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Abstract

In this paper, the design of output feedback controllers for linear systems under sampled
measurements is investigated. The performance we use is the worst-case gain from distur-
bances to the controlled output, which comprises both a continuous-time and a discrete-
time signal to be controlled. Control problems in both the finite and infinite horizon are
addressed. Necessary and sufficient conditions for the existence of a suitable sampled-data
output feedback controller are given in terms of two Riccati differential equations with
finite discrete jumps. A numerical example is given to show the potential of the proposed
technique.

1. Introduction

A sampled-data system is defined as one that operates on information or data obtained
only at discrete-time points which we call sampling points. Although the use of
sampled-data in control systems was recognized quite early in the history of feedback
control systems, it was only from the early 1950s, when digital computers were
first used in control systems, that significant attention was given to the development
of analysis and design techniques of sampled-data control systems, see [1] and the
references therein. The increasing use of digital computers in control systems has led
to considerable activity in the field of sampled-data and digital control systems.

There are usually two approaches to the design of a digital controller for a
continuous-time system. The first approach is to design a controller in continuous
time and then to discretize it. The second approach is to discretize the continuous time
plant in some way to obtain a discrete-time model and then to design a discrete-time
controller using this discrete-time model. Note that these two approaches are more or
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less traditional [1]. The former is only an approximation whereas the latter considers
the behavior of the system only at the sampling instants, and thus the intersample
behavior is lost in the process of discretization [2,23].

In sampled-data control, as the plant is continuous, it is highly desirable to have
design performances in terms of continuous-time signals. The motivation for this is
that it allows intersample behaviour to be directly taken into account in the control
design. It is also desirable that the control design technique directly uses a continuous-
time model of the plant without any transformation. A lot of attention has been recently
paid to problems involving the intersample behavior of sampled-data systems [2-4,
6,8-10,22,24,25]. The stability issue of sampled-data systems has been addressed
in [7] whereas the sampled-data control problems have been tackled using different
performance measures. The H2 optimal sampled-data control problem has been
studied in [6,8,10] whereas the sampled-data control design with an H^, performance
measure has been investigated by a number of researchers; see [2-4,16-18,21,24,25].
More recently, robust control of continuous-time systems with both discrete and
continuous measurements has been considered in [14]. In particular, in [24,25], a
Riccati equation approach, similar to the one for continuous-time systems, has been
proposed to solve the //,» control problem for sampled-data systems. It is observed
that in [24,25] only a continuous controlled output signal is taken into consideration.
However, in many applications, it is important to include both a continuous-time and
a discrete-time controlled output in the performance measure. This leads to a more
general performance measure for sampled-data systems.

In this paper we consider the design of output feedback controllers for sampled-
data systems. The performance measure we will use is the worst-case gain from the
disturbances, which includes the disturbance input, measurement noise and unknown
initial state, to the controlled output. This output comprises both a continuous-time and
a discrete-time signal to be controlled. Control problems in both a finite and infinite
horizon will be addressed. Necessary and sufficient conditions for the existence of
a suitable //«, sampled-data output feedback controller are given in terms of two
Riccati differential equations (RDEs) with finite discrete jumps. Our results extend
the work of [24,25] to consider a more general situation which allows us to handle
both continuous-time and discrete-time controlled outputs. They can also be viewed
as a unified treatment of continuous and discrete-time Hgo control problems.

NOTATION. Most of the notation used in this paper is fairly standard. 2%n and
f"x* denote the n dimensional Euclidean space and the set of all n x m real matrices
respectively. The superscript "7"' denotes matrix transposition and the notation X >
Irrespectively, X > Y) where X and Y are symmetric matrices, means that X — Y is
positive semi-definite (respectively, positive definite). L2[0, T] stands for the space of
square integrable vector functions over [0, T], /2(0, T) is the space of square summable
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vector sequences over (0, T), || • ||[0,r] will refer to the L2[0, T] norm over [0, T] and
|| • ||(o, r> is the /2(0, 7") norm over (0, T). T is allowed to be oo and in this case by the
notation [0, T] we mean [0, oo). F{9~) and F(6+) stand for the left limit and right
limit of a function F(0), respectively.

2. Problem formulation and preliminaries

In this paper, we will deal with the output feedback //oo control of the following
class of linear time-varying sampled-data systems:

(S) : x(t) = Ax(t) + B1w(t) + B2u(t), Vr e [0, T], x(0)=x0, (2.1)

z(t) = Qx(t) + Dl2u(t), Vr € [0, T], (2.2)

zd(ih) = Cdx(ih), Vih e (0, T), (2.3)

y(ih) = C2x(ih) + D2Mih), Vih e (0, T), (2.4)

where JC(/) e &" is the state of the system, x0 is an unknown initial state, w(t) e
!%p is the disturbance input, u € ^ is the control input, y e &m is the sampled
measurement, v € !%q is the measurement noise, z e !%r is the controlled continuous
output, Zd ^ @-s is the controlled discrete output, 0 < h e B% is the sampling period,
i is a positive integer and A, By, B2, C\, C2, Cd, Di2 and D2\ are known real time-
varying bounded matrices of appropriate dimensions with A, B\, B2, C\ and D12 being
piecewise continuous.

We are concerned with designing a linear causal dynamic feedback control law for
(2.1)-(2.4), based on the sampled output measurements of (2.4), that is, u(ih + r) =
<S {y(kh), k = 0, 1 , . . . ,i], 0 < x < h, i = 1, 2 , . . . , such that the controller <g
reduces z uniformly for any w, v and x0 in the sense that given a scalar y > 0,
the worst-case performance measure of a closed-loop system of (2.1)-(2.4) with the
controller &, defined by:

(w, v,x0) e L2[0, T] fT) ^ )

(2.5)

satisfies JjeCZ, R, T) < y. In the above, R = RT > 0 is a given weighting matrix
for the initial state x0- In this situation, the closed-loop system of (2.1)-(2.4) with <£
is said to have an //oo performance y over the horizon [0, 7*].

The control problem we address in this paper is as follows: given a scalar y > 0,
design a linear causal controller ($) based on the sampled measurements, y (ih),
such that:
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• in the finite horizon case, the closed-loop system o/(2.1)-(2.4) with & has an
H<x performance y over a given horizon [0, 7"];

• in the infinite horizon case, that is, T —> oo, the closed-loop system of (2.1)-
(2.4) with <£ is uniformly exponentially stable and has an Ha, performance y
over [0, oo).

In the infinite horizon case, the controller is required to ensure the uniform exponential
stability of the closed-loop system.

Note that the performance measure in (2.5) is in terms not only of the controlled
signals at the sampling instants but also of the continuous-time controlled output
between the sampling instants. This allows the intersampling behaviour to be taken
into account in the control design. When only the controlled continuous output is
considered, (2.5) will reduce to the performance measure used in [25].

REMARK 2.1. It should be remarked that (2.3)-(2.4) can be viewed as "mixed
Li/tj" output signals. In real environmental systems, we always face continuous-
time systems, discrete-time systems, sampled-data systems and hybrid systems, that
is, systems with both continuous- and discrete-time states. The study of this kind
of system is motivated by robust sampled-data control, filtering and loop transfer
recovery of sampled-data systems [20].

We shall make the following assumption for the system (E).

ASSUMPTION 2.1.

(a) Rd = DT
nDn >0on [0, T].

(b) RD = D2iD2
r, > 0 on [0, T].

Note that Assumption 2.1(b) means that the sampled-data //TO control problem is
"non-singular".

In the infinite horizon control problem, the system (2.1)-(2.4) is assumed to be
time-invariant and we shall adopt the following assumption.

ASSUMPTION 2.2.

(a) The continuous-time system (A, B2, Ct) is stabilizable and detectable.
(b) The discrete-time system (eAh, B, C2) is stabilizable and detectable, where

BBT := / eA'B,B1Vld».
Jo

Assumption 2.2 can be seen as the sampled-data systems counterpart of the stan-
dard detectability and stabilizability assumptions in the Hoo control problems for
continuous-time and discrete-time systems.
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In the remainder of this section we shall recall a version of the strict bounded
real lemma for linear time-varying systems with finite discrete jumps which will be
fundamental in the derivation of our main results.

Consider the linear time-varying system with finite discrete jumps:

(£*) : x(t) = Ax{t) + Bw(t), t ^ ih; x(0) = x0 (2.6)

x(ih) = Adx(ih~) + Bdv(ih), Vi/i e (0, T) (2.7)

z(t) = Cx(t), V/ € [0, T], (2.8)

zd(ih) = Cdx(ih-), Vih e (0, D (2.9)

where x(t) e !%n is the state of the system, x0 is an unknown initial state, w(t) e &p

and v(ih) e ffiq are the continuous and discrete inputs which belong to L2[0, T] and
£2(0, T) respectively, z(t) € &r and Zd(ih) € St.* are the continuous and discrete
outputs, respectively, 0 < h 6 3% is the sampling period, / is a positive integer and
A, B, Ad,Bd,C and Cd axe known real time-vary ing bounded matrices of appropriate
dimensions with A, B and C being piecewise continuous.

Next, we introduce the following worst-case performance measure:

* R T)=

(w, v,x0) € L2[0, T] {/] (0T) ^

(2.10)

where /? = / ? r > 0 i s a given weighting matrix for xo.
We now present a version of the strict bounded real lemma on the finite horizon for

a system of the form of (E*) and with performance measure (2.10).

THEOREM 2.1 ( [19]). Consider the system (2.6)-(2.9) and let y > 0 be a given

scalar. Then the following statements are equivalent:

(a) J&\R,T)<Y;

(b) there exists a bounded matrix function P(t) = PT(t) > 0, Vt G [0, T], such that

- P = ATP + PA + y-2PBBTP + CTC, t ^ ih; P(T) = 0, (2.11)

y2l - BT
dP{ih+)Bd > 0, (2.12)r ' "d ' v " « >L>d >* ">

P(ih) = ATp(ih+)Ad + AT
dP{ih+)Bd

x [y2/ - BjP(ih+)Bd]-lBjP(ih+)Ad + CT
dCd,

P(0+) < y2R;

(2.13)

(2.14)
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(c) there exists a bounded matrix function Q(t) = QT(t) > 0, Vr e [0, T), such that

- Q> ATQ+QA + y-2QBBTQ + CTC, t ̂  ih, Q(T) = 0, (2.15)

y2I-B^Q(ih+)Bd>0, (2.16)

Q(ih) > AT
dQ(ih+)Ad + AT

dQ(ih+)Bd

x [y2l - BjQ(ih+)Bdr
lBjQ(ih+)Ad + CT

dCd, (2.17)

< y2R. (2.18)

The next result presents an alternative version of the strict bounded real lemma on
the finite horizon in terms of either an RDE, or inequality, of the "filtering form".

THEOREM 2.2 ([19]). Consider the system (2.6H2.9) and let y > 0 be a given
scalar. Then the following statements are equivalent:

(a) 7(S*. R, T) < y;
(b) there exists a bounded matrix function P(t) — PT(t) > 0, Vf € [0, T], such that

P = AP + PAT + y~2PCTCP + BBT, t ̂  ih; (2.19)

Y2I-CdP(ih-)Cj>0, (2.20)

P(ih) = AdP{ih-)AT
d+AdP(ih-)CT

d

x [y2l - CdP(ih-)CT
dr

xCdP{ih-)AT
d + BdB

T
d, (2.21)

P(0) = /?"'; (2.22)

(c) there exists a bounded matrix function Q(t) = QT(t) > 0, Vt € [0, T], such that

Q> AQ+ QAT + y~2QCTCQ + BBT, t / ih; (2.23)

y2I-CdQ(ih-)Cj>0, (2.24)

Q(ih) > AdQ(ih-)AT
d + AdQ(ih-)CT

d

x [y2l - CdQ{ih-)CT
d)-'CdQ(ih-)AT

d + BdB
T

d, (2.25)

(2(0) > /?"'. (2.26)

In the next theorem we will deal with the infinite horizon case. We first present the
infinite horizon counterpart of Theorem 2.1.

THEOREM 2.3 ([19]). Consider the system (2.6H2.9) and let y > 0 be a given
scalar. Then the following statements are equivalent:

(a) the system (2.6)-(2.9) is stable andJCE*, R,oo) < y;
(b) there exists a stabilizing solution P{t) = PT(t) > 0, Vr € [0, oo), to (2.11)—

(2.13) satisfying (2.14);
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(c) there exists a bounded time-varying matrix Q(t) = QT(t) > 0, / € [0, oo),
satisfying (2.15)-<2.18) over [0, oo).

The infinite horizon version of Theorem 2.2 is provided in the following theorem.

THEOREM 2.4 ([19]). Consider the system (2.6)-(2.9) and let y > 0 be a given
scalar. Then the following statements are equivalent:

(a) the system (2.6M2.9) is stable and J(T,*, R, oo) < y;
(b) there exists a stabilizing solution P(t) = PT{t) > 0, V/ e [0, oo), to (2.19)-

(2.22);
(c) there exists a bounded time-varying matrix Q(t) = QT(t) > 0, V/ e [0, oo),

satisfying (2.23)-(2.26) owr [0, oo).

We end this section by introducing two technical lemmas that will be used to prove
the main results of this paper.

LEMMA 2.1.

(a) Suppose that for a given r > 0, the RDE

-P(t) = ATP + PA l

+ Cj (I - DnR-]Di2) C , / / ih, P ( T ) = S > 0, (2.27)

P(ih) = P(ih+) + CT
dCd, (2.28)

where

A = A - B2R-lD{2Q, (2.29)

has a bounded symmetric solution P(t) on [0, r] satisfying P(0+) < y2R for a given
matrix R = RT > 0. Then the RDE with jumps

l R, (2.30)

Q(ih) = [Q-'(i/r) + C2
rfl-'C2 - y-'CjC,]"1, (2.31)

has a bounded symmetric positive definite solution Q(t)on[0, r]and p(P(t)Q(t)) <
y2, Vf G [0, T], if and only if the RDE with jumps

Z(t) = A.Z(t) + Z(t)A\ + y ^

t ^ ih, Z(0) = R[l - y-2P(0+)R]-\ (2.32)

[Z-'(//r) + C2
r^'C2 - y-'CjC,]"', (2.33)
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where

has a bounded symmetric positive definite solution Z(t) on [0, r]. Furthermore,
Z(t) = (2(0 [/ - y-2P(t)Q(t)Yl, w e [0, T].
(b) Suppose the RDE with jumps (2.27)-(2.28) has a positive definite stabilizing solu-

tion P(t), satisfying P(0+) < y2 R for a given matrix R = RT > 0. Then the RDE with
jumps (2.30M2.31) has a stabilizing solution Q{t) = QT(t) > Oand p(P(t)Q(t)) <
y2, Vf G [0, oo), if and only if the RDE with jumps (2.32)-(2.33) has a positive def-
inite stabilizing solution Z(t). Furthermore, Z(t) — Q(t) [i - y~2P(t)Q(t)]~\
Wt € [0, oo).

PROOF. When t ^ ih, the result follows directly from [12,13]. For t = ih, using
standard matrix manipulations it is easy to show that

\Z-\ih-) + CT
2R-D

XC2 - y-2CT
dCd\

X = Q(ih) [I - y-2P(ih)Q(ih)Yl,

Wih G (0, r).

Hence we can conclude that results (a) and (b) hold.

LEMMA 2.2. Consider the system (2.1)—(2.4) and let y > 0 be a given scalar. Then
we have the following results.

(a) Suppose that for a given r > 0, the RDE

-P(t) = ATP + PA + P(y-2BtBl - B2Bl)P + CT
X (/ - DnR?DT

u) Q,
t ^ ih, P(r) = 5 > 0, (2.34)

+ CT
dCd, (2.35)

where A is as in (2.29), has a bounded solution P(t) on[0, r] satisfying P (0+) < y2R
for a given matrix R = RT > 0. If there exists a linear causal controller J(f for (S)
such that JjrCE, R, r) < y then there exists a linear causal #<„ filter^for estimating
the signals z{t) and Zd(ih) of the system

= (A + y-2B{B(P)x(t) + Bxw(t), *(0) = *0,

Zdiih) = Cdx(ih),

y(ih) = C2x(ih) + D2lv(ih),

such that J?{.Y.a, R, z) < y, where R = R - y~2P(0) > 0 and A is as in (2.29).
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(b) Suppose that the RDE with jumps (2.34)-(2.35) has a non-negative definite
stabilizing solution P(t) satisfying P(0+) < y2Rfora given matrix R = RT > 0. If
there exists a linear causal stabilizing controller JXf for (E) such that Jj? (£, /? , oo) <
y then there exists a linear causal stable //TO filter & for estimating the signals z(t)
and Zd(ih) of the system (£") such that J&i'E", R, oo) < y.

PROOF. The desired results in (a) and (b) can be established by using the same
technique as that used in the proof of Theorem 6.2 of [24] with [12,13], except that
now we should add a discrete-time controlled output Zd(ih) to the system.

3. Hoc control of sampled-data systems

Our first result deals with the output feedback //oo control of the system (2.1)-(2.4)
in the finite horizon case.

THEOREM 3.1. Consider the system (2.1)-(2.4) and let y > 0 be a given scalar.
Then there exists a linear causal controller Jtf such that the closed-loop system of
(2.1)-(2.4) with Jtf satisfies Jj^{H, R, T) < y if and only if the following conditions
hold:

(1) there exists a bounded solution P(t) over [0, T] to the following RDE

-P(t) = (A - B2R-lDl2Q)TP(t) + P(r)(A - B2R-lDl2Q)

+ POXy^BiBf - B2R-lB2
T)P(t)

+ CT
x(I-DnR-xDT

X2)Cu t*ih, (3.1)

P(J) = 0, (3.2)

P(ih) = P(ih+) + CjCd, Vihe(0,T), (3.3)

such that P(0+) < y2R;
(2) there exists a bounded solution Q(t) = QT(t) > 0 over [0, T] to the following

RDE

i BlBl
T, t ± ih, (3.4)

Q(0) = R~\ (3.5)

Q(ih) = [Q-'(iA-) + C2
r/?-'C2 - y-2C*Cd]-\ V ih 6 (0, T); (3.6)

(3) p(P(t)Q(t))<y2forallt€[0,T].
Moreover, if the above conditions hold, a suitable controller Jf is as follows:

xc(t) = [A + y-2BiB1
TP(t)-B2K(t)]xc(t), t ^ ih, JCC(O) = 0, (3.7)

xe(ih) = xc(ih~) + L(ih)[y(ih) - C2xc{ih~)\, V ih e (0, T), (3.8)

u{f) = -K(t)xe(t), V t e [0, 7], (3.9)
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where

K(t) = /? ; ' (B2
rP(0 + DT

nCx) and

L{ih) = Q{ih) [I - y-2P(ih)Q(ih)Yl ClR~\ V ih e (0, T).

PROOF. For simplicity of presentation, we shall assume y = 1 in the following.

Sufficiency.
We first note that by Lemma 2.1 (a), it follows from conditions (l)-(3) that there

exists a bounded piecewise-differentiable matrix function Z(t) = ZT(t) > 0, V/ e
[0, T], satisfying

Z + BlBl, t ^ ih,

Z(ih) = [Z-'(ift-) + ClR-D
xC2Z{ih-) - C j Q ] ~ ' , Wih e (0, T).

By using standard matrix manipulations, we can rewrite the last equation as

Z(ih) = Ad{ih)Z{ih-)AT
d(ih) + Bd{ih)BT

d(ih), V ih € (0, T)

where

A 4 A + B.BJP, B ^ y~\BT
2P + DT

nC,Y R'/'2,

Ad(.ih) = I - L(ih)C2, Bd(ih) = L(ih)D2l.

In view of Theorem 2.2, this implies that the linear system with jumps

l(t) = Am + BMt), t / ih; f (0) = ?o,
(/A) = Ad{ih)${ihT) + Bd(ih)v(ih),

v(t) = BT

satisfies

sup

where the supremum is taken over all w e L2[0, T], v € £2(0, T), | 0 € ^?" such that
* 0.
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Using Theorem 2.1, it follows that there exists a bounded piecewise differentiable
matrix function W(t) = WT(t) > 0, W e [0, T], satisfying

- W(t) = ATW + WA + WBtBlW+BBT, t ̂  ih; W(T) = 0, (3.12)

I-B*W(ih+)Bd>0, (3.13)

W(ih) = AT
dW(ih+)Ad + AT

dW(ih+)Bd [I - BT
dW{ih+)Bd]~X

xB^W(ih+)Ad, (3.14)

W(0+) < R - P(0+). (3.15)

We now consider the closed-loop system associated with system (2.1)-(2.4) and
controller (3.7)-(3.9). This system is described by the state equations

j)(0 = Mt)rt(O + Bw(t), t ^ ih; n(0) = r,o, (3.16)

IJ(I70 = Ad(ih)r)(ih-) + Bd(ih)v(ih), (3.17)

z(t) = CIJ(O, (3.18)

zAih) = CMih), (3.19)

where

r x ] \x0]
lx - xc] [x0]
A-B2K(t) B2K«)

C{t) := [C, - Dl2K(t) Dl2K(t)], Cd:=[Cd 0 ] . (3.22)

Next we define the time-varying matrix X(t) = XT(t) > 0, Vr e [0, T], that is,

Note that X(r) is bounded and piecewise-differentiable on [0, T]. Using (3.1)—(3.3),
(3.12H3.14) and (3.20M3.22), it can be easily verified that X(t), Vr e [0, T],
satisfies

X + CTC, t ± ih; X(T) = 0, (3.24)

/ - Bj(ih)X(ih+)Bd(ih) > 0, (3.25)

X(ih) = AT(ih)X(ih+)Ad(ih) + AT
dX(ih+)Bd

x [/ - BT
d(ih)X(ih+)BAiK)Y' Bj(ih)X(ih+)Ad(ih) + C]Cd. (3.26)
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As W(0+) < R - P(0+), there exists a sufficiently small scalar S > 0 such that

0
0 1

R-P(0+)-8l\-

Finally, using Theorem 2.1 and considering that r)lRr]Q = XQRX0, we can conclude
that the closed-loop system (3.16M3.19) satisfies /*-(£, R, T) < 1.

Necessity.
In order to establish the existence of a bounded solution Q(t) to (3.4)-(3.6) over

[0, 7*], we first consider the case when t e [0, h). The existence of a linear causal
controller J(f which guarantees that the closed-loop system of (2.1)-(2.4) achieves

i R, T) < I implies

sup ( [ J1*"'0"' 1 , (w,x0) € L2[0, h)®<%": \\w\\\Oh) +xT
0Rxa / ol < 1.

Hence, by Theorem 4.1 in [24], it follows that there exists a bounded matrix function
(2(0 = QTU) > 0, W e [0, h), satisfying (3.4M3.5) over [0, h).

We now consider t € [h, 2/z). Choosing v(h) — —DlxR~^C2x(h), we have
y{h) = 0, which implies that u(t) = 0 over [0, 2/i). Then from JjrCZ, R, T) < 1 we
obtain that for any (JC0, w) G 3&n © L2[0, h) such that IMIfo.A] + x£Rx0 ^ 0,

Next, choosing w(t) — Bj Q~\t)x(t),W t G [0, h), and using (3.4)-(3.5), completing
the squares gives us

0 = / —\xT(t)Q~[(t)x(t)]dt — xT(h)Q~1(h~)x(h) + x£ Rx0
Jo dt

Rxo-\\z\\lh)-x
T(h)Q-[(h-)x(h). (3.29)\lo.h)

By combining (3.28) and (3.29) we get

xT(h) \QT\h-) + CjR-D
]C2 - CjCd]x(h) > 0.

Since x0 is arbitrary, it follows that under the above conditions x(h) is arbitrary as
well. Then we have that

Therefore the matrix Q(h) as below is well defined and

Q(h) = [Q~\h-) + CT
2R-D

XC2 - C j Q ] " ' > 0. (3.30)
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Next, 7jr(S, R,T) <l leads to

sup IIMIBU*) + \\v(h)\\2+x^Rx0 - \\z\\2
oah) - \\zd(h)\\2} > 0,

where the supremum is taken over all w e L2[0, 2h), v(h) e !%q, x0 e &" such that

Using the above v(h) and w(t), V / € [0, h), and considering (3.29) and (3.30), we
obtain that

sup {\\w\\2
[h2h)+xT(h)Q(h)x(h)-\\z\\2

h2h)}>0,
x(h),w

where the supremum is taken over all x(h) e f%n and w 6 L2[h,2h) such that
MI?A,2/I) + xT(h)Q(h)x(h) ^ 0. Hence by Theorem 4.1 in [24] it follows that there
exists a bounded positive definite solution Q(t) to (3.4) over [h, 2h) with initial
condition Q(h).

By repeating the above procedure for t e [2h, T], we conclude that there exists a
bounded piecewise differentiable matrix function Q(t) = QT(t) > 0, V t e [0, T],
which satisfies (3.4)-(3.6).

We will now show the existence of a bounded solution P(t) = PT(t) > 0,
Wt e [0, T], to (3.1M3.3) over [0, T]. To this end, initially, we shall set x0 = 0
and consider the case when t e (Nh, T], where N is the largest integer such that
Nh < T. The existence of a linear causal controller Jf such that JjrCL, R, T) < 1
implies

I llzll(/vA.n

By Theorem 4.1 in [24], and [12,13], there exists a bounded non-negative definite
solution P(t) to (3.1M3.2) over (Nh, T]. In addition, we define

P(Nh) := P(Nh+) + CjQ. (3.31)

We now consider the interval (Nh—h,Nh]. Since there exists a linear causal controller
X such that JXCZ, R, T) < 1, taking w(t) = 0 over [0, Nh - h] and [Nh, T], and
setting v(ih) = 0, for i = 1, 2, . . . , Nh — h, implies that

< 1.

Again, by Theorem 4.1 in [24], and [12, 13], there exists a bounded non-negative
definite solution P(t) to (3.1)-(3.2) over (Nh - h, Nh]. We can define

P[(N - l)h] := P[(N - \)h+] + CjQ. (3.32)
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By repeating the above procedure for t e [0, Nh — h), we conclude that there exists
a bounded matrix function P(t) = PT{t) > 0, W e [0, T], satisfying (3.1)-(3.3).

The proof of P(0+) < R can be carried out using the same arguments as those in
the proof of a similar result in Theorem 2.1.

Finally, the condition p(P(t)Q(t)) < 1 for all t e [0, T] follows from Lemma
2.2(a), Theorem 3.1 [15] and Lemma 2.1(a).

Theorem 3.1 shows that as in standard output feedback //«> control for continuous-
time systems, two RDEs are needed to solve the sampled-data output feedback //<»
control problem. However, due to the sampled measurements and the existence of a
discrete-time output to be controlled along with a continuous-time output, here the
RDEs have finite discrete jumps. One of the RDEs is used for the state estimation
and another is used for the controller design. The proposed controller is a linear
time-vary ing system with jumps. It has the structure of an observer-based controller,
where the observer is an //«, sampled-data filter as in [15], and with a control law
u = -K(t)xc(t).

The next theorem deals with the sampled-data //<*, control problem on the infinite
horizon.

THEOREM 3.2. Consider the system (2.1)-(2.4) and let y > 0 be a given scalar.
Then there exists a linear causal controller tf such that the closed-loop system of
(2.1)-{2.4) with JV is uniformly exponentially stable and satisfies JjeCE, R, oo) < y
if and only if the following conditions hold.

(1) There exists a stabilizing solution P(t) = PT(t) > 0, Vr e [0, oo), to (3.1) and
(3.3) such that P(0+) < y2R.

(2) There exists a stabilizing solution Q(t) = QT{t) > 0, Vr 6 [0, oo), to (3.4)-
(3.6).

(3) p(P (t) Q(t))<y2 for all te [0, oo).

Moreover, if the above conditions hold, a suitable controller J(f is given by (3.7)-
(3.9) with T -> oo.

PROOF. Sufficiency.
The proof can be carried out using the same arguments as those in the sufficiency

proof of Theorem 3.1, except that Lemma 2.1 (b) and Theorems 2.3 and 2.4 need to be
utilized instead of Lemma 2.1 (a) and Theorems 2.1 and 2.2, respectively. Furthermore,
here we also need to assert the exponential stability of the closed-loop system (3.16)-
(3.19).

Following the proof of Theorem 3.1, it can be seen that there exists a stabilizing so-
lution W(t) = WT(t) > 0,W e [0,oo), to (3.12H3-14) satisfying (3.15). Moreover,
the matrix function X(t) of (3.23) is bounded, non-negative definite and piecewise
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differentiable on [0, oo), and satisfies (3.24)-(3.27) with T ->• oo.
We now show that X(t) is the stabilizing solution to (3.24)-(3.26). Using (3.10),

(3.20) and (3.21), it is easy to show that

A: = A + BBTX

+ BlBfP(t)-B2K(t)
0

1BfW~\

JW J ^
Bd(ih) [i - Bj(iA)X(iA+)B(f(iA)]"1 Bj(ih)X(ih+)Ad(ih)

° , 1
Bd[l- BjW(ih+)Bd]~l BjW(ih+)Ad] '

Since P(t) and W(t) are the stabilizing solutions to (3.1)-(3.3) and (3.12)-(3.15),
respectively, it follows that the linear system with jumps

x=A(t)x(t), t + ih

x(ih)=Ad(ih)x(ih-)

is uniformly exponentially stable. This implies that X (t) is the stabilizing solution
to (3.24)-(3.26). Therefore, using Theorem 2.3 we conclude that the closed-loop
system (3.16)-(3.19) associated with the system (2.1)-(2.4) and controller (3.7)-(3.9)
is uniformly exponentially stable and satisfies Jj?(X, R, oo) < 1.

Necessity.
Since there exists a linear causal controller tf such that Jje-(E, R, oo) < 1, by

Theorem 4.2 in [24] and [12,13], there exists a nonnegative definite stabilizing solution
P satisfying (3.1). Then by Theorem 4.1 in [24], and [12,13], for any given T > 0,
there exists a bounded nonnegative definite P(t) on [0, T] that satisfies (3.1). Hence
using Theorem 2.8 of [11], lim^oo P(t) = P, that is, P{t) is bounded on [0, oo).

Hence the existence of a bounded P(t) > 0, t 6 [0, oo), to (3.1)—(3.3) such that
P (0+) < R follows from the proof of Theorem 3.1.

In the following, we will show that P(t), t € [0, oo), is the stabilizing solution to
(3.1H3.3).

Since X is a causal admissible controller over [0, oo), it is also admissible over
[0, T] for any T > 0. Hence we have that

, R, T) = sup { — - — ' 2
w,v,xo [L IMI [0 . n

 + WVW(O.T)
and

(w, v,x0) € L2[0, 71 0 €2(0, T) Q @n : ||u;||f0 T] + \\vfi0 n + ||^0||
2 # 0} < 1.

(3.33)
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We define

When x0 = 0, (3.33) implies that there exists an £ > 0 such that

r ) ] . (3.34)
When x0 ^ 0, we can set the initial state of the controller to be zero. As JC is linear,
the output z{t) and Zd(ih) to any inputs w and v can be written as

Z2(0, t^ih, (3.35)

+ zd2(ih), ih e (0, T), (3.36)

where Zi(0 and Zdi(ih) are the homogeneous parts of z(t) and Zd(ih), respectively
(depending only on xQ) and z2(0 and Zdiiih) are the forced parts of z(0 and Zd(ih),
respectively (depending only on w and v). It is easy to see that

HSrzllfo.r, < Il5rzillfo.n + l^^llfo.r] + 2||5rz,||[o.r,||5rz2ll[an and (3.37)

\\STZd\\2
(0,T) < l|SrZ«nll?0,r) + WSTZ^W^ + 2||5rZ<n||(o,r)l|5r^2ll(o,r)- (3-38)

Since the closed-loop system of (2.1)-(2.4) with the controller (3.7)-(3.9) is exponen-
tially stable, this implies that both zi and z2 are in L2[0, T] and both Zd\ and Zdi are
in 12(O, T) for any (to, u,^0) e L2[0, T] ® £2(0, T) © &?,n. This means there exist
constants a, s > 0 which are independent of 7\ such that

and

[ ^ 1 ^ ] . (3.39)

Hence we have that

||f0 r]
< 2a2||jc0|| - e (||5ru>||fo.71

a2||^oll - (l|5ru;||20,r]

[e (\\STw\\2
l0M + \\STv\\2

0/n)
l/2 -4a\\xo\\] • (3.40)
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We next consider the following system

i?(0 = [A + B,BjP(t) - B2K(t)] nit). (3.41)

If we set w(t) = B(P(t)x(t) then the system (3.41) can be rewritten as

(3.42)

where Ac = A - B2K(t).
Now we claim that there exists £ > 0 such that

B.n (3-43)

By contradiction, suppose that for any K > 0 there exist x0 and T > 0 such that

IMI[0,r] > *2H*oll2. (3-44)

Let

Then it follows that from (3.40) (setting v(ih) = 0) that

IISrzlljo.7-] + WSTZA'O.T) ~ IISru>ll2o.n < [ 2 « 2 " *2 (£ ~ ^ ) 1 H*oll2. (3.46)

Note that since K satisfies (3.45), we obtain

HSrzlljb.n + H5rZ«*l|2o.n ~ H^^llfo.n < 0.

By Corollary 2.1 [15], we have that

*0
rP(0+)*0 = IIST-ZII2^ + \\STzd\\

2
(0,T) - WSTWWI.T] < 0- (3-47)

which contradicts the fact that P{t) > 0, Vr € [0, T]. Therefore, (3.43) holds.
Since the closed-loop system of (2.1)-(2.4) with the controller (3.7M3.9) [s stable,

it follows that there exists 8{ > 0 such that

\\x\\l0.Ti < &iM\io.n < &iy/t\\xoh (3.48)

where the bound is independent of T. The exponential stability of system (3.41)
follows immediately from [5]. Hence we conclude that P(t) is a stabilizing solution
to(3.1)-(3.3).

The existence of a stabilizing solution Q(t) > 0, / € [0, oo), to (3.4)-(3.6) can be
carried out by Lemma 2.2(b).

Finally, the condition p(P(t)Q(t)) < l,t e [0, oo), follows from Lemma 2.2(b),
Theorem 3.2 [15] and Lemma 2.1(b).
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Inspired by the result in [25], when the initial state of system (2.1M2.4) is zero and
the infinite horizon is concerned, we may have a stationary controller with constant
filter and control gains which is formulated in the following theorem.

THEOREM 3.3. Consider the system (2.1)-(2.4) and let y > 0 be a given scalar.
Then there exists a linear causal controller Jf such that the closed-loop system of
(2.1)-(2.4) withJff is exponentially stable and satisfies Jjtr(T,, oo) < y if and only if
the following conditions hold.

(1) There exists a symmetric matrix P > 0 satisfying

n2,(/») + n22(h)P = [P + CT
dCd] [Un(h) + Un(h)P], (3.49)

where

n u ( o n12(r)-|
jna(oj~expl|c1

rc
such that

is stable and n u ( f ) + I~Ii2 W is nonsingular on t € [0, h].
(2) There exists a symmetric matrix Q > 0 satisfying

= G [/ - y-2C;CdQ+ C^R-'QQ]
(3.50)

( ) "L*2.(0 *22(0j~ P

such that

w stable and * n ( 0 + *i2(0 <2 « nonsingular on t 6 [0, ft].

Moreover, if the above conditions hold, a suitable controller & given by

x(ih) = [I - y-2QCT
dCd + QClR^Q]-1

x [(/ _ y-
2QCjCd)e

(A+^B'B'p-B^P)hx(ih - h)

+ QCTR-D
ly{ih)}, JC(O) = O, (3.51)

ii(0 = -BjPe{A+Y'7BiB'p-B^P)(t-ih)x{ih), t € [ih, ih + h), (3.52)

is stable and achieves 7 ^ ( 2 , co) < y.
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PROOF. It can be established using a similar technique to that used in [25], except
that now the discrete-time output is to be considered.

REMARK 3.1. It can be observed that when Cd — 0 and D2\ = I, the results of
Theorems 3.1 and 3.2 will reduce to the sampled-data H^ control results of [24].

REMARK 3.2. In Theorem 3.3, it is shown that the controller (3.52) can be easily
computed by solving two algebraic Riccati equations (3.49) and (3.50) which are
given directly in terms of the problem data. The generalized hold function depends on
the system matrices as well as the //«, disturbance attenuation y. To be more precise,
the controller (3.52) can be assumed to be a discrete-time linear time-invariant system
followed by the hold function as given in (3.52).

4. An example

We consider the problem of stabilization of the sampled-data system

(4-1)

xi(t) = (-3 + a)xl+x2 + b sin [x2(t)] • x, (f) + (a + 2)«, (4.2)

y(ih)=x(ih), (4.3)

where a e [—1,1] and b e [—1, 1]. The sampling period h is 0.2 seconds and we
shall consider the design of a sampled-data control law along with a zero-order hold
function.

Note that the origin is not a stable equilibrium point of the unforced system of
(4.1)-(4.3). By Theorem 3.3, an //«, sampled-data controller for the above stabiliza-
tion problem can be designed with a zero-order hold function to achieve a unitary
disturbance attenuation. The corresponding zero-order hold control law is given by:

«(/) = [-0.1966 -2.0311]*(iTi), Vr e [ih, ih + h). (4.4)

Figures 1-4 show the time responses of the control signal and state variables of the
closed-loop system for the parameters a and b at the extreme values.

5. Conclusions

This paper has studied the design of output feedback controllers for linear contin-
uous-time systems with sampled measurements. Control problems on both the finite
and infinite horizon have been considered. Necessary and sufficient conditions for the
existence of a suitable Hoo sampled-data output feedback controller are given in terms
of two RDEs with finite discrete jumps.
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12

FIGURE 1. The time response of the closed-loop system of (4.1M4.3) with (4.4) fora = 1 and b = 1.
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FIGURE 2. The time response of the closed-loop system of (4.1M4.3) with (4.4) for a = 1 and b = —1.
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12

FIGURE 3. The time response of the closed-loop system of (4.1 M4.3) with (4.4) for a = — 1 and b = — 1.
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"2'50 2 4 6 8 10 12

FIGURE4. The time response of the closed-loop system of (4.1)-(4.3) with (4.4) for a = — 1 a n d b = 1.
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