ON SOME FORMULAS ABOUT VOLUME AND
SURFACE AREA

MINORU KURITA

We prove in this paper some integral formulas about volume and surface
area which are the extensions of the classical formulas such as Guldin-Pappus’s
theorem about the solid of rotation and the surface of rotation and Holditch’s
theorem about the area of the domains bounded by the loci of three points on
a segment that moves on the euclidean plane. The formulas we prove are so
elementary that they may be found in some literature, but the proofs here
given are very simple by the use of moving frames and I assume that they are
of some interest.

1. The generalization of Guldin-Pappus’s theorem

1.1 Let the volume of a solid M in the »-dimensional euclidean space be
V. We cut the solid M by one-parametric continuously differentiable set of
hyperplanes such that through each point of M o¢ne and only one of the hyper-
planes passes and let v be an n»—1 dimensional volume of the section. We
assume moreover that the locus of the center of gravity of the section of M by
each one of the hyperplanes is a curve with continuous tangents with respect
to the parameter ¢ of the hyperplanes, and let do be an orthogonal component
of an arc element of the locus of the center of gravity of the section to the
normal directicn of the section. Then we have

(1) V= {ods.

Proof. We can take a rectangular frame R’ with an origin A’ at the
center of gravity of the section and #-th fundamental vector e/, on the normal
of the section on the side for which the parameter # of the locus of the center
of gravity increases, in such a way that the set of these frames is continuously
differentiable with respect to . Let the origin of the fundamental rectangular
frame R, be A’ and 7 fundamental vectors be e, . . ., en.

n n
We put A = A"+ D piel, ei =S pije). Let the frame got by translation
i=1 2=1
from R’ along the section be R and its origin and vectors be A, e;, €, ...,
n-1
e:. Then we have A =A'+D)xiel, e; =ei. Now we put
=1
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A? A A
e‘I e{ €
Ry = » R'=} . |» R={| .
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and let the matrices of transformations between them ke £, 7. Then we have
R’ = PE,, R=TR' and hence

(2) R=TPFPR,
where

X1+ Xn-y O

o
O
o

. 0 0 1
The coeflicients w;, w;; of the infinitesimal relative displacement of the motion
of R are obtained as the coefficients of the matrix

(3) d(TPYTP)™ =dT T '+ T(AaPP™H)T™".

Let the infinitesimal relative displacement of R’ be given by dA’f =‘§_‘;m‘e§-, de!

= >inieh. Then m, mi; are the coefficients of dPP™. Calculating (3) we get
F=1

n-1
_ wi = dxi + mi+ > % (i=1...,n=-1)
(4) ne1 77
wn=7tn+21x,‘7rjn.
i=

We denote by dV a volume eclement of the solid M. As ni, mi; are linear differ-
ential forms with a single variable ¢ we get

n-1
dV:-'—' [CD[ T e e (Dn] = [d:ﬁ o o » dx;;—l, 7l'n+ Zixinin].
Since A is a center of the gravity of the section we have

Sx,-dxl...dx,m:O (1=1,...,8-1)

Hence we get (1) when we remark 7, = do.

As a special case we consider a tube. We mean by ‘tube’ a solid bounded
by orthogonal trajectories of one-parametric continuously differentiable set of
hyperplanes and two of the hyperplanes with the assumption that any two of
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the hyperplanes do not intersect each other in the solid. It is well known that
all orthogonal sections are congruent (Cf. [2] p. 117). Our definition of a tube
is different from that of the paper [1]. The volume of a tube is given by

(5) V=ul,

where v is an # —1 dimensional volume of the orthogonal section and / is an
arc-length of the locus of the center of gravity of the section. This is a gener-
alization of Guldin-Pappus’s theorem.

1.2. As to surface area we can not obtain a formula analogous to (1), but
the one analogous to (5) can be obtained. We cut an # — 1 dimensional surface
M by one-parametric set of hyperplanes which have the property stated in 1.1
and let a surface element of M be dS. Then we have

(6) dSz=[w1. . .wn_1]2+[w1. . .wn_gwnjz—{« ve.o+Lw.. .wn]z.

In our case variables xi, . . . ,%n-1, ¢ are not independent contrary to the case
stated in 1.1. xy, .. .,%n-1 are functions of # and 27— 2 variables #;, . . . , %n-2
which determine the position of a point on the hyperplane of the section. If
we denote by attaching o to a differential form the one got by putting ¢ into
a constant, then we have

[dxl. o .dx,._g]§+ e e +[dx;z. o .dxn‘1]§=C(u)2[du1. . .dun—zjz.

As C(u)ldwi. . .dun-2] is a surface element ds of a section of M by a hyper-
plane, we can put

[dxg “ e an—xjo = clds, e e ey [dx: .« e dxn—zjo = Cn-1dS

n=1

where D¢ =1. Hence the right side of (6) with the exception of the first term
=1

is equal to
[[dxl. . .dxn-e]own]2+ oot [[dxz- . -dxn—ljo(ﬂn]z
= [Cn—lds, (011]2 + o +[C1d35 (Un]s:«' EdS, 407112-

Hence (6) can be written as

- . n-1

dS =Tws. . .on1 VP +Uds, mn+ E—%xjn'jnjz.
=

Now we assume M is an n—1 dimensional surface generated by orthogonal
trajectories of one-parametric continuously differentiable set of hyperplanes and

is cut by two of the hyperplanes. Then all the sections are congruent and if
we take a suitable frame with origin at the center of gravity of the section,
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X1, - . . ,%n-1 are functions of z — 2 variables which are independent with ¢ and
moreover we have

mi =0, mij =0 (4, j=1,...,n—1).
Hence we get by virtue of (4) wi=dxi, . . . ,wn—1=d%n—1, hence [w;. . .wn-1]
=0. As the origin is at the center of gravity we have Sx,'ds=0 (z=1,...,
n—1). Thus we obtain dS=[ds, v.]. Integrating this we get
(7) S=sl,

where S is a surface area of M, s is an # —2 dimensional area of the section
and [ is an arc-length of the locus of the center of gravity of the section. This
is a generalization of Guldin-Pappus’s theorem.

1.3 Next we treat the case of spherical space. Let the volume of a solid
M in the n-dimensional spherical space with the radius 1 be V. We cut M by
one-parametric continuously differentiable set of #—1 dimensional spheres of
radius 1 which have the property stated at the beginning of 1.1. Let Rybea
fundamental rectangular frame and R’ be a frame with the ends of first »
fundamental vectors ef, el, ... ,es; on the #n—1 dimensional sphere of the
section. We assume K’ is defined uniquely for each section and let R be any
frame with the ends of e, e, . . . , e;—; on the section. Then putting

0
€ e} €
0 /
e €] (=51
Ry = » R'= » R=
!
€n €n en

too ........... t()n_l 0
T= 2T S tn-1,n-1 O (i = i)
0. iiiiinn.. ..01
The first row of dTT " is of the form (0, ty, . . . , tn-1, 0). Let the parameter

of the sectional # — 1 dimensional spheres be t. Then the coefficients of dPP™},

"
namely =i (4,7=0,1,...,n) when we put del = > e}, are linear differential
2=0

n

forms with a single variable t. If we put de; = >, wijej (wo = w;), wij's are the
2=0

coefficients of d(TP)(TP)™" and we get as in 1.1

Wi=ET (mod.dt, i=1,...,n~-1)

n-1

Wn = 2 tintin.
i=0
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Hence the volume element dV of the solid generated by the endpoint of e is

given by

dV=[w...0nonl=[r1...7n-1, ’gtimn].
Since dv =[r1...7n-1] is a volume element of a section we can write
(8) dV=7§[tidv, ind.

Now we consider the integrals T;:Sl‘idv (z=0,1,...,n—1) over the section.

(To, Ty, . ..,Tx-1) are components of a vector defired by the section and its
length

~

-

{9) w=(TH?"?

1

o

i=

is a geometric quantity attached to the section which ic different from the
volume. As (Ty, Ty, ...,Tr-1) are components of a vector we can put T\
=...=Ts-1=0 by taking R’ suitably. We call a center of gravity of the

section the endpoint of e/. Then we get zszthv, St{dUZO (1=1,2, ...,
n—1). Hence we get by virtue of (8)

(10) V= Swda

where do = mn iS an orthogonal component of an arc-element of the locus of
the center of gravity of the section to the direction of the normal of the sec-
tion. It is notable that w in (10) is not the volume of the section. A tube can
be defined in our space as in 1.1 (cf. [2] p. 117), and a formula V = ! analogous
to (5) can be obtained.

In the special case n = 2 a solid M is a domain on the sphere in the euclidean
space of dimension 3, and we cut M by great circles which do not cut in the
domain M each other. It can easily be verified that the center of gravity of
the arc of section is its middle point and w is a length of a chord corresponding
to the arc. duv is an orthogonal component of an arc element of the locus of
the middle points of the arcs of section to the normal direction of the arc. If
one end of each arc is fixed at O, we have for a spherical area S a well known

formula S= 51/2 PPde where [ is a length of a chord and d¢ is an infinitesimal
angle between two consecutive planes containing the chords and the diameter

of the sphere through O.

1.4 We can obtain a formula analogous to (7) in the spherical case. Let
M be an n—1 dimensional surface in the spherical space of dimension » with
the radius 1 generated by orthogonal trajectories of one-parametric set of the
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7 — 1 dimensional sphere of radius 1 and cut by two of the spheres. Let the

n-1

equation of the n — 1 dimensional sphere be Zt? =1 and the surface ¢lement of

i=0
n-1
the section be dS. We put U; = Stids ({=0,1,...,n—1) and = (33U and
i=0

call a center of gravity the point with (U™, U™, . .., Up-t”') as its
coordinates. Then the surface area S of M is given by

(1D) S=ul

where / is a length of the locus of a center of gravity. The proof is analogous
to that of 1.2

2. Generalized Holditch’s theorem

2.1 Let a straight line move in the »-dimensional euclidean space and let
local parameters of this motion be #:, ... ,#:.-;. We take on this line a point
A and a unit vector e; and let R be a rectangular frame with origin at A and
one of its fundamental vectors e;, . . . ,e, on e;. We take on each line a fixed
point A’ and let R’ bz a frame with A’ as its origin and e!=e; as its vectors.
Then A = A'’+te;, e;=e’, and putting R= TR', R’ = PR,, where R, is a funda-
mental frame, we have R=TPR,. Hence the coefficients w;, w;; of the infini-
tesimal relative displacement of R are given by calculating d(T'P)(TP)~'. Writing
the coefficients of dPP™ as m;, =ij we get as in 1.1

or=m+dt, wi=mni+in; (1=2,....7n).
Hence a volume element dV of the solid generated‘by A is given by

dV="[w:...0d=[m+dt m+1tre, ...,55+tmwin]
=[dtﬂ.‘z. . .7rn:|+2[tdtmgn'3. . .T!'n]+ . o +[tn—xdt7ng. . -7!'171]-

Integrating this for a domain which is a direct product of a segment f<#=
ty+ a and an n-dimensional closed orientable domain D with the local parameters
., . ..,un-1 in the space of all siraight lines as its elements, we get

(12) V=aCi+a'Co+ ...+a"Cn

where we have put
cl :j[ﬂfz- o -7!'n-_|, Cz = 1/252[7[12”3- . -I'l'n], PR ,Cn = 1,/’i'lj[7.'1g. . ~71'1n:],

and V is an algebraic volume of the part swept by the segment fy<t¢ =t 4 a.
Here by an algebraic volume we mean one which is a sum of the volume counted
with the sign according to the orientation of the euclidean space and the orienta-
tion of the parameter space with point (£, %, . . . ,%,-1). Now we assume that
for our motion the other end of a unit vector e; with one end at a fixed point
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covers a domain on a sphere in such a way that its degree of mapping is k.

We take n points P =A’+aie; (=1, ...,n) on this line and assume that
A', P; describe #-dimensional closed surfaces which enclose solids of volume
Vi, Vi respectively. Now we make one more assump:icn, which I hope to be
proved, though difficult for me. The assumption is that the difference of V,
and V; is equal to the algebraic volume of the domain swep: by the segment
A'P;. Then we get by (12)

Vi-Vo=aCi+ ...+a' 'Ch1+aiCn.

Eliminating Ci, . . ., Cu-1 we get

V] et I/o -aI'C,, ax a'f ......... ai’"’
..................................... =0.
Va—Vo—anCn anan. .. an™?
By calculation we get
(13) 20 Villdoi. . . Gi-1idi+1i. « - @ni) = (= 1)"Ch,

where d;; is an oriented distance from P; to Pj and C, = kI,, I, being a volume
of a unit sphere in the n-dimensional space. This is a generalization of Holditch's
theorem. If Vi's (i=1,...,n) are all zero, we have Vo= Cndid. . .dmn. A
volume of an ellipsoid is an example of this formula.

2.2 An analogous formula for the spherical case can be obtained, but it
takes different forms for # even and for # odd. Moreover since Cp is not of
the form kI, in this case we eliminate C», too. Thus in the case n =2 we get

(14) SC-/(dO!dO‘_dO(}) + S}/(dl(d}id:3) + S‘.’/((!ﬁ(dﬂ:diﬂ) + S‘?/(d.‘“daldw) = 0,

where S; is an area bounded by a curve described by a point P; on a moving
great circle, and d; is an oriented length of a chord from P; to Pj, namely
2 7sin (a;j/2). 7 being a rzdius of the circle and «;; being an oriented angle
corresponding to the arc PFj.

3. Some formulas about the area

3.1 Let a triangle A;A:A; move on a euclidean plane and A, be a point
which is relatively fixed to this triangle. Let this motion be represented by a
rectangular frame R = PRy, R being a fundamental frame. Let the coordinates
of A; (=0, 1, 2, 3) with respect to a frame R be (ai, b;). If we represent the
infinitesimal relative displacement of R by dA =mei+ me., dei=mpe:, de;
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= —mpe;, then the coefficients of the relative displacement of R; with A; as
its origin and e;, e; as its vectors are given by

o =m—bite, w:=T2+ Gime, w0 =T,

If the motion of A.A;A:A; is two-parametric, the areal element of the domains
swept by A; is given by

dS = [vw-] = [mi7:] + ailmime] + bl rarmia].
We denote by S; an algebraic area swept by A;. Then we get

Si= S[mm] + aiS[ﬂ'iﬁlz] + biS[ﬂzmz] .

Hence eliminating g[zlﬂgj, S[mm], S[ngmz] we get

'S 1 a

bo‘
Si 1 a b -0
S 1 a bzi— :
'S 1 as bl
This can be written in the form
!§
(15) Z%Sm,- =0

where o¢; is an oriented area of the triangle with the vertices except A;.

3.2 We take a curve on a euclidean plane and denote by s an arc leng:th
from a fixed point on it to an arbitrary point on it and by % a curvature. From
each point of the curve we draw a segment of a length / and let # be an angle
which the segment makes with the tangent of the curve at the point. Then
for an algebraic area swept by the seginen: we get by calculation

(16) dS:SlsinOd —%—Slg(kds—}-do).

We can apply this to the area S bounded by a curve C and a roulette. Here
we mean by a roulette a curve described by a point on a closed curve C,
which rolls on C without slipping and we take into consideration an arc of the
curve corresponding to one circulation of Cy, two ends being on C. Let S, be
an area bounded by Co and k, ky be curvatures of C, C, at the point of contact
which we represent as functions of the common arc length s, while / is a distance
from a point on the rouiette to a corresponding poini of contact. Then by calcula-
tion we get from (16) under a certain assumption

(17) S=Si+ |k~ R)ds.
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Here we assume that the area S; of the domain bounded by C, is swept posi-
tively by a chord drawn from the point on C; at which C, touches C at the
initial state to a point on C, of contact with C at each instant. Especially if
C, is a circle of radius 7, we get

S=3rr" —ar'+ [# cos20-kds,

where the curvature 1/7 of the circle C, is counted positively and the curvature
k of C is of the sign corresponding to that of C,, while a = fk ds is an angle

between the two tangents of C at the both ends.

About the area on the unit sphere we can obtain a formula analogous to
(16). We take notations as in (16) and let § be an angle in which the center
of the gphere commands an arc of a great circle drawn from each point on
the curve. Then we get

(18) S=Ssinafsin0ds——j(l—cona)(kds+dﬁ).
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