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1. Introduction

The theory of partially ordered topological groups has received little attention
in the literature, despite the accessibility and importance in analysis of the group
Rm. One obstacle in the way of a general theory seems to be, that a convenient
association between the ordering and the topology suggests that the cone of all
strictly positive elements be open, i.e. that the topology be at least as strong as the
open-interval topology tl; but if the ordering is a lattice ordering and not a full
ordering then II itself is already discrete. So to obtain in this context something
more interesting topologically than the discrete topology and orderwise than the
full order, one must forego orderings which make lattice-ordered groups: in fact,
the partially ordered group must bs an antilattice, that is, must admit no non-
trivial meets or joins (see § 2, 10°).

There is of course the order topology; for this however it is necessary to lay
down rather complicated conditions at the outset, to ensure that the group is a
topological group.

In this paper we develop the theory of a class of commutative groups for which
these difficulties can to some extent be overcome, though no new locally compact
groups are found in the class. The theory is based on a strengthened form of the
well-known interpolation property due to F. Riesz (1940); we call it here the
'tight Riesz property'. We are in the first instance concerned with tight Riesz
groups (G, g , IX) without pseudozeros. For such a group the closure P under II
of the positive cone of the ordering 5S is itself the positive cone of an ordering <J.
The group (G, ^ , II) is order-dense and not discrete, and although it is therefore
an antilattice, (G, ^ ; U) is a closely related partially ordered topological group
which may very well be lattice-ordered; so that the lack of a lattice structure in
(G, :g) need not be an inconvenience. When (G, 5S) is Archimedean ordered,
(G, U) has no compact subgroups other than (0), and so is radical-free.

The example afforded by Rm, the additive group of real m-tuples, uses the
orderings ^ and =̂  denned by:

(1.1) <ai,«2» •••»«»> > 0 iff at > 0, a2 > 0, • • • , «„ ,> 0,
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(1.2) <a1 >a2 s---Jom>>0iflFa1 ^ 0, a2 £ 0,-• •, am £ 0.

Of these the second, though it seems the more frequently used by analysts and
algebraists alike, has the disadvantage from which the first is free, of not giving
special status to the elements for which one or more of the a's vanish, the remain-
ing being positive. The first classifies them immediately as not positive but pseudo-
positive. This is a case of the general result (§ 2,6°) that dP, the boundary of the
positive cone, consists precisely of 0 and the pseudopositive elements, so that one
passes from ^ to ^ by reclassifying the pseudopositive elements as positive.

The cone of strictly positive elements in (Rm, ^ ) is open in the Euclidean
topology (£, which coincides with U. The extraction of the Euclidean topology
from the ^ order structure is less straightforward. (Rm, ^ , It) is a tight Riesz
group without pseudozeros, Archimedean ordered, and locally compact. Indeed,
we show that, up to isomorphism, these are the only such groups (§ 5,2°).

Contents. § 2. A summary of the basic theory of partially ordered topological
groups, the Riesz interpolation properties and some compactness results.

§ 3. Upper and lower bounds. The condition [*], and the consequence that
(G, = )̂ is lattice-ordered.

§ 4. Consequences of the lattice structure of (G, = )̂ when (G, ̂ ) has no
pseudozeros. A lemma concerning the existence of small positive elements.

§5. The full implication of [*]: the complete isomorphism for some m of
{G, £ ,< ,U)and( f f \ £,<,<£).

§ 6. Some examples.

For convenience, § 2 repeats a portion from the second author's previous
paper (1970). The present paper is a revised form of an unpublished paper by the
second author. The first author has supplied the results in § 5, and this section now
replaces an earlier unsatisfactory discussion of conditions for the divisibility of G
and its consequences. We are grateful for comments by Diana Frost and Ian
Wright, and the referee, which have also led to improvements. Generally, we
owe much to the basic studies of Riesz groups by L. Fuchs. The dense antilattices
of Fuchs (1965), pp 20-21, are tight Riesz groups in our terminology. For an
application of tight Riesz groups to a generalization of the Stone-Weierstrass
theorem see Miller (1972).

2. Partially ordered topological groups

We confine attention throughout this paper to Abelian groups, which we
write additively. Thus by 'group' we always mean 'Abelian group'.

A partially ordered group (G, ̂ ) is a group G which is a partially ordered set
under ^ and is such that for all a, b, c e G, if a < b then a+c < b + c (so that
also — b < —a). We write

P= {aeG:a^0}, P* = P\{0},
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and call P the positive cone of the ordering. It satisfies

(2.1) P+P^P, i>n (-/>) = {0};

and conversely any subset P with these properties is the positive cone of some
partial ordering ^ making (G, ^ ) a partially ordered group. The ordering is full
if and only if P u (—P) = G. We assume in general that the ordering is not
trivial, i.e. that P* # 0. It follows that G is infinite. G need not be torsion-free,
but there can be no torsion elements in P*. For some of the properties of partially
ordered groups given below, see L. Fuchs (1963).

We say that (G, ^ ) is directed to the right when to any pair a, b e G there
exists some c e G for which a ^ c, b :g c. This implies the existence of c' e G
for which a < c', b < c'. There is a similar definition for directed to the left.
Since G is a group, each implies the other, so it suffices to say merely that the group
is directed.

Henceforth suppose that (G, ^ ) is a partially ordered group.

1°. The following assertions are equivalent: (i) G is directed, (ii) P generates
G, (iii) G = P-P.

Call (G, ^ ) isolated when na > 0 for some positive integer n implies a > 0.
We say (G, ^ ) is order-dense when for every pair a, b e G such that a < b

there exists at least one c e G such that a < c < b. An element x is an atom of G
if x > 0, and 0 < a < x for no a e G. Clearly, (G, ^ ) is order-dense if and only
if there exist no atoms in G.

We use the following notation for order intervals in G:

(a,b) = {x : a < x < b), [a, b] = {x : a ^ x ^ b},

(a, oo) = {x : a < x}, (- oo, b) = {x : x < b),

with the obvious variants for half-open intervals.
The open-interval topology It is the topology generated on the set G by taking

the collection of all sets of the form (a, oo), (— oo, b) as a subbase. It is easily
shown that the collection of all sets of the form {a, b) then also forms a subbase
for U, though perhaps not a base.

An element w e G is called pseudopositive when w ^ 0 but a > 0 implies
a + w > 0, that is

(2.2) w+P* <= P*, w ^ 0.

An element 9 is apseudozero if 9 and —9 are both pseudopositive, that is

(2.3) 9+P* = P*, 9 * 0.

2°. The topological space (G, 11) is a T^-space if and only if (G, g ) has no
pseudozeros.

We recall that if % is some topology on G, (G, %) is called a topological group
if the maps {a, by Kfl + i o f G x G onto G, and a H - a of G onto G, are conti-
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nuous. For the properties of topological groups we refer to E. Hewitt and K. A.
Ross (1963).

3°. THEOREM. If (G, ^ ) is order-dense then (G, U) is a topological group and
a regular topological space; and U is the weakest topology % such that (G, %) is a
topological group in which P* is open.

If further (G, ^ ) has no pseudozeros, then the topology U is Hausdorff and
completely regular.

PROOF. Given s, t e G and a subbase neighbourhood U = (a, b) of s +1, we
deduce from the fact that G is order-dense that there exist x, y such that

a-t < x < s < y < b — t.

Then V = (x, y) and W = (a — x, b—y) are neighbourhoods of s and t respectively
such that V+ W £ U. By taking a finite collection of subbase sets like U and
forming intersections, we get the same result for an arbitrary base neighbourhood
of s + t, showing that addition is continuous. That inversion is continuous follows
trivially from the nature of ths topology. So (G, It) is a topological group. For a
proof that it is regular see, for example, Hewitt and Ross (1963), p. 19.

By definition of U, P* is open in (G, It). Conversely, if (G, %) is a topological
group in which P* is open, then a + P*, b—P* are open for all a, b e G, i.e. X
contains the subbase of 11, and therefore % 2 11.

If G has no pseudozeros then II is Tl, by 2°. Regularity and the 7\ property
imply that U is Hausdorff, and completely regular; see Hewitt and Ross (1963),
P- 70. //

Next we introduce the Riesz interpolation properties. These are meaningful
when (C, ^ ) is any partially ordered set, but we continue to suppose that (C7, £j)
is a partially ordered group. (G, ^ ) is said to have the tight Riesz property if,
for every four (not necessarily distinct) elements av, a2, bt, b2 in G such that

(2.4) at < bj

for i,j = 1,2 there exists c e G such that

(2.5) o, < c < bj

for i,j = 1,2.l If < is replaced by ^ at all places in (2.4) and (2.5), we get
instead the definition of the loose Riesz property.

A tight Riesz group is a partially ordered group which is directed and has the
tight Riesz property. Loose Riesz groups are defined analogously.

The loose Riesz property is the form of interpolation condition originally
introduced by F. Riesz (1940), and the group-theoretic consequences are described
in detail in Fuchs (1965). Our main concern here is with the tight property, and

1 We sometimes abbreviate (2.4) to alt a2 < bt, b2; and similarly for other inequalities.
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we shall say little more about loose Riesz groups beyond using some characteriza-
tions of them which, by obvious modifications, give characterizations of fight
Riesz groups.

4°. THEOREM. Let (G, ^ ) be a directed partially ordered group. Each of the
following conditions implies the others.

I. (G, ^ ) is a tight Riesz group.

II. For any two positive integers p, q, if elements at, a2, • • •, ap and b^,
b2, • • •, bq satisfy

fl. < bj ( i = 1 , 2 , • • • , / > ; . / = 1 , 2 , • • • , ? )

then there exists an element c satisfying

a ; < c < bj (i = 1, 2 , • • - , p ; j = 1, 2 , • • • , ? ) .

I I I . Given any r > 1, for all at, a2, • • •, ar in P*,

0 , a 2 ) + • • • + ( 0 , a r ) = ( 0 , a 1 + a 2 + - - - + a r ) .

]V. Given m + n elements a l 5 a2, • • • ,am and bl, b2, • • •, bn, all in P* and
for which

at+a2 + - •• + am = bi + b2 + - • -+bn,

there exist mn elements c^, all in P*, such that

ai = cn+ci2 + -- - + cin (i = 1,2, •••,m),

bj = cl] + c2j + - • -+cmj (j = 1, 2, • • •, n).

V. Given elements a, b1, b2, • • •, bk in P* such that

a < bi+bi-i +bk,

there exist elements ax,a2,- • -ak in P* such that

a = at+a2-\ +ak; ai < bt (i = 1,2, •• -,k).

PROOF. The equivalence of analogous statements got by replacing 'tight' by
'loose' in I, and P* by P, (0, a) by [0, a], < by g throughout, is proved in Fuchs
(1965), § 2; the proof of the present theorem is obtained by making the obvious
modifications in this proof of the loose case. //

5°. THEOREM. A tight Riesz group (G, ^ ) is order-dense, and a topological
group under its open-interval topology U. U is not discrete, and the collection of
all open order-intervals (a, b) forms a base for XI.

PROOF. The tight Riesz property implies immediately that (G, ^ ) is order-
dense, so (G, II) is a regular topological group, by 3°. If V = H?=i (a>> **) ' s a

base neighbourhood of c, there exist a,beG such that
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fl; < a < c < b < bj (i,j = 1, 2, • • - , « ) ,

by 4°. Thus the sets (a, b) form a base for U. Further, any neighbourhood of c
contains elements other than c, so {c} is not open. Since the topology of a topolo-
gical group is translation-invariant, It is not discrete. //

We shall make repeated use of this theorem.

6°. In a tight Riesz group (G, ^ , U):

(i) P = P*, dP = d(P*), 0 e d(P*), (P)° = P*, G\P = G\P, 8P = cP;
where ~, d and ° denote topological closure, boundary and interior respectively;

(ii) dP consists of all the pseudopositive elements together with 0;

(iii) P n (—P) consists of all pseudozeros together with 0, and equals
dPn (-dP).

PROOF, (i) Clearly P 3 P*. If x e P then every base neighbourhood U =
(x — a, x + a), a > 0, meets P. Suppose s e U n P; if s # 0 then U meets P*, while
if s = 0 then x — a < 0 < x + a so there exists t e G, x — a < 0 < t < x + a, and
again U meets P*. Thus xeP*. This proves the first equation, and the others
follow easily, or are proved by similar arguments.

(ii) Let w be pseudopositive or zero. If a > 0 take 0 < b < a; then w + b > 0
so (w — a, w + a) meets P* in w + b. Such intervals form a base in II at w as we have
seen; therefore w e d(P*) = dP.

Conversely if wl e dP then a > 0 implies wt— a < c < wt+a for some
c ^ 0 and hence a + wl > 0. So wt is pseudopositive or zero or positive; and wt

cannot be positive, otherwise wl e P*, and P* is disjoint from dP* = cP.

(iii) Clearly 0 e P n ( -P) . Suppose s s P n ( - P ) , s / 0 . We cannot have
s e P n (-P) , by (2.1). l f j e P n (-5P) then ( -5 - e , - s + e) meets P, so s < e
for every e > 0, which contradicts order-denseness since s > 0; thus

s$Pn (-dP).

Likewise s£ dP n (— P). There remains the possibility se dP n ( —5P); but by
(ii) this implies that 51 is a pseudozero.

Conversely if 0 is a pseudozero then 0 e dP n (— dP) by (ii), so 0 e P n (— P).

For any subsemigroup P of a topological group, P + P E P; so

7°. /« a tight Riesz group (G, S,\1),P is a positive cone if and only if(G, ^ )
has no pseudozeros.

When P is a positive cone, we will write the corresponding ordering as <J.
Thus a >- 0 in a tight Riesz group without pseudozeros asserts that a > 0 or a is
pseudopositive; and

(2.6) a > 0 if and only if x > 0 => x+a > 0.
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Writing f_a,bj = {xe G : a <J x =̂  b) for the corresponding closed order-interval,
we have

8°. In a tight Riesz group without pseudozeros, if a < b then

(2.7) [a, b] <= (a, b)~ = [a, b},

and [a, bj is a closed set.
The proof is left to the reader.

Cases when It is discrete. We have remarked that the tight Riesz property
prevents (G, 11) being discrete, and now look briefly at neighbouring cases. For
a partially ordered group (G, ^ ) , let a/\b and avb have their usual meanings
of meet and join. Call (G, ^ ) an antilattice if, for a given pair a, be G, a/\b
exists only when a/\b equals a or b, i.e. only the trivial meets exist. It can be
shown that (G, g ) is an antilattice if and only if only the trivial joins exist.

A necessary and sufficient condition for (G, ^ ) to be an antilattice is: for all
a, b e G,

(2.8) a/\b = 0 implies a = 0 or b = 0.

For a proof see Fuchs (1965), p. 19. (Note that the term 'antilattice' there is confin-
ed to loose Riesz groups.) It follows immediately from the definitions that

9°. A tight Riesz group is an antilattice.

10°. If (G, U) is a topological group but not an antilattice, then U is discrete.

PROOF. By (2.8) there exist a > 0, b > 0 with aAb = 0. But then (-a,a)n
( — b,b) is an open set containing only 0. Thus every singleton is open, and U is
discrete. //

For a partially ordered set (G, ^ ) any two of the following implies the third:
(i)((7, ^ ) is lattice-ordered; (ii)(G, ^ ) is fully ordered; (iii)(G, ^ ) is an antilattice
with respect to both A and v . Therefore

11°. If (G, U) is a topological group, and (G, ^ ) is lattice-ordered but not
fully ordered, then II is discrete,

Compactness. We pass on to some results about compactness and local
compactness, first noting

12°. (G, II), if a topological group, is not compact.

PROOF. Take a > 0 and write U = ( — a, a). Then t + U is a neighbourhood
of t, so if (G, It) is compact there exists a subset {ti, t2,'' ', tn} of G such that
{tj+U :j = 1, 2, • • • ,«} covers G. That is, for every x e G there exists some
integer j x , 1 ^jx^ n, such that

x — a < tJx < x + a.
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Taking x = a, 3a, 5a, • • • gives an infinite set of pairwise disjoint subsets of G,
each containing some ts, which is impossible. //

A similar argument can be applied to compact subgroups of G, to show that
any such subgroup H meets P only in {0}. (The choice x = a in the above proof
is possible only if H n P ^ {0}, so the proof fails to dispose of all compact
subgroups.) Later, in § 4, 7°, we adapt the argument to show that G contains no
compact subgroups other than (0), at least for the class of tight Riesz groups
considered in § 4 and subsequently.

If for some a > 0 the closure (0, a)~ is non-empty and compact, then (G, U)
is locally compact; for then (0, a) is non-empty, so there exists some b such that
( — b,a-b) is a neighbourhood of 0, and then for any x e G, {x — b, x + a — b) is
a neighbourhood of x with compact closure. The converse is also true:

13°. A tight Riesz group (G, ^ , II) is locally compact if and only if there
exists a > 0 such that (0, a) has compact closure.

PROOF. It remains to verify necessity. If V is a neighbourhood of 0 then
there exist a, b with 0 e (a, b)^ V. If also Vis compact then (a, b)~ is compact and
so therefore is (0, b — a)~. //

To improve upon this result, we introduce a further axiom. (G, ^ ) is called
Archimedean ordered when a > 0, b > 0 implies na > b for some positive integer n.
An equivalent formulation is: for every a > 0,

(2.9) P* = 0 (0, na).
n = l

Among possible Archimedean-type properties on a partially ordered group, this
is a rather strong one. See Fuchs (1963), p.12.

14°. Let (G, rg, tl) be a tight Riesz group without pseudozeros, and let a,beP*,
and let (0, a)~ and (0, b)~ be compact. Then

and (0, a + b)~ is also compact.

PROOF. For any partially ordered group G,

(0,a) + (0 ,6 ) s (0,

and if G is a topological group it can be shown without difficulty that

For a tight Riesz group we have also

(2.10) (0, c)- + (0, b)' 3 (0, a + b),

from 4°, III. In any topological group the sum of two compact subsets is compact,
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so the lefthand side of (2.10) is compact and, since U is Hausdorff by 3°, closed.
Therefore (0, a)~ + (0, b)~ 3 (0, a + b)~, and the result follows. //

15°. THEOREM. Let (G, ^,11) be a tight Riesz group, without pseudozeros
and Archimedean ordered. Then (G, 11) is locally compact if and only if (0, a)~ is
compact for every a > 0.

PROOF. If (0, a)~ is compact for even one a > 0 we know from 13° that
(G, U) is locally compact. Suppose conversely that (G, U) is locally compact. By
13° there exists a0 > 0 for which (0, ao)~ is non-empty and compact. Let a > 0.
By the Archimedean property there exists a positive integer n such that (0, a) £
(0, na0). By 14°, (0, naQ)~ is compact. Thus (0, a)~ is compact. //

3. Infinia and suprema

For any subset A in a partially ordered group (G, ^ ) write

slb(̂ 4) = {x : x < a for all a e A}

for the set of all strict lower bounds of A, and likewise

sub(J) = {x : x > a for all a e A}

for the set of all strict upper bounds.
For a subset B £ G we say that B is strictly directed to the right under <

if for any pair of elements bl, b2 in B, not necessarily distinct, there exists b3e B
such that bt, b2 < b3.

We start with the following lemma, which is basic for many later results.

1°. LEMMA. Let (G, ^ , U) be a tight Riesz group without pseudozeros; let F
be a non-empty compact subset of G. Then the set slb(F) of all strict lower bounds
of F is non-empty, and is strictly directed to the right under <.

Likewise sub (F) is non-empty and strictly directed to the left under <.

PROOF. Since the sets (a — e, a + e) for a e F cover F when e > 0, there exist
at, a2, .. ., at such that F c (Jj-=1 (dj — e, aj + e). Since (G, ^ ) is directed there
exists b < <tj-e,j = 1,2, ••-, I; th is b e s ib (F), s o s ib (F) # 0 .

For any se G, s+P* is open. Let xlt x2 e slb(F) and form

C= U (s+P*).
S>Xl,X2

If a e F, by the tight Riesz property there exists s for which xlt x2 < s < a, so
a 6 C; F s C. Since F is compact there exist st, s2, • • •, sk, all > xx, x2, such
that k

Fcz{J(sj+P*).
I
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We can find x such that xt, x2 < x < st, s2, • • •, sk, and then F c x+P*; that
is, x e sib (F) and x > xl, x2.

Proofs for sub (F) are analogous. //
One can show by examples that if F is not compact sib (F) may not be directed.
We now proceed to consider groups of the following type:

[*] (G, ^ , U ) denotes a tight Riesz group, without pseudozeros, Archimedean
ordered, and locally compact

and shall assume [*] for the rest of this section. In § 5 we show that they are
precisely the groups (i?m, ^ , @).

By § 2,7°, P is the positive cone of an ordering = .̂ Notice that

a > 0, b > 0 imply a + b > 0.

Let 6 E sib (F)- By 1°, the set

Qb = (b+P*)ns\b(F)

is non-empty and directed to the right; moreover Qb s (b, a) where a is any
element of F. We regard Qb as a net, indexing the elements by themselves; (b, a)~
is compact by § 2, 15°, so the net has an accumulation point / say, in (b, a)'.
Using the fact that Qb is an increasing net, one shows by standard arguments that
Qb actually converges to 1. Since (G, U) is Hausdorff, Qb determines /uniquely as
its only limit point.

It is clear that / does not depend upon a; we show that it does not depend
upon the choice of b. Assuming for the moment the contrary, write lb for / as
defined above. First, note that

b<lb.

For there exist xt, x2 in Qb such that b < xt < x2, and e such that 0 < e < x2 —
xt. By convergence of the net there exists JC3 e Qb for which lb — e < x3 < lb + e
and x3 > x2; but then x2 < x3 < lb + x2 — x1, so b < xx < lb.

Let c e sib (F), b < c; we prove lb= lc. Let e > 0 be given. By order-denseness
we can write

e = e^-Ve2, et > 0, e2 > 0.

Then there exists xx e Qb such that

x > Xi, xsQb=> !b-e1 < x < lb + el

and x2 e Qc such that

x > x2, xe Qc => lc — e2 < x < lc + e2.

Choose some x > xlt x2, c, x£s lb (F) ; 1° asserts that such x exists. Then
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x e Qc, and xe Qb since c > b. So we have 

< x < lc + e2, 

lc-e2 < x < lb + ex, 
whence 

-e = ~(el+e2) < lb-lc < e1+e2 = e. 

Since 11 is Hausdorff, it follows that lb = lc. 
Finally, if b, b' e sib (F) there exists c e sib (F) with b, b' < c, and lb = lc = /6.. 

Thus / is independent of b as asserted, and 

(3.2) b < I, for all b e sib (F). 

Next, we note that 
/ <J a, for all as F. 

In fact if a e F then le(b,a)~ = \b, aj by § 2,8°, so / ^ a. We have now proved 
a portion of 

2°. Given a non-empty compact subset F of G, there exist two elements I, u in 
G satisfying 

(3.3) x < I < a for all xe sib (F), aeF, 

(3.4) a u < y for all ae F, ye sub (F), 

and these conditions determine I, u uniquely. 
The statements about u have proofs analogous to those about /; so to complete 

the proof it will suffice to show that (3.3) determines / uniquely. Suppose e > 0, 
and let /' be another element satisfying (3.3). If a e Fthen a — le P so e + a — I > 0. 
Thus /— e e s l b ( . F ) , so l—e< /'. By reversing the roles of / and /' we get 
— e </—/'< e, for all e > 0, and hence / = /'. // 

We shall write inf (F) and sup (F) for / and u respectively. From the definitions 
it follows that 

(3.5) sup(F) = - i n f (-F). 

3°. x < inf (F) if and only if xe sib (F) , 
y > sup (F) if and only if ye sub (F). 

The proofs are straightforward. These properties in fact characterize inf and 
sup respectively. (This remark is due to N. Cameron.) 

4°. / / sib (a) = sib (b), then a = b. 

P R O O F . Here sib (a) means of course sib ({a}). We are given that x < a iff 
x < b. If e > 0 then a — e < a so a — e < b, e + b — a > 0. Thus b — a =̂ 0. 
Similarly a — b =̂ 0. Therefore a = b. // 
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Given a, b in G, the doubleton {a, b) is compact; define A and v by

(3.6) a A b = inf {a, b}, a v b = sup {a,b}.

It was pointed out in § 2,9° that (G, g ) is an antilattice. By contrast, a A b and
avb are always defined; we show presently that they are in fact the lattice meet
and join for the ordering <J, and that (G, «Q is a lattice-ordered group. It is not
necessary to point out that they are not the lattice operations in (G, g ) in general.

5°. (a + c)A(b + c) = (ctAb) + c,

(a + c)v(b + c) = (avb) + c.

PROOF. This uses 3° and 4°. For x e G,

x < (a + c)A(b + c)ox < a + c and x < b + c

ox — c < a/\b,

so the first equation holds. The second is proved similarly. //

6°. THEOREM. When a,beG, aAb and av b are the lattice meet and join of
a, b in (G, =^), and (G, ̂ ) is a lattice-ordered group.

PROOF. It has to be shown that (i) aAb^a, b, (ii) x^.a,b=>x
with similar statements for v . Of these, (i) follows immediately from the property
(3.3). To verify (ii) let x ^a,b, and suppose e > 0. Then x < a + e, b + e, so
x < (a + e) A (b + e) = a A b + e by 5°, i.e. e + (aAb — x) > 0. Therefore aAb —
x>o.H

We could at this stage go on to show the existence of inf(S) and sup(S') for
all c-compact sets S <= G, suitably bounded. For example, for a non-empty
ff-compact set S bounded bslow, inf(S') is the unique element/? satisfying x^p <J a
for all x e sib (S) and all ae S. Adjunction to G of two elements — oo and oo allows
somewhat more general statements to be made, and provides a suitable compacti-
fication of (G, 11). It can also bs shown that (G, U) is complete, as a uniform space.
In view of the main result § 5,2° below, we do not pursue these matters.

4. The lattice structure for (G, <)

We examine the consequences of supposing that (G, ^ ) is a lattice-ordered
group. By § 3,6°, this is the case in the situation [*]; but since it can also occur
when (G, II) is not locally compact, we shall work generally under the weaker
assumption:

(G, ^ , U) is a tight Riesz group without pseudozeros, and such that (G, <J) is
a lattice-ordered group.

1°. The maps < a , i ) H a A i and <a, b} i-> a vb from (GxG, VI xU) onto
(G, U) are continuous.
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PROOF. Let e > 0 be given, and let {ax}XeA, { y ^ , , be nets converging to
a, b respectively. If

— e < a — ax < e, —e< b — b^ < e

then

< (ax+e)A(blt+e) =

so —e<aAb — akAb^ < e. The result for A follows; the proof for v is similar.//

2°. (G, ^)is a distributive lattice; the ordering is isolated; G is torsion-free.
For proofs of these properties of lattice-ordered groups see Fuchs (1963),

p. 67.
The following elementary lemma on the existence of small elements is parti-

cularly useful; it does not require the assumption at the head of this section.

3°. LEMMA. Let (G, ^ , U) be a tight Riesz group. Given s > 0 in G and
positive integer n, there exists t > 0 in G such that 0 < nt < s.

PROOF. (G, VL) is a topological group by § 2,3°, so given any neighbourhood V
of 0 there exists a base neighbourhood W oi 0 such that W+ W+ • • • + W £ V, for
a specified number n of summands. Expressing this in terms of the open order-
intervals of G leads to the stated result. //

4°. THEOREM. The ordering ^ is isolated: in fact if ae G and n is a positive
integer,

na>0=>a>0,

na > 0 => a > 0,

na — 0 => a = 0.

PROOF. We have already remarked upon the first and last implication. Suppose
na > 0, so that a >- 0, and assume contrary to the theorem that a e P\P. Then
aedP = BP (by §2,6°, (i)), so ae(G\P)~. Let {a,}keA be a net in G\P
converging in II to a. We must have nax e G\F, for nax e P implies a e P. By
continuity, nak -> na; so na e (G\P)~, which is not possible if also na e P*. This
contradiction concludes the proof. //

Another consequence of the lattice structure is:

5°. (G, = )̂ is a loose Riesz group.
For every lattice has the loose Riesz property: given ax, a2 <J b1, b2 we

have at, a2 <J at v a2 <S b±, b2 •

Not every loose Riesz group is lattice-ordered: see Fuchs (1965), § 7.

6°. THEOREM. (G, VL) has no compact subgroups other than (0).

PROOF. Let H be a compact subgroup of G, different from (0). Suppose
that z <2a for all zeH, aeP*. Then also -la < z < la for all z e H,
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aeP*; and from 3° it follows that — b < z < b for all z e H, beP*, which
is impossible since H # (0).

Thus there exists a pair of elements z e H, aeP* such that z <C 2a. Then
z # 0. AISOMZ -fc la for positive n ^ 2; for if nz < 2a then nz < «a, soz < a < 2a
by 4°.

Using this a, we argue as in the proof of § 2, 12°, to show the existence of
elements t±, t2, • • •, tn in H such that, for every x e H there exists some integer
j x , 1 ^jx^ n, such that x—a < tJx < x+a. Choose for JC first any element
x0 e H, and subsequently the elements

xk — xo +kz for k = 0, 1, 2, • • •.

The intervals (xk — a, xk + a) are all pairwise disjoint. For if y e (xkl — a, xkl + a) n
(xk2 — a, xkl + a) with k^ < k2, then xkl—a < y < xkl+a, so

(fcj-fcjz = xk2-xkl < 2a,

which we have shown is impossible. As in § 2, 12°, the disjointness of the intervals
implies a contradiction. //

7°. If, in addition to the other assumptions, (G, ^ ) is Archimedean ordered,
then (G, VI) is first countable.

PROOF. Take any seP*. We can by using 3° construct inductively a sequence
W r = o f° r which t0 = s and

0 < ntn < s, ntn_l, 0 < tn, for n = 1,2, • • •.

Let (— e, e) be any base neighbourhood of 0, so that e > 0. By the Archimedean
property there exists n such that ne > s, and so ne > ntn. By 4° this implies e > tn.
We also have tn < tn-1. Thus { — tn, tn), n = 1, 2, • • •, is a countable base for
II at 0, in fact a decreasing sequence of neighbourhoods. //

Note that the lattice property of <J is not used directly in the proofs of 6°
and 7°; it is enough to know that ^ is isolated.

The absence of non-trivial compact subgroups has the important consequences
that G is radical-free and that the real characters on G are point-separating. The
property is used in the next section.

5. Consequences of the condition I*]

In this final section we prove the result promised above, namely that a group
satisfying [*] is isomorphic to (Rm, ^ , U), m some positive integer.

1°. If (G, ^ , U ) satisfies [*] then (G,U) is algebraically and topologically
isomorphic to (Rm, (S)/or some positive integer m, @ being the Euclidean topology.

PROOF. By § 4,6° G is radical-free, and so by a result of W. Mackey (1948)
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(or see Hewitt and Ross (1963), p. 390) there is an algebraic and topological
isomorphism </> of G onto Rm@D for some positive integer m and some discrete
group D. Let £ e Rm, with £, > 0 in the ordering defined by (1.1), so that ( - £ , £ )
is open in (Rm, @) and { — £,, £)© {0} is open in (f>{G). Thus there exists aeP*
with

, a)) = </>((-<*, a)) = ( - £ , 0 © {0}.

But then by § 2, 4° III,

w)) = <K(0, «)) + <K(0, *)) + •• -+^((0, a))

for each positive integer n. Since P* = !Jn(0, «a) and G = P * - P * it follows that
0(G) = <j)(P*)-<l>(P*) £ iT©{0}, and hence D must be trivial. //

Using the map 4> we may define an order e- on i?m by

x = <f>(a) c~ 0 if and only if a > 0 in G.

With this ordering Rm becomes a lattice-ordered group and, indeed, a real vector
lattice. For if x e Rm and x I- 0 then nx I- 0 certainly, and x/« I- 0 using § 4,2°,
for each positive integer n, and so ax c~ 0 for rational a > 0. Since <j>(P) is closed
it follows that ax c- 0 for all real a > 0. But then by the Choquet-Kendall theorem
(Peressini (1967), pp. 9, 10) there are vectors vCk), k = 1, 2, • • •, in, spanning Rm,
such that 2

x S- 0 if and only if <x, yw> ^ 0 for A; = 1, 2, • • •, m.

These y's are not in general the extreme rays of the positive cone for £- in Rm.
Setting 5 = « » ( 0 , i>0)», T = S ' - 1 , T = (ty), let «(t> = ^TkJv

u\ Then
I W . »(y)> = A*y. so that

x = 2] /zt w
(t) c- 0 if and only if /xk ^ 0 for k = 1, 2, • • •, m.

Thus if e(A° = (0,0, • • •, 1, • • •, 0), the 1 in the kth position, the map

is a lattice, algebraic and topological isomorphism of (Rm, -3 , @) with (Rm, = ,̂ (S).
Thus there is an isomorphism \j/ of (G, ^ , 11) with (Rm, ^ , (S), namely \j/ = 9 o(j).

Alternatively, we can obtain this result as follows. Let a e G, a > 0, and set
x = 4>{a). The functional || • ||x defined by

\\y\\x = inf {X > 0: -Ax -? j -? Ax}

is easily seen to be a norm on Rm, necessarily defining the topology 6, and under
this norm (Rm, -?) is an (M)-space with unity x (see G. Birkhoff (1967), p. 376).
Thus by the representation theorem of S. Kakutani, (Rm, - ? , ©) is lattice, alge-

2 <-, •> now denotes the inner product in Rm.
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braically and topologically isomorphic with C(X) for some compact space X.
It is immediate that X consists of precisely m points, with discrete topology, and
so C(X) can be identified with (Rm, = ,̂ ©), giving the required result.

Finally we note that using § 2,6°, (P)° = P*, and so the isomorphism \\i
maps P* onto the positive cone in (Rm, ^ ) . Thus we obtain:

2°. THEOREM. If (G, ^ , II) is an Archimedean ordered tight Riesz group
without pseudozeros, and locally compact, then it is isomorphic in all respects to
(Rm, :g, @)/or some positive integer m.

6. Some examples

Besides the group (Rm, ^ , (£) already discussed, we mention the following.

1°. Let F be the set of all real polynomials on a compact interval in R, say
[0, 1], and write/ > 0 to mean/(?) > 0 for 0 ^ t ^ 1. F is a partially ordered
group. Its pseudopositives are the non-zeio polynomials g for which g(t) ^ 0 for
0 S f ^ 1 and g(t0) — 0 f°r a* least one t0; so Fhas no pseudozeros. Fis a tight
Riesz group; for if/t, f2 < gt,g2 then in C [0,1 ] we have /x v/2 < gl A g2 and a
polynomial can be interpolated strictly between these two functions. Also F is
Archimedean ordered. It is clear that (F, ^ ) is not lattice-ordered; it can bs
shown that (F, = )̂ is a loose Riesz group. F is isolated, for both orderings.

2°. A similar example uses the A>times continuously differentiable functions
on [0, 1 ] in place of the polynomials.

Examples 1° and 2° are adapted from L. Fuchs (1966), § 5.

3°. Let (G, ^ , 11) be a tight Riesz group without pseudozeros, Archimedean
ordered, and such that (G, = )̂ is lattice-ordered. Let T be a compact Hausdorff
space, and write © for the additive group of all continuous functions f:T->G.
Ordered by taking as strict positive cone ^5* = {f:f(t)eP* for all teT), ©
becomes a group having the properties listed above for G. Its open-interval topolo-
gy is the topology of uniform convergence on T. (©, = )̂ is lattice-ordered, and is
therefore a loose Riesz group and isolated with respect to both orderings. The
example is discussed in Miller (1972).

4°. Let (G, ^ , II) bs a tight Riesz group, and M an arbitrary abelian group.
Any group homomorphism K : M -*• G of M into G can be used to define a partial
ordering ^ on M by

x > 0 in M if and only if K(X) > 0 in G.

Suppose that K(M) is topologically (equivalently, orderwise) dense in G. Then:
(i) (M, ^ ) is a tight Riesz group; (ii) The pseudopositives of M are the set
{x # 0: K(X) is pseudopositive or zero}; the pseudozeros of M are the set {x # 0:
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K(X) is pseudozero or zero}; (iii) (M, ^ ) is Archimedean ordered if and only if
(G, :S) is Archimedean ordered; (iv) (M, ^ ) is isolated if (G, ^ ) is isolated;
(v) When M has the open-interval topology, K is a continuous map.
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