ) is large enough, Proposition 14 provides a bound for the integrand, which is ob-
viously Γ0-invariant. After inserting this bound, the integral becomes [Γ0 : Γ] times the
corresponding integral over Γ0 \ X̃C, i.e., a constant times

[Γ0 : Γ]
∑

P

∫
Γ0∩P\X̃(P)

e(2−ε)ρP(HP(x)−TP) dx,
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where the sum is now taken over P ∈ C up to Γ0-conjugacy. It is well known that the latter
integral is finite. This shows that tr exp(t∆ΓC,cus) ≤ CC[Γ0 : Γ]t−d/2 for some CC > 0 and
all 0 < t ≤ 1, and it remains to apply the preceding lemma.

Now suppose that T is a family of bounded depth in Γ0. Then there exists a family T ′

of strictly bounded depth for which the theorem is already proved and such that for each
Γ ∈ T there is a Γ ′ ∈ T ′ with Γ ′ ⊂ Γ and [Γ : Γ ′] ≤ D. E.g., one may take the family of
principal congruence subgroups Γn(N) ∩ G(Q) with N large enough. It follows that

ÑΓ(λ) ≤ ÑΓ
′

(λ) ≤ C[Γ0 : Γ ′](1 + λ)d/2 ≤ CD[Γ0 : Γ](1 + λ)d/2.

Corollary 17 Let∆ΓT be the cut-off Laplacian with coefficients in the bundle EΓτ and NΓT (λ)
its spectral counting function. In the situation of the theorem there exists a constant C > 0
such that for all Γ ∈ T and all λ ≥ 0 we have

NΓT (λ) ≤ C[Γ0 : Γ](1 + λ)d/2.

Indeed, there is T ′ > T (depending on the choice of ε in the definition of a smooth
hull) such that the image of X̃(P ′,T ′) in N \X is contained in exp(+aG

P + TP)XP for all pairs
P ′ ⊂ P. Thus we get an embedding

L2
T(Γ \ X, EΓτ )→

⊕
P ′

L2
cus

(
Γ ∩ P ′ \ X̃(P ′,T ′), EΓ∩P ′

τ

)
,

and the corollary can be proved just as Theorem 3.23 of [10] using von Neumann bracket-
ing. By restriction we immediately obtain

Corollary 18 Let NΓ(λ) be the spectral counting function for the restriction of the Bochner-
Laplace operator∆Γ to L2

cus(Γ \ X, EΓτ ). If T is a family of bounded depth in G(Q), then there
exists a constant C > 0 such that for all Γ ∈ T and all λ ≥ 0 we have

NΓ(λ) ≤ C[Γ0 : Γ](1 + λ)d/2.

7 An Adelic Version

In this section we shall give an adelic version of our spectral estimate for the cut-off Lapla-
cian. We consider only groups defined over Q , since the general case of a number field can
be reduced to this one by restriction of scalars. Denote the ring of adeles of Q by A and
the subring of finite adeles by Af. The latter has the maximal compact subring Ẑ =

∏
p Zp.

Recall that the principal congruence subgroup of level N in GLn(Af) is defined as the ker-
nel Kn(N) of the residue map GL(n, Ẑ) → GLn(Ẑ/NẐ). Let G be, as before, a connected
reductive linear algebraic Q-group.

Definition A family K of subgroups of G(Af) will be called a family of bounded depth in
G(Af) (with respect to a faithful Q-rational representation η : G → GLn) if there exists a
natural number D with the following property: For each K ∈ K there is a natural number
N such that Kn(N) ∩ η

(
G(Af)

)
is a subgroup of η(K) of index at most D.
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Again it is easy to see that this notion is independent of the choice of η.
Now we define the bundles to be considered. Given any linear algebraic Q-group H, we

write H(A)1 for the subgroup of H(A) consisting of all elements on which every Q-rational
character of H takes a value of idele norm one. Note that we may identify AH with H(A)1 \
H(A). Again we fix a maximal compact subgroup of G = G(R), which we now denote by
K∞, and a unitary representation τ of K∞ on a finite-dimensional Hilbert space Vτ . For
each open compact subgroup K of G(Af), we consider the G(A)1-homogeneous hermitian
vector bundle EK

τ :=
(
G(A)1 ×K∞ Vτ

)
/K over XK := G(A)1/K∞K. Since G(A)1 is the

direct product of G1 and G(Af)\ :=
(
AG × G(Af)

)
∩ G(A)1 ∼= G(Af), EK

τ is a smooth
bundle isomorphic to Eτ×G(Af)\/K, which carries a canonical G1-invariant connection∇.
Embedding, as usual, G(Q) into G(A) diagonally, we get a hermitian bundle EK

τ := G(Q) \
EK
τ over XK := G(Q)\XK , whose sections we usually identify with G(Q)-invariant sections

of EK
τ . We define the constant term of a locally integrable section f along the parabolic

Q-subgroup P of G as

fP(x) =

∫
N(Q)\N(A)

(
r(n) f

)
(x) dn,

where N is the unipotent radical of P and r the right action of G(A)1 on sections.
Next we turn to truncation. We fix a maximal open subgroup Kf of G(Af) each local

component of which is special. Writing Kmax = K∞Kf, we then have G(A) = P(A)Kmax for
each parabolic Q-subgroup P of G. A truncation parameter T for G and Kmax is a family of
points TP ∈ aG

P indexed by the parabolic Q-subgroups such that

• γ · P(A)1 exp(TP)Kmax = P ′(A)1 exp(TP ′)Kmax for γ ∈ G(Q) and P ′ = γPγ−1,
• TP = (TP ′)P for P ′ ⊂ P.

Any such T is determined by the value TP for a fixed minimal parabolic Q-subgroup. Given
an open subgroup K of Kf, let L2

T(XK , EK
τ ) be the subspace of L2(XK , EK

τ ) consisting of
all sections f with the following property for each proper (equivalently: each maximal)
parabolic Q-subgroup P: If x belongs to P(A)1 exp(+aG

P + TP)Kmax/K∞K, then fP(x) = 0.
Now ∆K

T is defined as the selfadjoint operator in L2
T(XK , EK

τ ) associated to the quadratic
form ‖∇ f ‖2 on the intersection of the Sobolev space H1(XK , EK

τ ) with L2
T(XK , EK

τ ).

Theorem 19 If K is a family of bounded depth in G(Af) and T is a sufficiently large trunca-
tion parameter for G and Kmax, then there exists a constant C > 0 such that for all K ∈ K

contained in Kf and all λ ≥ 0 the spectral counting function NK
T (λ) of∆K

T satisfies

NK
T (λ) ≤ C vol(XK )(1 + λ)d/2.

This theorem has the obvious corollary concerning the spectral counting function of
the Laplacian in the cuspidal subspace of L2(XK , EK

τ ). We shall now deduce it from its non-
adelic counterpart. The group G1 acts on G(Q) \ G(A)1/K from the right, and each orbit
has a representative ξ ∈ G(Af)\. The stabilizer of ξ is that subgroup ΓK,ξ of G(Q) which
is mapped on G(Q) ∩ ξKξ−1 under the diagonal embedding into G(Af). Thus we have an
isomorphism of right G1-spaces

G(Q) \ G(A)1/K ∼=
⊔

ξ∈G(Q)\G(Af)\/K

ΓK,ξ \ G1,
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where #
(
G(Q) \ G(Af)\/K

)
< ∞ by [3]. Taking the fibered product with Vτ over K∞, we

get

EK
τ
∼=

⊔
ξ∈G(Q)\G(Af)\/K

E
ΓK,ξ
τ ,

which yields the obvious isomorphism between the spaces of L2-sections.
Now we translate the adelic truncation to the non-adelic picture. Let P be a parabolic

Q-subgroup with unipotent radical N. If f ∈ L2(XK , EK
τ ), the integral defining fP(xξ) for

x ∈ G1 and ξ ∈ G(Af)\ can be taken over N(Q) \ N(A)/N(Af) ∩ ξKξ−1, which is N-
isomorphic to ΓK,ξ ∩ N \ N by the additive approximation theorem. We can define a map
HP : G(A) → aP by the requirement exp HP(pk) = P(A)1 p for p ∈ P(A), k ∈ Kmax, thus
extending the previously defined map HP : X → aP pulled back to G1. Since HP(xξ) =
HP(x) + HP(ξ) for x, ξ as just before, one easily checks that

L2
T(XK , EK

τ ) ∼=
⊕

ξ∈G(Q)\G(Af )\/K

L2
Tξ

(
ΓK,ξ , E

ΓK,ξ
τ

)

provided we define a truncation parameter Tξ for ΓKf,ξ and K∞ by Tξ,P = TP−HP(ξ). This
isomorphism is, of course, compatible with the cut-off Laplacians, whence for λ > 0 we
have

NK
T (λ) =

∑
ξ∈G(Q)\G(Af)\/K

N
ΓK,ξ

Tξ
(λ).

Let us identify G via η with a subgroup of GLn and put K0 = Kn(1) ∩ G(Af). Choose
a (finite) set Z ⊂ G(Af) of representatives for G(Q) \ G(Af)/K0. Then there exist natural
numbers DZ , CZ such that Kn(DZN) ⊂ ζKn(N)ζ−1 and [ζKn(N)ζ−1 : Kn(DZN)] ≤ CZ

for all ζ ∈ Z and all natural numbers N . Of course, Kn(N) ∩ GL(n,Q) = Γn(N). If ζ ∈ Z
and ξ ∈ ζK0, then ξKn(N)ξ−1 = ζKn(N)ζ−1. For Kn(N) ∩ G(Af) ⊂ K this implies

[
ΓK,ξ : Γn(DZN) ∩ G(Q)

]
≤
[
ξKξ−1 : Kn(DZN) ∩ G(Af)

]
≤ CZ

[
K : Kn(N) ∩ G(Af)

]
.

Thus, if K is a family of bounded depth in G(Af), then the set of all ΓK,ξ with K ∈ K,
ξ ∈ ZK0 is a family of bounded depth in G(Q). Since Tξ depends only on the right Kf-coset
of ξ, we can now deduce from Corollary 17 that there exists a constant C > 0 such that

NK
T (λ) ≤ C

∑
ξ∈G(Q)\G(Af)\/K

vol(ΓK,ξ \ X)(1 + λ)d/2 = C vol(XK )(1 + λ)d/2

for all K ∈ K with K ⊂ Kf.
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