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ABSTRACT 
This paper describes an approach for designing an energy efficient motion and task scheduling for an 
autonomous vehicle which is moving in complicated environments in industrial sector or in large 
warehouses. The vehicle is requested to serve a number of workstations while moving safely and 
efficiently in the environment. In the proposed approach, the overall problem is formulated as a 
constraint optimization problem by using the Bump-Surface concept. Then, a Pareto-based multi-
objective optimization strategy is adopted, and a modified genetic algorithm is developed to determine 
the Pareto optimum solution. The efficiency of the developed method is investigated and discussed 
through simulated experiments. 
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1 INTRODUCTION 

Nowadays, there is an emerging need for fully Autonomous Vehicles (AVs) which can perform 

complex tasks in complicated environments in industrial sector or in large warehouses. Such vehicles 

should be able to serve various workstations, while moving safely and efficiently in their environment. 

However, developing the appropriate algorithms for the AVs raises many critical, complex and 

combinatorial optimization problems. 

Autonomous Vehicles usually consist of batteries, motors, motor drivers and controllers. Energy 

conservation can be achieved in several ways (Mei et al., 2004):  

 using energy-efficient motors,  

 improving the power efficiency of motor drivers, and  

 determining a velocity trajectory of the vehicle that reduces energy loss.  

Direct current (DC) motors, are often used as actuators because they are small, cheap, reasonably 

efficient, and relatively simple to control, and can be directly supplied from the batteries. Furthermore, 

they are designed to be very efficient in their rated speed regions (Fabianski and Wicher, 2014). 

Because the motor speed is largely sensitive to torque variations, the energy dissipated in a DC motor 

of an AV is critically dependent on its velocity profile. Energy saving can be achieved by determining 

the optimal AV velocity trajectory (Shuaiby et al., 2015).  

Energy saving is one of the most important challenges for fully AVs powered by DC motors. It is a 

fundamental requirement to achieve long term deployment of AVs because one of their main parts is 

the on-board batteries which have limited lifetime. Thus, in order to extend the on-board batteries’ 

lifetime, it is important to optimize the energy consumption of the vehicle (Mei et al., 2005). Motion is 

a major source of energy consumption. 

Sun and Reif (2005), consider the problem of computing an optimal path for a vehicle under the 

assumption that the friction coefficients are known across the terrain. In their work, the velocity and 

acceleration profiles are not optimized. In (Kim and Kim, 2007), the optimal velocity profile of an 

autonomous vehicle moving on a straight line is determined by assuming that the total travel time is 

fixed. Their solution does not incorporate any bound on maximum velocity of the AV. 

In this paper, we examine the scenario where an AV is requested to serve a set of workstations in a 

planar indoor industrial environment. The AV starts from a depot location, passes through the 

requested workstations, exactly once, and returns to its original position. There are three objectives 

associated with this problem:  

 Calculation of an optimum collision-free path. 

 Calculation of an optimum task schedule. 

 Calculation of energy efficient motion. 

This problem is a combination of task scheduling and motion design. Hereafter, we will refer to this 

problem with the abbreviation EEMDTS (i.e., Energy-Efficient Motion Design and Task Scheduling).  

To the best of our knowledge, the integration of these problems has been studied by very few 

researchers. In (Kiesel et al., 2012), the integrated problem of AV scheduling and motion design is 

separated into three distinct stages: scheduling, building timetables, and routing. Using waypoints, 

where the AVs should pass through in specific time intervals, a timetable is calculated that specifies, 

for each waypoint, the time at which its assigned AV should arrive. The timetable is then passed to the 

router to find a safe path for each AV that achieves the given times. In (Xidias et al., 2009), an 

autonomous vehicle is demanded to serve timely (providing delivery tasks) as many as possible 

workstations in a 2D industrial environment. The proposed methodology consists of two phases. First, 

the vehicle’s environment is mapped onto a B-Spline surface embedded in 3D Euclidean space using a 

robust geometric model. Then, a modified genetic algorithm is applied for the determination of an 

optimum path that satisfies given mission constraints. However, this work does not take into account 

the corresponding kinematics constraints and the requirements of pickup and delivery of products at 

the workstations. Recently, Xidias (2018), proposed an approach for designing AV’s near-optimum 

paths on weighted regions. An AV operating on an urban environment is requested to serve, in an 

optimum way, a set of customers. An A-star algorithm is implemented in order to construct a distance 

matrix between the depot and the customers and between the customer locations. Then, a Genetic 

Algorithm with special encoding is used to search for a near-optimum solution. However, this work 

does not take into account the AV’s energy consumption.  
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In the present work, we propose an approach where:  

 The AV can move in any direction in the indoor environment within the given constraints. 

 Both motion design and scheduling are resolved simultaneously. 

 The optimal path and the corresponding velocity profile are generated simultaneously. 

 The AV’s energy consumption is minimized. 

 The overall problem is formulated as a multi-objective optimization problem (MOO) which is 

resolved using a Pareto-based approach. In this way, we are able to avoid dominating solutions 

that could lead to local optima and would require a tedious fine-tuning of weight and normalizing 

parameters of the objective functions (Chen and Ho, 2005). 

The remainder of the paper is organized as follows: Section 2, provides a formal definition of the 

optimization problem under consideration. Section 3 analyses the motion planning and task 

scheduling. Section 4 presents the optimization algorithm for solving the formulated problem, while 

Section 5, reports and discusses the application of the proposed approach in simulated experiments. 

Finally, Section 6 summarizes the contribution of the paper and states some goals for future work. 

2 PROBLEM FORMULATION  

The EEMDTS problem is directly motivated by two questions which are arising in a modern 

warehouse or in an industrial environment where an AV is requested to serve several workstations. 

The questions are:  

1. What’s the optimum schedule for the vehicle to accomplish the requested tasks?  

2. What’s the optimum motion and velocity profiles for the vehicle that minimize the energy 

consumption?  

In the following, subsection 2.1 defines the problem, subsection 2.2 describes the considered 

autonomous vehicles and related assumptions, and subsection 2.3 briefly presents the Bump-Surface 

(Azariadis and Aspragathos, 2005) concept that it is used to represent the floor environment and the 

solution space.  

2.1 Problem definition  

We consider an AV which is operating in a planar industrial environment cluttered with M  

workstations 1 2 1{ , , , , }M MWS WS WS WSWS . A management system requests from the AV to serve 

a predefined number of workstations (Figure 1). According to this demand the following requirements 

should be met:  

 The vehicle must serve a predefined subset of workstations oWS WS and each workstation 

oiWS WS  should be served only once.  

 The vehicle’s motion starts from the depot and terminates at the depot.  

 The locations of the depots and the workstations are fixed and known.  

 The environment is cluttered with known obstacles with fixed geometry. 

 The AV is moving in the environment with variable speed [0, ]
max

u u , where 0u  holds at the 

depot and workstation locations, and 
max

u u  is the maximum allowed speed determined according 

to safety regulations. 

 The vehicle has an acceleration [ , ]
min max

a a a , where 0
min

a  is the maximum deceleration and 

0
max

a  is the maximum acceleration.  

 The energy loss (transforming loss 
l

P ) during the transformation of electrical energy to 

mechanical energy is not considered. 

Under these requirements, with the EEMDTS problem we seek to determine the AV path that satisfies 

the following energy motion design and task scheduling criteria and constraints: 

1. The path should not intersect with the obstacles and should result to a safe AV motion. 

2. The path should be energy efficient (minimum curvature, optimal velocity profile and minimum 

motion power).  

3. The path always starts at a depot, passes through all the requested workstations, from each one 

exactly once, and returns at the same depot. 
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Figure 1. A 2D industrial environment cluttered with one depot (D1) and a set of 37 

workstations. 

The aforementioned requirements form a set of conditions which are usually met in real world 

applications. Common examples include indoor industrial environments or warehouses, where AVs 

are requested to deliver products to a set of manned workstations.  

2.2 The autonomous vehicle 

In industrial applications, an AV is used to transport materials or accomplish specific tasks in many 

different industrial settings. They feature batteries or electric powered motors and computer 

technology that has been programmed to drive to and from specific points. 

Throughout this work we consider that the AV has a car-like steering with forward, translational 

velocity provided by a DC motor (Figure 2). The AV can move “freely” in any direction in order to 

accomplish its task, with respect to EEMDTS criteria and constraints. For detailed information on this 

model the reader is referred to (LaValle, 2006).  

The AV’s configuration in the 2D environment is uniquely defined by 2( , , ) [0,2 )x y  where 

( , )x y  are the Cartesian coordinates of the reference point R  with respect to a fixed frame ,x y  and  

represents the orientation of the vehicle’s chassis.  denotes the steering angle, where | |
max, l  is 

the distance between the front and rear wheel axles and 1
tan  is the radius of curvature at R . Note 

that  can be positive or negative according to the sign of . For example, if 0 then 0 as well, 

which means “turn right”. 

The vehicle’s wheels may slip when it is making a sharp turn at a high speed. The maximum speed 

max
u  with which the vehicle can move along the vehicle’s path is a function of the instantaneous , the 

inertia of the vehicle and the frictional forces with the surface. We assume the maximum centrifugal 

force without slipping can be specified by a parameter max
F . Thus, the maximum safe translational 

speed without slipping will be (Tokekar et al., 2014), 

( )
( ) , [0,1]max

max

F s
u s s

m
 (1) 

where m is the mass of the vehicle.  
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(a)  (b) 

Figure 2. (a) An autonomous vehicle. (b) An overview of car-like model. 

2.3 The workspace representation 

Given a 2D industrial/warehouse environment, a normalized workspace W  is constructed by linearly 

mapping the initial environment to 2[0,1] . The construction of the corresponding Bump-Surface (Azariadis 

and Aspragathos, 2005) is obtained by discretizing W  into uniform subintervals along its x  and y  

orthogonal directions, respectively, forming a grid of points 3( , , ) [0,1]ij ij ij iju v wp , , [0, 1]
g

i j N , 

where 
g

N  is the (user-defined) grid size. The third coordinate 
ij

w  of each 
ij

p  is defined as follows:  

 
(0,1],

0,

ij

ij

if lies inside anobstacle
w

otherwise

p
 (2) 

In this paper, we use a (2,2)-degree B-Spline surface with optimized knot vectors (Xidias and 

Azariadis, 2011) to represent the Bump-Surface 2 3: [0,1] [0,1]S . Hence,  

1 1 2 2

0 0
( ) ( )( , )

g gN N

i j iji j
S x y N x N y p  (3) 

where, 
2( )
i

N x  and 
2( )
j

N y  are the B-Spline basis functions (Piegl and Tiller, 1997). The constructed 

3D surface S  consists of 2D flat areas and 3D bumpy areas which correspond to environment’s 

obstacles. 

3 ENERGY EFFICIENCY IN MOTION DESIGN 

As mentioned in Section 1, the energy consumption can be achieved in several ways, for example,  

 using energy-efficient motors,  

 improving the power efficiency of motor drivers, and  

 finding better trajectories.  

In this paper, we focus on the effect of motion planning to energy consumption. In order, to minimize 

energy consumption, we should design “optimal” paths for the vehicles. Optimality here is related to 

the amount of time spent to travel along the planned path and to the distance of the planned path. So, 

the goal is to generate optimal paths of minimum distance and travel time. A short-length path that 

contains several turns is not always energy efficient since the vehicle may consume more energy due 

to frequent decelerations and accelerations. In contrast, a path with longer length may require less 

energy if the vehicle does not have to accelerate and decelerate often.  

We consider that, the midpoint of the rear wheels traces a path ( ) ( ( ), ( ))s x s y sR  in W  which is 

represented as a second degree NURBS curve (Piegl and Tiller, 1997), 

1
2

0

1
2

0

( )
( ) , [0

( )

,1]

K

i i ii

K

i ii

N s
s s

N s

R
p

 (4)  
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where, 2( )
i

N s  is the B-Spline basis function, i is the weight factor and i
p  are the K  control points 

defined as in the following:  

 0 1K
p p , denote the depot point. 

 1 2
{ , , } { }

K
the predefinedsubset of workstationsp p

{ , 1,.., }.
j

anumberof intermediate points g j b   

The number of intermediate points , 1,..,
j

g j b is user-defined and depends on the complexity of the 

environment.  

3.1 Computing a collision free path 

A collision-free path that passes through the predefined subset of workstations should be searched in 

the flat areas of the Bump-surface. A path that “climbs” the bumps of the Bump-surface results in an 

invalid path in the initial 2D environment because it penetrates the obstacles. By construction, the arc 

length of ( )sR  approximates the length of its image ( ( ))S sR  on S , as long as ( )sR  does not penetrate 

the obstacles (Azariadis and Aspragathos, 2005). Therefore, it is reasonable to search for a flat path on 

S . This requirement can be written as: 

4

1e , [0,1]
ii

H
E L s  (5)  

where, L  is the arc length of ( ( ))S sR  and , 1, ,4
i

H i  is the flatness of the vehicle i vertex (Figure 

2) (Xidias and Azariadis, 2011). E takes a value in the interval ( , )L  if the vehicle collides with 

obstacles and a value equal to L  otherwise. 

3.2 Defining a smooth path 

In order to ensure a smooth path ( )sR , the corresponding curvature ( )C s  should comply the AV 

kinematics constraints, i.e., ( )
max

C s C , where max
C  is the maximum allowed curvature. We use the 

discrete curvature ( )C s  definition according to (Kobbert, 1996): 

1 1( ) 2 , 1, , 1i i i

pC s i NR R R   (6) 

where, the path ( )sR  is approximated by 1
p

N  sequential line segments. 

3.3 Travel time computation 

The AV’s velocity ( )u s  is constraint by the relation 0 ( )
max

u s u . Velocity can never become 

negative and can be equal to zero only at the depot and at the workstation locations. The measure of 

the velocity ( )u s  is defined by, 

, ( ) 0

( ) ( )
, ( ) 0

max

max

u if p s

u s F s
if p s

m

  (7) 

where, max
u  is the maximum allowed tangential velocity. 

The infinitesimal time t†  for the AV to move between two sequential path positions 
i

R  and 
1i

R  is 

given by, 

1

, 1, , 1

i i

i
pi

t i N
avgu

R R
  (8) 

where, 1( ) / 2i i iavgu u u  is the average velocity of the vehicle between the points 
i

R  and 
1i

R .  

The travel time of the vehicle along the planned path ( )sR  is calculated by integrating (8) as a function 

of the parameter s  and is given by, 

1
2

0

p

i i
N

ii
t

avgu

R R
  (9) 
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3.4 Computing the power consumption of the motors 

The AV traverses along the path ( )sR  by using motors that consume energy in term of electrical 

power. The motors transform electrical energy into mechanical energy. The power consumption of the 

motors is the sum of the transforming loss (in the present work we set it equal to zero) and the 

mechanical output power. The motion power ( m
P ) can be modelled as the function of speed, 

acceleration and vehicle’s mass as defined by the equation (Anuntachai et al., 2014): 

 
1 1

0 0
, ( ), ( ) () )(

p pN N i i

m li i
P m u s a s P m a g u  (10) 

where l
P  is the transforming loss, g is the gravity constant, ia  is the instantaneous acceleration at point 

i
R  and  is the ground friction constant.  

3.5 The overall problem 

Taking the above analysis into consideration, the overall EEMDTS problem defined in Section 2 is 

formulated as a Pareto-based multi-objective optimization problem as in the following: 

{ , , }
comp m

minimize E E t P   (11) 

 subject to 
( )

0 ( )

max

max

C s C

u s u
 

4 OPTIMIZATION METHODOLOGY 

The EEMDTS problem can be characterized as a NP-complete multi-objective optimization problem. 

Due to the combinatorial explosion, the extraction of exact optimal solutions for NP-hard problems is 

computationally impracticable. Thus, considerable attention has been paid to combinatorial 

optimization based on metaheuristics, such as Genetic Algorithms, that seek approximate solutions in 

polynomial time instead of exact solutions which would be at intolerably high cost. 

Genetic Algorithms (GAs) (Holland, 1995) are probabilistic search methods that employ search 

techniques inspired by Darwin’s evolutionary theory based on the principles and mechanisms of 

natural selection and the survival of the fittest. GAs employ a random, yet directed, search for finding 

the globally optimal solution. They have the advantage over the gradient descent techniques that they 

do not require the derivative of the objective function and the search is not biased towards the locally 

optimal solution. In contrast to random sampling algorithms, they have the ability to direct the search 

towards relatively promising regions in the search. In addition, GAs have been proved to provide 

robust search even if the search space is NP-hard complete.  

4.1 The chromosome syntax 

The first step in applying a GA is the choice of an appropriate representation to encode the decision 

variables of the problem under consideration. In this work, a mixed integer/floating-point 

representation was selected for use. That is, chromosomes are vectors containing a set of successive 

integers followed by a set of successive real-valued numbers. Each integer number represents a 

workstation, and each real number represents a control point between two successive workstations or 

between a workstation and the AV’s depot (Xidias and Azariadis, 2011). 

4.2 The evaluation mechanism  

A fitness assignment strategy based on Pareto-optimal solutions is proposed. The Pareto dominance 

relationship is formulated as follows: Let a possible solution Y and an objective function 
μ

F (Y). 2
Y  is 

a non-dominated solution and is said to dominate 1
Y : μ: μ 1 μ 2

F ) )Y F (Y(  and ν: ν 1 ν 2
F ) )Y F (Y( . A 

feasible solution 
*Y  is said to be a Pareto-optimal solution if and only if no feasible solution Y exists 

that dominates 
*Y . 

In particular, in this paper a pure Pareto-ranking fitness assignment, called GPSIFF is used (Chen and Ho, 

2005). In contrast to other strategies, the GPSIFF can assign discriminative fitness values not only to non-

dominated individuals but also to dominated ones. The fitness function for a chromosome Y is formulated 

as follows: fitness p q c, where p is the number of chromosomes that are dominated and q is the 
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number of chromosomes that dominate the chromosome Y in the objective space, while c  is a constant that 

is added to make fitness values positive. Figure 3, illustrates an example of fitness values of 6( 6)c  

participant individuals for a bicriteria optimization problem. For example, considering the individual A 

with a fitness value 7, in the rectangle formed by A, two individuals dominate A ( 2)q  and three 

individuals are dominated by A ( 3)p . Therefore, the fitness value of A is 3 2 6 7. 

 

Figure 3. The calculated fitness function where the circles represent non-dominated 
solutions and the black dots are the dominated solutions. 

4.3 Genetic operators 

The following three genetic operators were selected for use with the proposed GA (Goldberg, 1989): 

Reproduction: Reproduction is a simple copy of an individual from the population of the current 

generation to the population of the next generation. In this work, the proportional selection strategy is 

adopted. According to this strategy, the chromosomes are selected to reproduce their structures in the 

next generation with a rate proportional to their fitness. Crossover: Crossover joins together parts of 

several individuals in order to produce new ones for the next generation. The individuals are randomly 

selected according to a user-defined probability (crossover rate). For the first part of the chromosome 

(integer values) the Order Crossover (OX) followed by a suitable repairing mechanism was selected 

for use, while for the second part of the chromosome (real values), the one-point crossover was 

adopted. Mutation: For the first part the inversion operator is used, while for the second part a 

boundary mutation is used. Inversion selects two positions along the string at random and then inverts 

the sub-section of the values between these two positions. Boundary mutation changes the value of a 

gene with a random number chosen from the permitted range of coordinates in W .  

4.4 Termination criterion 

The proposed algorithm terminates either when the maximum number of generations is achieved or 

when the same best chromosome appears for a maximum number of generations. 

5 EXPERIMENTAL RESULTS AND DISCUSSION 

The performance of the proposed method is investigated through a number of simulation experiments 

for an AV which is moving in a 2D environment. Due to space limitations, we present only one 

example using the environment shown in Figure 1. The grid size is set to 100
g

N  and we allow two 

intermediate points between every pair of workstations. The proposed GA was run using the following 

settings for the control parameters: 

populationssize 250,  

maximumnumberof generations 500,  

crossover rate 0.75,  

inversionrate 0.095, 

boundarymutationrate 0.004. 

The AV has maximum measure of velocity 1
max

u  (velocity units) and maximum acceleration 

1
max

a  (acceleration units) and minimum deceleration 1
min

a  (acceleration units). The mass m of 

the AV is normalized to 1, while the ground friction constant is 0.7 for the rubber wheel and 

concrete floor. Furthermore, we assume that the AV has the ability to make a turn at the workstation 
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and depot locations without violating the curvature constraint. It is worth noting that, the selection of 

the appropriate control settings was the result of extensive experimental efforts with various control 

schemes adopted following the indications of the literature.  

In the present experiment a management system assigns to the AV the mission to serve a subset of 8 

workstations 29 36 34 1 31 6 35 2{ , , , , , , , }o WS WS WS WS WS WS WS WSWS . All the workstations have the same 

requests of types of products. The presented approach concludes to two alternative solutions. In the 

first solution, the AV visits the workstations with the following order: 

1 2 6 29 31 34 35 36
depot WS WS WS WS WS WS WS WS depot . The corresponding solution 

vector is {12.115,16.11,18.54}
comp

E . In the second solution, the AV visits the workstations with the 

following order: 6 2 1 29 31 35 34 36
depot WS WS WS WS WS WS WS WS depot . The 

corresponding solution vector is {11.891,15.98,19.01}
comp

E . Both solutions are illustrated in Figure 

4. The first solution is represented by black solid line, while the second solution by black dashed line. 

The average velocity for the first solution is 0.834 (velocity units) while for the second solution is 

0.812 (velocity units). 

 

Figure 4. The proposed solutions. 

In the above example we can see that, the proposed approach proposes two Pareto Optimal solutions, 

in other words solutions in which there exist no other solutions superior in all objectives. Comparing 

the two proposed solutions we can export the following conclusions: in both solutions the proposed 

paths are smooth and collision free, path’s length in 1st solution is 1.84% greater from the 2nd 

solution, the travel time in 1st solution is 0.8% greater from the 2nd solution while the motion power 

in 1st solution is 2.53% smaller from the 2nd solution. Furthermore, comparing the proposed solutions 

with the common approach of combining the optimization criteria into a single objective function by 

using weights for linear combination of objective values we notice that, the derived solutions were 

very sensitive to small adjustments of the weight factors and produce suboptimal solution paths. 

6 CONCULSIONS 

This paper presents a novel method for managing the motion of an autonomous vehicle used for 

logistics operations in indoors environments. The objective is to determine the energy efficient motion 

design and the task scheduling in order to serve a number of workstations. With the proposed method, 

the Task Scheduling and Energy Motion Planning problem is formulated and solved as a constrained 

optimization problem. A Pareto-based multi-objective optimization strategy is adopted, and a modified 

genetic algorithm is developed to determine the Pareto optimum solution. All our experiments show 

that, the proposed method is able to provide an optimum solution for an AV in complicated 

environments. 
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Future work will be concentrated on applying the proposed method in more complicated scenarios 

where a team of AVs are simultaneously operating in complex dynamic environments. 
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