
ON SOME FORMULAS ABOUT VOLUME AND
SURFACE AREA

MINORU KURITA

We prove in this paper some integral formulas about volume and surface
area which are the extensions of the classical formulas such as Guldin-Pappus's
theorem about the solid of rotation and the surface of rotation and Holditcrrs
theorem about the area of the domains bounded by the loci of three points on
a segment that moves on the euclidean plane. The formulas we prove are so
elementary that they may be found in some literature, but the proofs here
given are very simple by the use of moving frames and I assume that they are
of some interest.

1. The generalization of Guldin-Pappus's theorem

1.1 Let the volume of a solid M in the ^-dimensional euclidean space be
V. We cut the solid M by one-parametric continuously difrerentiable set of
hyperplanes such that through each point of M one and only one of the hyper-
planes passes and let v be an n — 1 dimensional volume of the section. We
assume moreover that the locus of the center of gravity of the section of Mby
each one of the hyperplanes is a curve with continuous tangents with respect
to the parameter t of the hyperplanes, and let da be an orthogonal component
of an arc element of the locus of the center of gravity of the section to the
normal direction of the section. Then we have

(1) V

Proof. We can take a rectangular frame Rf with an origin A' at the
center of gravity of the section and n-th fundamental vector ef

n on the normal
of the section on the side for which the parameter t of the locus of the center
of gravity increases, in such a way that the set of these frames is continuously
differentiable with respect to t. Let the origin of the fundamental rectangular
frame RQ be A0 and n fundamental vectors be e?9 . . . , e«.

n n

We put A' = A0 H- Σi>/e/, e! = 'Σpije}. Let the frame got by translation
i - 1 j = 1

from Rf along the section be R and its origin and vectors be A, βi, β2, . . . ,

en. Then we have A = A'-f Σ ^ ί , e/= e' . Now we put
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and lei the matrices of transformations between them be P3 T. Then we have
R> = PRQ, R = Γ^' and hence

(2) # :

where

( 1 Pi- - Pn)
0

o (A/)

V 0

0 1

{ 0

«-I 0 1

1 )

The coefficients a>, , ωij of the infinitesimal relative displacement of the motion

of R are obtained as the coefficients of the matrix

(3) d{TP)(TP)'x =

Let the infinitesimal relative displacement of R9 be given by dAJ ~ Σ îβί, t/e!
« <-i

= Σπι/eJ. Then 7r,'9 τrι> are the coefficients of dPP~ι. Calculating (3) we get

(4)
(ί = 1, Λ — 1)

We denote by dV a volume element of the solid Λί. As 7r, , 7r/y are linear differ-

ential forms with a single variable i we get

Since A is a center of the gravity of the section we have

\Xidxi. . . & - i = 0 (/=1, . . . , w —1)

Hence we get (1) when we remark πn~dσ»

As a special case we consider a tube. We mean by 'tube' a solid bounded
by orthogonal trajectories of one-parametric continuously differentiable set of
hyperplanes and two of the hyperplanes with the assumption that any two of
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the hyperplanes do not intersect each other in the solid. It is well known that

all orthogonal sections are congruent (Cf. [2] p, 117). Our definition of a tube

is different from that of the paper 0.]. The volume of a tube is given by

(5) V=υl,

where v is an n — 1 dimensional volume of the orthogonal section and / is an

arc-length of the locus of the center of gravity of the section. This is a gener-

alization of Guldin-Pappus's theorem.

1.2. As to surface area we can not obtain a formula analogous to (1), but

the one analogous to (5) can be obtained, We cut a n w - 1 dimensional surface

M by one-parametric set of hyperplanes which have the property stated in 1.1

and let a surface element of M be dS. Then we have

(6) dS = L.CL?I <» (ΰn—lΛ "f* l_£tfl (On-'Z&nJ ~h » ~h L&J2 . ΦnJ .

In our case variables xl9 . . . , xn-u t are not independent contrary to the case

stated in 1.1. xίf . . . , χn-i are functions of t and n - 2 variables uι, . . . , un~z

which determine the position of a point on the hyperpϊane of the section. If

we denote by attaching o to a differential form the one got by putting t into

a constant, then we have

As C(ύ)Zduι. . .dun-il is a surface element ds of a section of M by a hyper-

plane, we can put

n-l

where *Σcl = 1. Hence the right side of (6) with the exception of the first term

is equal to

Hence (6) can be written as

n-l
2dS2 = Cα)i. . . ωΛ-J2 4- ids, πn

Now we assume M is an n - 1 dimensional surface generated by orthogonal

trajectories of one-parametric continuously differentiable set of hyperplanes and

is cut by two of the hyperplanes. Then all the sections are congruent and if

we take a suitable frame with origin at the center of gravity of the section,

https://doi.org/10.1017/S0027763000017049 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017049


112 MINORU KURITA

Xi, . . . ,xn-i are functions of n-2 variables which are independent with t and
moreover we have

7Γ, = 0, π tj = 0 (t, y = 1, . . . , Λ - 1).

Hence we get by virtue of (4) ωι = dxι, . . . , ωn~i = dxn-i, hence [ωi. . . ωn-{]

= 0. As the origin is at the center of gravity we have \xids-0 (/ = ! , . . . ,

« —1). Thus we obtain dS-Lds, ωnl. Integrating this we get

(7) S = sl,

where S is a surface area of M, s is an n - 2 dimensional area of the section
and / is an arc-length of the locus of the center of gravity of the section. This
is a generalization of Guldin-Pappus's theorem.

1.3 Next we treat the case of spherical space. Let the volume of a solid
M in the ^-dimensional spherical space with the radius 1 be F. We cut M by
one-parametric continuously differentiable set of n — 1 dimensional spheres of
radius 1 which have the property stated at the beginning of 1.1. Let i?0 be a
fundamental rectangular frame and R1 be a frame with the ends of first n
fundamental vectors eί, eί, . . . , e«-i on the n — l dimensional sphere of the
section. We assume R1 is defined uniquely for each section and let R be any
frame with the ends of eo, ei, . . . , en-ι on the section. Then putting

RQ —

we get Ri = PRQ, R=TRf and hence R=TPRo, where T is a matrix such that

θ fθn-1 0

eί

' R' =

ί e » Ί
eί

' R =

' e 0 *
e x

•

e«

τ= tn-io tn-i, n-i 0

0 0 1

The first row of dTT 1 is of the form (0, n, . . . , rn~u 0). Let the parameter
of the sectional n~\ dimensional spheres be t. Then the coefficients of dPP'\

n

namely πij (/,./ = 0 ,1 , . . . ,n) when we put de'i = Σπr/yey, are linear differential
j = 0

n

forms with a single variable ί. If we put <ie, = Σ ωiyey (α?oί = ωi), ω, /s are the
3 = 0

coefficients of d(TP){TP)~1 and we get as in 1.1

(ύi = r, (mod. dt9 i = l, . . . ,n — l)
n-l

i=o
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Hence the volume element dV of the solid generated by the endpoint of e0 is
given by

dV'= [an . . . ωn~iωnl = En . . . Γn-1, Σ t e « ]
< = o

Since dv = [ri. . - r«-i] is a volume element of a section we can write

(8) dV "ib

Now we consider the integrals T; = lίίώ; U = 0, 1, . . . ,n — l) over the section.

(To, Ti, . . . , T?ι-i) are components of a vector defined by the section and its
length

( 9 ) PJ:

is a geometric quantity attached to the section which iε different from the
volume. As (To, Ti, . . . ,Tn-ι) are components of a vector we can put T\
= . . . = Tn-i — 0 by taking Rf suitably. We call a center of gravity of the

section the endpoint of e{. Then we get tv=\Udv9 \tidv = 0 (/=1, 2, . . . ?

n - 1 ) . Hence we get by virtue of (8)

(10) 1

where da — TΓOΛ is an orthogonal component of an arc-element of the locus of
the center of gravity of the section to the direction of the normal of the sec-
tion. It is notable that w in (10) is not the volume of the section. A tube can
be defined in our space as in 1.1 (cf. [2H p. 117). and a formula V - tvl analogous
to (5) can be obtained.

In the special case n = 2 a solid Mis a domain on the sphere in the euclidean
space of dimension 3, and we cut M by great circles which do not cut in the
domain M each other. It can easily be verified chat the center of gravity of
the arc of section is its middle point and w is a length of a chord corresponding
to the arc. dσ is an orthogonal component of an arc element of the locus of
the middle points of the arcs of section to the normal direction of the arc. If
one end of each arc is fixed at O, we have for a spherical area S a well known

formula S= \l/2 l2dψ where / is a length of a chord and dφ is an infinitesimal

angle between two consecutive planes containing the chords and the diameter
of the sphere through O.

1.4 We can obtain a formula analogous to (7) in the spherical case. Let
M be an n — 1 dimensional surface in the spherical space of dimension n with
the radius 1 generated by orthogonal trajectories of one-parametric set of the
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n — l dimensional sphere of radius 1 and cut by two of the spheres. Let the

equation of the n — 1 dimensional sphere be Σf? — 1 and the surface element of

i n—I

tids (i = 0, 1, . . . , n - 1) and u = ( Σ ϋl)1/3 and
< = o

call a center of gravity the point with {U^u'1, UΊu~\ . . . , Un-ιu~y) as its
coordinates. Then the surface area 3 of M is given by

(11) S = td

where / is a length of the locus of a center of gravity. The proof is analogous
to that of 1.2.

2. Generalized Holditch's theorem

2.1 Let a straight line move in the ^-dimensional euclidean space and let
local parameters of this motion be uι, . . . , Un-ι. We take on this Yme a point
A and a unit vector e} and let R be a rectangular frame with origin at A and
one of its fundamental vectors ei, . . . ,e» on ei. We take on each line a fixed
point A' and let Rf be a frame with A' as its origin and ef = e, as its vectors.
Then A = A' + tei, e, = ej, and putting R=TRf, Rf = PR», where R, is a funda-
mental frame, we have R=TPRQ. Hence the coefficients ω;, ωij of the infini-
tesimal relative displacement of R are given by calculating d( TP)(TP)'1. Writing
the coefficients of dPP'1 as mt mj we get as in 1.1

COi = 7Γl + dt, ωi = 7Γf -f ί7Γiι ( / = 2, . . . , W ) .

Hence a volume element dV of the solid generated by A is given by

d V - ίωi . . . (Onl = C^i + Λ , 7Γ2 4* f7Γi?, . . , Kn + ί7Γl«D

= Cί/ί 7Γ2 . . . 7Γ/J + Σ C ί ί f ί 7Γ127Γ3 - - . 7Γ«] + . . . . + C ί " " dt 7Γl2 . . 7Γln] .

Integrating this for a domain which is a direct product of a segment U^.t^
UΛ-a and an /^-dimensional closed orientable domain D v/ith the local parameters
#i, . . . , #»-i in the space of all straight lines as its elements, we get

(12) F

where we have put

, Cn - l/ 'Λj [>12

and F is an algebraic volume of the part swept by the segment U^t^UΛ-a.
Here by an algebraic volume we mean one wrhich is a sum of the volume counted
with the sign according to the orientation of the euclidean space and the orienta-
tion of the parameter space with point (t,uι, . . . ,un-\). Now we assume that
for our motion the other end of a unit vector ei with one end at a fixed point
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covers a domain on a sphere in such a way that its degree of mapping is k.

We take n points P, = A' + tf ei (i=l, . . . ,n) on this line and assume that

A', Pi describe ^-dimensional closed surfaces which enclose solids of volume

VQ9 Vi respectively. Now we make one more assumption, which I hope to be

proved, though difficult for me. The assumption is that the difference of Vΰ

and Vi is equal to the algebraic volume of the domain swept by the segment

A'Pi. Then we get by (12)

Eliminating Cι, . . . , Cn-i we get

i Vi-Vi-tfC aιa\ aTι

\ =0.

ί~lVn — VQ — άnCn dn d'n θίι

By calculation we get

(13) Σ Vi/(doi. . .di-iidi + U. .dni) = ( - lY'Cn,
/ = o

where dij is an oriented distance from Pi to Pj and Cn — kin, In being a volume

of a unit sphere in the ^-dimensional space. This is a generalization of Holditch's

theorem. If Vfs (f = 1, . . . ,n) are all zero, we have Fo = Cndiod2o. . .dn*. A

volume of an ellipsoid is an example of this formula.

2.2 An analogous formula for the spherical case can be obtained, but it

takes different forms for n even and for n odd. Moreover since Cn is not of

the form kln in this case we eliminate Cn, too. Thus in the case n — 2 we get

(14) So/(tfoirfoA) 4- Sj(dκdvidιz) + S>/(dzcd2:d:z) + &/(AcAirfω) = 0,

where Si is an area bounded by a curve described by a point Pi on a moving

great circle, and dj is an oriented length of a chord from Pi to Pj, namely

2r sin (α y/2), r being a radius of the circle and an being an oriented angle

corresponding to the arc

3. Some formulas about the area

3.1 Let a triangle AiA jAs move on a euclidean plane and Ao be a point

which is relatively fixed to this triangle. Lee this motion be represented by a

rectangular frame R = PRQ, Ro being a fundamental frame. Let the coordinates

of Ai ( ί - 0 , 1, 2, 3) with respect to a frame i? be (a, bi). If we represent the

infinitesimal relative displacement of R by dA = zriei + "2e2, dei — /Ti2e2, <iê
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= — 7Γi2ei? then the coefficients of the relative displacement of Ri with A/ as

its origin and eJ? e2 as its vectors are given by

ίOi = 7Γl — bi7ΐi29 0)> = 712 4~ 0f'7Γi2, G>12 = 7Γl2 •

If the motion of A0A1A2A3 is two-parametric, the areal element of the domains

swept by A/ is given by

— C7Γ17Γ2II 4- Λ/[τri7ri2] + #£7:27:12]

We denote by S, an algebraic area swept by Ai. Then we get

Si = \ ZπiTzzl -f a\ [7Γί/τ12Il + bMjτzπvJί.

Hence el iminating j[7Γi7r2], J [7:17:12], jDr-Tn*] we get

50 1 #0 bo
51 1 cti bι
O2 1 02 #2 !

S3 1 an bi [

This can be written in the form

(15) Σ S w = 0

where <r/ is an oriented area of the triangle with the vertices except Ai.

3.2 We take a curve on a euclidean plane and denote by s an arc length

from a fixed point on it to an arbitrary point on it and by k a curvature. From

each point of the curve we draw a segment of a length / and let 6 be an angle

which the segment makes with the tangent of the curve at the point. Then

for an algebraic area swept by the segment we get by calculation

(16) dS= [lsin θds- ~[?(kds + dθ).

We can apply this to the area S bounded by a curve C and a roulette. Here

we mean by a roulette a curve described by a point on a closed curve Co

which rolls on C without slipping and we take into consideration an arc of the

curve corresponding to one circulation of Co, two ends being on C. Let So be

an area bounded by Co and k, ko be curvatures of C, Co at the point of contact

which we represent as functions of the common arc length s, while / is a distance

from a point on the roulette to a corresponding point of contact. Then by calcula-

tion we get from (16) under a certain assumption

(17) S
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Here we assume that the area So of the domain bounded by Co is swept posi-
tively by a chord drawn from the point on Co at which Co touches C at the
initial state to a point on Co of contact with C at each instant. Especially if
Co is a circle of radius r, we get

S - 3 πr2 - ar2 + jr 2 cos 2 θ kds,

where the curvature 1/r of the circle Co is counted positively and the curvature

k of C is of the sign corresponding to that of Co, while a = \k ds is an angle

between the two tangents of C at the both ends.
About the area on the unit sphere we can obtain a formula analogous to

(16). We take notations as in (16) and let θ be an angle in which the center
of the sphere commands an arc of a great circle drawn from each point on
the curve. Then we get

(18) S = J sin a sin θds - j (1 - con a)(k ds + dθ).
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