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BEHREND'S THEOREM FOR DENSE SUBSETS OF 
FINITE VECTOR SPACES 

T. C. BROWN AND J. P. BUHLER 

1. Introduction. The "combinatorial line conjecture" states that for all 
q ^ 2 and e > 0 there exists N(q, e) such that if n — n(q, c), X is a 
g-element set, and A is any subset of Xn (= cartesian product of n copies 
of X) with more than e\X"\ elements (that is, A has density greater than c), 
then A contains a combinatorial line. (For a definition of combinatorial 
line, together with statements and proofs of many results related to the 
combinatorial line conjecture, including all those results mentioned below, 
see [5]. Since we are not directly concerned with combinatorial lines in this 
paper, we do not reproduce the definition here.) 

This conjecture (which is a strengthened version of a conjecture of 
Moser [7]), if true, would bear the same relation to the Hales-Jewett 
theorem that Szemerédi's theorem bears to van der Waerden's theorem. In 
particular, it would imply Szemerédi's theorem. The conjecture is known 
to be true for the case q = 2 (see [5] or [3]), as was first observed by R. L. 
Graham. A reward has been offered by Graham for a proof or disproof of 
the conjecture for the case q = 3. 

A natural weakening of this (apparently very difficult) conjecture is 
obtained by replacing the integer q by a prime power q, the ^-element set 
X by the ^-element field Fq, the cartesian product X'1 by an «-dimensional 
vector space V over Fq, and "combinatorial line in Xn" by "affine line in 
V\ (An affine line is any translate of a I-dimensional vector subspace; the 
purist will note that we only use the structure of V as an affine space.) 

We thus obtain the "affine line conjecture:" For every prime power q 
and € > 0, there exists n(q, e) such that if n â n(q, c), V is an 
«-dimensional vector space over the ^-element field, and A is any subset of 
F with more than e\V\ elements (that is, A has density greater than c), then 
A contains an affine line. 

The affine line conjecture is known to be true for the cases q = 2 
(trivial) and q = 3 ([1]). In [2] it is shown that if the affine line conjecture 
is true for a given fixed value of q, then it remains true for this value of q 
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when "affine line" is replaced by "/c-dimensional affine subspace", for any 
/c, and similarly for the combinatorial line conjecture. 

Szemerédi's theorem [9] states that for each k and e > 0, there exists n 
such that if A is any subset of {1, 2, . . . , n) with more than m elements 
(that is, A has density greater than €), then A contains a /c-term arithmetic 
progression. Some 37 years prior to the proof of Szemerédi's theorem, 
Felix Behrend [4] proved the following result: If Szemerédi's theorem is 
false then there exist triples (/c, n, A) such that A is a subset of 
{1,2, . . . , « } which contains no /c-term arithmetic progression, n is 
arbitrarily large, and the density of A in {1,2, . . . , « } ( = \A\ln) is 
arbitrarily close to 1. 

In [3], the exact analogue of Behrend's result was established in the 
context of the combinatorial line conjecture: If the combinatorial line 
conjecture is false then there exists triples (X, n, A) such that X is a finite 
set, A is a subset of Xn which contains no combinatorial line, n is 
arbitrarily large, and the density of A in Xn (= |v4|/|A"7|) is arbitrarily close 
to 1. 

In the present paper we show that the exact analogue of Behrend's result 
is true in the context of the affine line conjecture: If the affine line 
conjecture is false then there exist triples (F, n, A) such that F is a finite 
field, A is a subset of Fn (the «-dimensional vector space over F) which 
contains no affine line, n is arbitrarily large, and the density of A in Fn ( = 
|/1|/|F'7|) is arbitrarily close to 1. 

The proof is somewhat technical, and the exact result which we prove is 
the following. Suppose that the affine line conjecture fails for the finite 
field F. (That is, let \F\ = q and suppose that n(q, e) does not exist for 
some c > 0.) Then for every TJ < 1 and every n0 there is a subset A of a 
finite-dimensional vector space V over a finite extension Ff of F, where 
dim/r' V = n$, such that A contains no affine line and the density of A in V 
( = |y4|/|F|) is greater than 17. 

The proof is basically a modification of the argument in [3], which in 
turn followed the lines of the classical paper by Behrend [4]. 

2. Notation, definitions, and statement of the main theorem. Through
out, Fq denotes the ^-element field. 

Definition. For each prime power q and e > 0, n(q, e) denotes the 
smallest integer (if one exists) such that if V is a finite-dimensional vector 
space over F^, dim(F) ^ n(q, c), A c F , \A\ > e|F|, then A contains an 
affine line. 

For a fixed prime power q, consider the infinite array 
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M(q) = (d(n, k)) (n ^ 1, k ^ 1) 

where the rows are indexed by n and the columns are indexed by /c, and 
where d(n, k) is defined as follows. Let V be an «-dimensional vector 
space over ¥qk and let A be a subset of F that has maximum cardinality 
subject to the condition that A contains no affine line. Then 

d(n, k) = \A\ / \V\. 

In other words, d(n, k) is the smallest real number with the following 
property. If B is any subset of F ( F a s above) with \B\ > d(n, k)\V\, then B 
contains an affine line. 

Remark. It follows directly from the preceding two sentences and the 
definition of n(q, e) that for all n, /c, 

n ^ n(qk, e) if and only if d(n, k) = e. 

We shall see below that each column of the array M(q) decreases. We 
define, for each k = 1, 

y(k) = lim d(n, /c), 
n—>oo 

so that 

J ( l , k) ^ • • ^ d(n9 k) ^ • • è y(*0-

We shall also see that for each row of M(q), 

d(n, 1) ^ d(n, 2) ^ rf(w, 4) ^ • • ^ rf(w, 2l) ^ • • ^ 1, 

so that 

0 ^ y(l) ^ ^ y(2^) g • • â r(^) , 

where by definition 

T(^) = Um 7(2'). 
/—>oo 

THEOREM. T(q) = 0 or T(q) = 1. 

COROLLARY. Suppose the affine line conjecture is false. In particular, 
suppose that n(q, c) does not exist. Let 7] < 1 be given. Then there exists an 
integer k and a subset A of a finite-dimensional vector space V (of arbitrarily 
large dimension) over Fqk such that A contains no affine line and A has 
density greater than -q. 

Proof of Corollary. We prove the contrapositive. We are assuming that 
(as is shown in Lemma 1 below) d(n, k) decreases to y(k) and that T(2 ) 
increases to T(q). 
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Now let q and 77 < 1 be given, and suppose that for each k ^ 1, if A is a 
subset of a vector space V over F^* with density greater than 77, and dim V 
is sufficiently large, then A must contain an affine line. In other words, we 
are assuming that n(qk, 77) exists for all /c = 1. We need to show that n(q, 
c) exists for all € > 0. 

Construct the array M(q) as above, and consider the entries d(n, k) in 
the Â:th column of M(q). Since n(qk, 77) exists then by the Remark above 

d(n, k) ^ 77 for all n = n(qk, 77). 

Since d(n, k) decreases to y(k), it follows that y(k) ^ 77, for each k = 1. In 
particular, 7(2') ^ 77 for each /; since y(2/) increases to T(q), it follows that 
T(q) ^ 77 < 1. By the theorem, we must have T(q) = 0, and hence y(l) = 
0. 

Now let € > 0 be given. Since d(n, 1) decreases to y(l) = 0, d(n, 1) < e 
for sufficiently large n, say d(n§, 1) < c. Then using the Remark once 
more, we obtain H0 = ^ ( ^ €)- Thus w(g, c) exists. 

3. Proof of the main theorem. 

LEMMA 1. Fix q, and let the numbers d(n, k) be defined as above. Then 

d(\, k) ^ • • â d(n9 k) ^ d(n + 1, A:) ^ • • 

rf(w, 1) ^ • • g d(n, 2l) ^ d(«, 2 /+1) g • • . 

Proof. For the first part, let 

dimF A F = « + 1 

and let V0 be an «-dimensional subspace of V. Let 

F = U {Va :a e F,*}, 

where the Va are cosets (translates) of VQ. Let v4 be a subset of V which has 
maximum cardinality subject to the condition that A contains no affine 
line. Then A n Va contains no affine line for each a, hence 

d(n + 1, A:) • (qk)n + l = \A \ = 2 \A n Va\ ^ qk • d(n, k) • {qkf. 

For the second part, let F = F^' and let F = F(j6), where /} has degree 2 
over F. Let 

F = { Oi, . . , * „ ) : x, G F}, 

V = { (x] + 71A . . , x, + j ^ ) : x z , ^ G F} , 

so that F c F . 
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Let A be an affine-line-free subset of V with 

1-4 | = d(n, 2') m 

and let A' = A + fiV. Then A' is a subset of V, and ^4' contains no affine 
line. For if w0> VQ, U\, V\ G F and 

(«o + voy8) 4- F(ux + viy8) c ,4', 

then 

UQ + F U\ C. A. 

If «i = 0, we use 

P2 = X! + .y,j8, xi, j i G F, X! ^ 0; 

then A' contains 

(i/o + v0j8) + FP(ux + Vlj8) 

= ("o + vo£) + F(u\P + vi*i + v\y\P)-
So A contains w0 + F v\-

We now fix some further notation which will be used in the remainder 
of the proof. 

Definition. For any prime power q, V(q) = {(x\, x2, . .) "• Xj e Fg and 
Xj = 0 for all but finitely many / } , and 

V(q) (m) = { (*,, x2, • •) e V(q) : *,- = 0,7 > m). 

For any subset S of K(#), 

S(w) = 5 0 V(q) (m) and J(S) = lim sup \S(m)\ • q~m. 

LEMMA 2. If S C V(qk) and d(S) > y(A:) (where y(k) is defined in terms 
of the array M(q) ), then S contains an affine line. (That is, S(m) contains 
an affine line for some m.) 

Proof. Choose e > 0 so that 

y(k) + € < S(m) • q'km 

for infinitely many m. Next, choose n so that 

d(n, k) < y(k) + e. 

Finally, choose m so that simultaneously 

y(k) + 6 < \S(m)\ • q~km and n < m - n. 
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Assume that S contains no affine line. Then for each x e V(qk) (n), S(m) 
can contain at most d(m — n, k) • (qk)m~n elements whose first n 
coordinates agree with the first n coordinates of x. Hence 

\S(m)\ ^ (qk)n - d(m - «, k) • (qk)m~n. 

Since d(m — n, k) = d(n, k) < y(k) + £, this gives 

y(k) + € < \S(m)\ q~km < y(k) 4- e. 

LEMMA 3. For each t ^ 1, if S c V(qk) and d(S) > y(kt) (where y (Jet) is 
defined in terms of the array M(q) ), then S contains a t-dimensional affine 
sub space. 

Proof. Identify F ^ with { (x\, . . , xt)\ x,•• e. F^-}, so that 

V(qkt) = { ( (x b . . , *,), (*,+ ,, . . , xlt\ . .) : x, e F^} . 

Let 5 c V(qk), d(S) > y(/:/). Choose € > 0 so that 

\S(m)\ • q~km > y(/cO 4- € 

for infinitely many m. From amongst these m, choose a subsequence w0 < 
m] < m2 < . . such that all the w/s are congruent modulo /. 

Let 77 : S —» V(qk) be the mapping which shifts an element of S "m0 

places to the left," i.e., 

^ ( X j , . . , Xm ( ) , X m Q + 1 , . .) = (xnlQ+h . . ) . 

For any T c S, let 7" denote 77(7). 
For each x = (x}, . . , x„lQ, 0, . .) e F ( ^ ) (w0), let 

S* = {y = Oi, • •) e S : ^ = xz, 1 ^ / ^ m0}. 

Then S is the disjoint union 

S= V {Sx:xe V(qk) (m0) }, 

Therefore for each / = 1, 

2 | ^ ( m , ) | = |S(m7)| > qkm*(y(kt) + c). 

Hence for some x,- G F ( ^ ) (mo), 

1 ^ . (mz - m0)| = | ^ . (mz)| ^ ^ " o 15(^)1 

> qk{m< ~ ™o) (y(fa) + c). 
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Since each Xj comes from the finite set V(qk) (ra0), there is an infinite 
subsequence {m, } of {wz} on which xr is constant, say xix = xl2 = • • = 
XQ. Set 

rij = ntj. ~ m 0 , j ^ 1. 

Then each wy- is a multiple of /, say 

n, = tbj and \S'Xo (nj)\ > qk'\y{kt) + e), j g 1. 

We now inject SA-0 into V(qkt) by insertion of parentheses, that is, we 
define g : SXQ -> F(^7) by 

g ( x b . .) = ( (* i , • • , *f ) , ( * f + b • • , *2r)> • •)• 

Then for each y = 1, 

\g(S'X0) (bj)\ = |S ' ,0 (tbj)\ = \S'X0 (nj)\ > (qk')hJ (y(kt) + e). 

This means that in V(qkt), 

d(g(S'XQ) ) > y(kt). 

Here, y(kt) is the limit down the (kt)th column of the array M(q), which is 
identical with the kth column of the array M(qr). Thus 

g(S'X0) c v{tf)k) 

and 

d(g(S'XQ) ) > y{k) 

(where y(k) is defined in terms of the array M(qr) ). Hence by Lemma 2 
g(S'Xo) contains an affine line. This affine line (the underlying field is F^>) 
is easily seen to be the image under g of a /-dimensional affine subspace of 
S'Xo (where the underlying field is F ^ ) . From the definition of S'X{) it 
follows that S itself contains a /-dimensional affine subspace. 

LEMMA 4. There exists S c V(qk) such that d(S) = y(k) {where y(k) is 
defined in terms of the array M(q) ) and such that S contains no affine 
line. 

Proof. Choose 0 = «0 < n\ < • • s o t n a t ni ~ ni-\ "^ oo as / -^ oo. For 
/ = 1, let At c V(qk) (nt) be such that At contains no affine line, 

\At\ = qkn' d{n„ k) and 0 £ At. 

(If L is some fixed affine line in V(qk) (nt) and A c V(qk) (/?,-) contains no 
affine line, then for some a e L, a 4- A does not contain 0.) Let 
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Bt = At - V(qk) (^_i) and S = U Bh i ^ 1. 

Then 

\S(nt)\ ^ \Bt\ g MU - /"< ' = qkn> d(nh k) - {qkf^~\ 

hence 

d(S) â y(A:) = lim </ (w,-, A:). 
/-—>oo 

The sets Bt are pairwise disjoint, and if x = (x\, . .) e S and 7 is the 
largest index with xy- 7̂  0 then x e i?„ where «z-_i < y = /?,. 

Suppose that S contains the affine line uh . . , w -̂. Choose z'o minimal so 
that «i, . . , w^ G 5] U • • U 2?/o. Then there are wy and7, nio-\ <j = nio, 
such that the j t h coordinate of us is not zero. Since the j t h coordinates 
of u\, . . , uqk are either constant or are some permutation of F^A at least 
qk — 1 of uj, . . , uqk are contained in BiQ. Suppose u\ £ BiQ. L e t / be the 
largest index such that the/ / / ? coordinate of u\ is not zero. (f exists since 
u\ ¥= 0.) T h e n / < « / 0-i , and hence the 7'^ coordinates of u2, . . , tt@* are 
all zero. But since u\, . . , uqk are an affine line, then the/ r /7 coordinates are 
either constant or are a permutation of ¥qk. 

Thus we have arrived at a contradiction (except in the case qk = 2) and 
therefore S contains no affine line. (When qk = 2, then y(l) = 0. Any 
singleton set S = {x} c V(2) has d(S) = 0 = y(l), and S contains no 
affine line.) Since d(S) = y(k), Lemma 2 gives d(S) = y(k). 

We now have the necessary machinery to prove the main theorem. 
Recall that for a prime power q, M(q) is the array 

(d(n, k) ), Y(2') = lim d(n9 2'), T(q) = lim Y(2 ;)-

THEOREM, i w every prime power q, T(q) = 0 or T(q) = 1. 

Proof. Fix g, and assume that 0 < T(g) < 1. Choose / so that 

(1) 0 < y(2'). 

Using Lemma 4, choose S c F(g2) so that 

(2) rf(S) = Y(27), 

(3) S contains no affine line. 

Choose € < 0 so that 

(4) IX,) < 2 | ^ i - , 
Y(2') + € 
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Choose n so that 

f A c V(qk) (n) 1 f A contains 1 
I UI > (Y(2Z) + €)^A77 J ^ I an affine line J * 

Choose t (using the extended Hales-Jewett theorem; see [5] or [8]) so that t 
is a power of 2 and 

!

T is a /-dimensional affine subspace) l . ' ( 

Set 

(7) F = V(qk) - V(qk) (n), Bv = (v + F ( / ( « ) ) n S, v G K'. 
kn 

Partition V into 2^ classes Ca as follows. 

(8) Cff = {v e F : 5V = v + a}, a c K(^ ) («). 

(Note that C0 = {v G V \ Bv = </>}.) 
Let 

C = U {Ca : a * * } , 

and let 

(9) J r (C) = lim sup(^-/c)(m~A7) | C n F(m) |. 

Since 

\C n F(w) | < (SAC) + e)qk{m~") 

for all but finitely many m, and since 

\S(m)\ > (Y(2 ;) - e)q~km 

for infinitely many w (by (2) ), we can choose m so that n < m and 

(10) (Y(2') - c ) / m < \S(m)\, 

(11) |C n V'{m)\ < (dy (C) + t)qk(m'n). 

Using (7), (3), and (5) we get 

(12) \BV\ ^ (y{2>) + c)qk", v e V. 
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Note that m > n and 

V(qk)(m) = U {v + V(qk)(n) : v G V\m) }, 

so that 

V(qk)(m) H S = U { (v + V{qk)(n) ) n S : v ^ V\m) } 
= U {Bv : v G V(m) and £v ^ <J>} 
= U {Bv : v G F(m) n C}. 

That is, 

(13) S(m) = U {Bv : v G F(m) n C). 

Now using (10), (13), (12), (11) we get 

(y(2z) - €)(7Am < |S(m)| < (y(2;) + c)<?AVr (C) + e)qk{m~f,\ 

or 

y(2') - e 

Using (4), this gives 

(14) T(^) < dviC). 

The integer / was chosen to be a power of 2, say / = 2b, and to satisfy 
(6). Since 

y(2't) = y(2/+") g T(q) < dr(C\ 

it follows from Lemma 3 that C contains a /-dimensional affine subspace 
T. We partition the elements of T into 2^ ~~] classes Ca n T, o ¥= <j>. By 
(6), some COQ D T, and hence some CaQ, contains an affine line u\, . . , £y. 
Using (8) and (7), u\ G C0Q implies 

«l + a0 = £w, c S. 
Similarly, 

(15) M/- + o0 = £(7; c S, 1 ^ / ^ tf*. 

In particular, taking any element v0 G a0 (<r0 ¥= <J>), 5 contains the affine 
line 

U\ + V0, . . , Uf + V0, 

which contradicts (3). 
This contradiction shows that 0 < T(q) < 1 is impossible, and 

completes the proof. 
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