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Vertical chutes and pipes are a common component of many industrial apparatus used
in the transport and processing of powders and grains. Here, a typical arrangement is
considered first in which a hopper at the top feeds the chute and a converging outlet at
the bottom controls the mass flux. Discrete element method (DEM) simulations reveal
that steady uniform flow is only observed for intermediate flow rates, with jamming
and unsteady waves dominating slow flows and non-uniform wall detachment in fast
flow. Focusing on the steady uniform regimes, a progressive idealisation is carried out
by matching with equivalent DEM simulations in periodic cells. These investigations
justify a one-dimensional continuum modelling of the problem and provide key test data.
Novel exact solutions are derived here for vertical flow using a linear version of the
‘μ(I), Φ(I)-rheology’, for which the bulk friction μ and steady solid volume fraction Φ

depend on the inertial number I. Despite not capturing the full nonlinear complexities, the
solutions match important aspects of the DEM flow fields and reveal simple scaling laws
linking many quantities of interest. In particular, this study clearly demonstrates a linear
relation between the chute width and the size of the shear zones at the walls. This finding
contrasts with previous works on purely quasi-static flow, which instead predict a roughly
constant shear zone width, a difference which implies that finite-size effects are minimal
for the inertial flows studied here.
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1. Introduction

One of the defining features of granular materials is their so-called static yield stress, which
means that sufficient forcing is required for irreversible plastic flow to occur. This feature is
thought to underpin the stationary stability of many aggregates with inclined surfaces, such
as hillsides, sand dunes and gravel heaps. Understanding the boundaries between yielding
and static material is also vital when failure does occur. Debris flows, snow avalanches and
pyroclastic density currents have greater destructive potential when a larger proportion of
material is involved in dense fluid-like flow, so any model for their prediction must be able
to capture this aspect. Here, discrete particle simulations are used to test a mathematical
theory for granular flow in order to illuminate general features of the solid-like to fluid-like
transition. A simple prototypical geometry is considered in which hard spherical grains,
falling due to gravity, are confined between frictional vertical sidewalls. Pertinently, a
steady flow regime is identified in which a region of approximately unyielding material
coexists with surrounding regions containing fast flowing grains. Provided that the mean
grain packing density is below jamming but above the threshold for dense flow, fluid-like
shear zones are found close to the walls and a high-density creeping plug occupies the
centre of the pipe. This flow structure is present in multiple geometries suggesting that the
underlying physical basis is important for a wide range of related flows.

Motivation for the present study also comes from the industrial flow of powders and
grains in standpipes, hoppers and silos. Not only is the vertical chute of interest as a purely
rheometric device, it is a common and important component of many practical apparatus.
As such, the first investigation presented here is the flow in a standpipe connecting two
hoppers, which, for example, is a common configuration in catalysis (Geldart & Radtke
1986), pebble-bed (Rycroft et al. 2006) and fluidised bed reactors (Srivastava et al. 1998).
In this arrangement the upper hopper feeds the standpipe which then transports material to
the outlet hopper at the bottom. In practise, provided there is sufficient supply at the top,
the opening angle and length of the outlet hopper walls are the primary control parameters
for the mass flux and hence for the observed dynamics. Here, attention will be limited
to outlet hoppers which lead to a long-time steady uniform dynamics. This class of flow
within conical hoppers is well studied, both experimentally (see e.g. Nedderman et al.
1982; Knowlton, Mountziaris & Jackson 1986) and theoretically (Jenike 1964; Gremaud,
Matthews & Shearer 2000; Sun & Sundaresan 2013). Therefore, in the present study,
the outlet hopper is simply taken as a flux-control device leaving the focus here on the
standpipe flow.

Due to its geometric simplicity, there are many previous works describing flow in
vertical chutes. However, certain key features of the present study make our findings and
analysis distinct. Firstly, the conical outlet hopper contrasts certain experimental set-ups
(e.g. Nedderman & Laohakul 1980; Moka & Nott 2005) which have instead used a variable
width orifice located in the centre of a flat basal wall. This arrangement naturally leads to
non-uniform flow because the effects of matching with the outlet flow are observed for
a considerable distance into the pipe, an aspect which is minimised by the converging
outlet. Secondly, many previous studies (e.g. Pouliquen & Gutfraind 1996) report a slip
velocity along the sidewalls whereas here sufficiently rough walls, made from fixed
particles, are used in order to suppress slip. This is done due to the known complexities
of constitutive modelling with smooth walls (see Shojaaee et al. (2012) for a discussion).
These distinctions lead to flow in the shear zones classified as ‘inertial flow’ in the spirit
of the regime distinctions outlined by Chialvo, Sun & Sundaresan (2012) in which packing
density, strain rate and coordination number lie between the limits of quasi-static and dilute
flows.
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Figure 1. A snapshot of a two-dimensional DEM simulation in which the circular outlines of the flowing
grains are coloured by their coordination number Z and the fixed wall particles are rendered with a black
outline. Gravity points downwards and vectors of the contact forces are plotted as centre-to-centre lines with
line widths scaled by force magnitude. A movie animation is available (see supplementary movies are available
at https://doi.org/10.1017/jfm.2021.909).

A demonstration of the novel structure of the vertical flow is provided in figure 1. This
two-dimensional example makes clear the distinction between the inertial flow in the shear
zones and the quasi-static flow in the central plug. In this simulation, and throughout this
paper, the DEM ‘discrete element method’ (Cundall & Strack 1979), as implemented in
the LAMMPS software (Plimpton 1995), is employed. Broadly speaking, the motions of
many grains are computed directly given accelerations due to body forces and contact
forces. Flow is driven by gravity and a Hookean spring force, with a large stiffness, acts
normally at the point of grain contacts along with a dissipative force that is proportional to
the relative velocity. A complementary tangential force is also included in order to mimic
Coulomb-type friction at the grain surfaces. DEM simulations allow flow fields and forces
to be resolved at all times, measurements which are very difficult to achieve in physical
experiments. In the illustrative example in figure 1 the domain is periodic in the gravity
direction y and flow is confined between walls of frozen black particles. Flowing particles
are coloured by the number of contacts they are currently making, the coordination number
Z, and the resultant force vectors are plotted as centre-to-centre lines. This simulation
snapshot effectively defines the inertial-dominated flows of interest in this paper because
the mean value of Z in the shear zones is below the critical value Z2D

c � 3.4 defined by
Otsuki & Hayakawa (2011) and Kruyt & Rothenburg (2014) and the contact network is
rearranging quickly. In the central plug, the contact number is above critical, placing the
flow there in the locally quasi-static regime with a force network that is long lived and
much more regular.

Outside the range of inertial-dominated flows lie dilute flows, when the mass flow
rate is high, and fully quasi-static regimes, for slow flows at low flux. Raafat, Hulin &
Herrmann (1996) showed that non-uniform transient pulses dominate the dilute regime in
long pipes and here a separation of the flow from the sidewalls is also observed. Gutfraind
& Pouliquen (1996) studied the opposite regime of fully quasi-static flow using a basal
plate that moved slowly downwards to enforce a creeping flow. Their results exhibit large
packing fractions and a highly connected contact network throughout the system, even in
the shearing regions. Intriguingly, this state cannot be replicated in either periodic cells or
in the hopper-controlled set-up considered here as both approaches lead to a jammed static
assembly. However, significant transient pulses are observed here even before this jamming
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limit is reached. These findings demonstrate that the favourable steady uniform regimes
crucially rely on the shear zones being in the inertial regime. This feature is exploited
here both via further idealisations of the DEM modelling as well as through continuum
modelling.

As suggested by the illustrative simulation shown in figure 1, the steady flow in a
standpipe between two hoppers can be well approximated by the flow in a periodic cell.
Here, this non-trivial step is first realised by directly extracting a section of pipe from
the full three-dimensional hopper-controlled set-up and placing it in a periodic simulation
domain. Because the long-time dynamics is very close to the initial conditions, the role of
the hoppers is found to be limited to setting the flow rate only. For the periodic cells, this
means that the mean solid volume fraction is the only remaining parameter controlling the
flow regime. In addition to rough planar-parallel walls, flows in cylindrical pipes are also
considered here. These periodic simulations are also fully three-dimensional, with walls
constructed from particles frozen in an axisymmetric annulus, and provide a key additional
test case to assess the robustness of the vertical flow features.

Due to a close match between full hopper-controlled DEM simulations and those in
equivalent periodic cells, a further novel idealisation is made here. A cubic domain is
introduced in which all of the walls are periodic with their opposites. Vertical chute flow
is then replicated by subjecting particles in one half of the domain to an upward-pointing
gravitational force, and those in the other half to a downward force of the same magnitude.
These conditions generate a counter-flow, which at steady state is found to give zero
vertical velocity at the sidewalls and mid-point and leads to an approximate equipartition
of particles in each half of the domain, despite their freedom of motion. This has many
advantages and overcomes certain limitations inherent in many previous related studies.
As well as the difficulties of constitutive modelling close to rigid boundaries, there are
also complexities which arise when coarse graining the DEM fields to generate continuum
fields (see Weinhart et al. 2012). Furthermore, precise control of the mean solid volume
and chute width can be achieved due to the geometrically regular, rather than bumpy, flow
region.

Progressive close matching of the DEM results between each of the geometries forms
an unbroken link between realistic flow and the idealisations required for mathematical
analysis. The major result of this paper is then the derivation of exact solutions for the flow
within the shear zones, close to the pipe walls, in both parallel and cylindrical geometries.
These novel continuum solutions are based solely on mass and linear momentum balances
using the μ(I),Φ(I)-rheology of Pouliquen et al. (2006). In this theory, both the steady
solid volume fraction Φ and the ratio of shear to normal stress μ are taken to be
functions of the inertial number I, which is a non-dimensional strain rate designed to
reflect the frequency of grain rearrangements. These relations are well verified for many
important flows (see GDR MiDi 2004), but, to date, more attention has been applied to
the incompressible μ(I)-rheology of Jop, Forterre & Pouliquen (2006) in which Φ = φ∗
is a constant. This limitation of the incompressible theory actually prohibits application to
vertical pipe flow as no unique pressure solution exists. As in the DEM simulations, the
mean solid volume fraction φ0 is the key parameter controlling the steady flow in a given
pipe, making the Φ(I) relation a reassuring closure for the problem formulation.

Given the exact solutions for the variation of vertical velocity and solid volume
fraction across the chute, simple scaling laws are established which link all of the control
parameters to the resulting bulk flow. In particular, inputting φ0 and the chute width W
gives the pressure, mass flux and shear zone width δ. Conversely, these relations can be
easily inverted to find the mean packing density, velocities and pressures in a pipe that is
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ρ∗ = 1 g = 1 d = 1 μp = 0.5
kn = 2 × 105 kt = 2kn/7 γn = 50 γt = γn/2

Table 1. Parameters used in the discrete particle simulations.

subject to a fixed mass flow rate. The duality in this regard, as well as parallels between
cylindrical and rectangular pipes, suggests a universality of the relations and inspires direct
application in practical scenarios.

2. Discrete particle simulations

The DEM is employed here to provide data for model comparison and hypothesis testing.
Specifically, the LAMMPS software (Plimpton 1995) is used to simulate the motion
and interactions of many spherical grains. As described in table 1, idealised systems
of perfectly monodispersed particles of unit diameter d and intrinsic density ρ∗ are
considered here. Contact laws, which mediate interactions, and the related parameters
are taken from Silbert et al. (2001) because they have been found to replicate many
experimental results, such as granular flow down a frictional inclined plane (see GDR
MiDi (2004) for a summary). The normal contact force consists of a Hookean linear
spring, with stiffness kn, compressed by the normal overlap distance, and a dissipative
dashpot, with damping γn, which scales linearly with the relative normal velocity and
particle mass. Tangential forces, with parameters denoted with subscript t, follow a
similar arrangement, but with accumulated horizontal displacement being used in place
of the overlap. Grain surface friction is then replicated by truncating this tangential force
by the normal force scaled with μp i.e. a grain-scale Coulomb yield criteria. A fixed
timestep δt = 1 × 10−4 and constant gravitational acceleration magnitude g are used in all
simulations presented here. All DEM data will be presented as coarse-grained continuum
fields, as described in appendices A and B, unless stated otherwise.

2.1. Flow in the standpipe connecting two hoppers
As shown in figure 2, the DEM study begins with simulations of a hopper-fed vertical
pipe with a converging bottom outlet, with each component being constructed from pairs
of planar walls. The upper feed hopper has two flat walls of length Lin = 121d opening
with angles θin relative to the horizontal axis and joining the top of the pipe at y = 0.
The lower outlet is also composed of two flat walls converging with angles θout and has a
fixed drop-height Lh = 50d. This outlet attaches to the bottom of the parallel chute walls
which are located at x = 0 and x = W for y ∈ [0, Lp], where length Lp is the pipe length.
Unlike the hopper walls, the walls of the chute are geometrically roughened by affixing
particles which remain static throughout the simulation. These frozen wall particles,
which are otherwise identical to the flowing particles, do not overlap with one another
and have centres approximately uniformly randomly distributed in x ∈ [−d/2, d/2] and
x ∈ [W − d/2, W + d/2]. Periodic walls are placed in the third direction z ∈ [0, Lz] where
Lz = 10d is chosen to minimise computational expense whilst allowing the flow to be
fully three-dimensional. Provided that sufficient inflow is available at the top, the primary
parameters controlling the mass flux out of the system are θout and W, which in turn set
the outlet opening width Δ.
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Figure 2. DEM particles coloured by vertical velocity in the hopper-controlled set-up after a steady circulating
flow has been established. Here, the frozen particles which make up the wall have been rendered translucent
black, as have the hopper walls. This example is for a chute width W = 30d, depth Lz = 10d and with a short
pipe length Lp = 200d, chosen for illustrative purposes. The upper inflow hopper opens with angle θin = 65◦
whereas the lower outflow hopper has θout = 80◦ giving an outlet opening Δ = 12.5d. It should be noted that
the velocity scale is limited in panel (b) to better contrast the spread of velocities within the chute. (a) Full
simulation, (b) close-up view of the steady flow region and (c) close-up view of the outflow region.
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Figure 3. Snapshots of the fully developed flow in hopper-controlled systems with substantially different outlet
opening angles. Note that the plotting axes have been rotated by 90◦ to aid illustration. A complementary movie
animation is provided to illustrate the unsteady pulsing observed, in particular for the slow and fast flows shown
in panels (a) and (c), respectively.

To initialise the flow in the hopper system, the full geometry, including the pipe walls, is
first constructed from impenetrable planar panels. The lower hopper is also blocked with
an additional wall spanning the outlet. Particles are inserted randomly into this enclosed
domain and allowed to settle, ensuring that a sufficient portion is filled. The pipe walls are
then formed by freezing in place the particles within the thin wall regions, as illustrated
by the black grains in figure 2. Subsequently removing the wall blocking the outlet then
starts the gravity-driven flow. This set-up would naturally drain the initial finite mass
of the system, leading to related transient effects. Instead, two methods of replenishing
material in the upper feed hopper were explored. Firstly, fresh material was added by
randomly placing new grains above the top free surface whilst material leaving the outlet
was deleted. This worked well, but required tuning the rate of input to match the outlet flux.
To overcome this, the domain was instead made periodic in the vertical direction such that
material leaving the bottom outlet re-entered the domain just above the surface of the upper
hopper material. As shown in figure 2, this set-up reaches a steady recirculating state that
is approximately symmetric about x = W/2.

Despite this symmetry in the cross-pipe direction, there is potential for much
non-uniformity and unsteadiness in the downstream direction, as detailed in figure 3. For
very narrow openings there is the possibility of jamming the outlet, either irreversibly or
quasi-periodically, as has been widely studied in many granular systems (To, Lai & Pak
2001; Zuriguel et al. 2005). Here, a snapshot is plotted in panel (a) of figure 3 of an
outlet which is narrow but which does not jam irreversibly. In this case the velocity field
and flow rate is clearly unsteady and non-uniform throughout the system. Panel (c) in the
same figure demonstrates that, in the opposite extreme, the fast flow rates caused by wide
outlets may be steady in the laboratory frame but non-uniform in the flow direction. In
this case the flow accelerates and detaches from the pipe walls generating a dense fast
core surrounded by a very dilute gas. In the present work, the focus will be on the fully
steady regions of intermediate flows, for example the one observed in panel (b) of figure 3,
which is equivalent to the set-up detailed in figure 2. Experimentation with the opening
angle reveals that such flows exist in the approximate range 77◦ � θout � 83◦, hence the
remainder of this paper will focus on these regimes.

For set-ups tuned to generate an approximately steady uniform region, the noteworthy
downstream trends which are summarised in figure 4 for a range of examples. As shown
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Figure 4. Variation of the flow along the vertical pipe for three different outlet openings θout. Here, the
remaining parameters are the same as in figure 2 except that a longer pipe Lp = 450d is used. The maximum
vertical velocity (a), the maximum solid volume fraction (b), the mass flux (c) and the mean value of the
pressure (d) are plotted as functions of the vertical coordinate. Dotted curves in panel (a) indicate the range
whereas the solid curves are the time-averaged values. For clarity, only the averaged values are given in the
other plots. Vertical black dashed lines indicate the proposed steady region which is transferred to the rigid
periodic cells. In panel (b) the random close packing φrcp fraction is indicated by a red horizontal dashed line.

in panel (c) of figure 4, the max flux

QM = ρ∗Lz

∫ W

0
v(x)φ(x) dx, (2.1)

is strongly dependent on the outlet opening angle θout and is effectively uniform throughout
the system. However, as shown in panels (a), (b) and (d), this constant flux of grains is
achieved by a subtly varying flow in which the velocity, volume fraction and pressure
slowly vary down the chute. These variations appear to reach a limiting asymptotic state in
the range of y that is bounded by the vertical dashed lines. The lack of significant pressure
variation in the steady region of the pipe makes this flow distinct from the linear lithostatic
variation observed in inclined plane flow. Known as the ‘Janssen effect’ (Janssen 1895),
this signifies that the wall stress accommodates the weight of flowing material. Here, the
maximal values of φ and v, which are located close to the chute centre x = W/2, are also
approximately constant with max(φ) close to random close packing φrcp. It is also these
regions for which the temporal fluctuations close to the inflow, indicated by the dashed
range in panel (a), are almost negligible. A closer study of these regions will be the focus
of the next section.
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y

x

0 W 2W

Figure 5. A schematic diagram of the doubly wide fully periodic cell with counter-flow. Here, the vertical
periodic boundary is denoted as dot-dashed lines and the horizontal as dashed lines. The regions of downward-
and upward-pointing gravity vectors are shaded to distinguish them.

2.2. Approximation by vertical flow in a periodic cell
Here the full hopper-fed flux-controlled set-up is reduced to one-dimensional flow by
matching with smaller periodic cells. To achieve this conversion the section of pipe in
which the flow is approximately uniform downstream is copied and placed into a domain
in which the vertical y direction is periodic. In essence this allows for the continuation
of the flow development that would take place in a very long pipe. Indeed, the trends
already observed in the full system, that the velocity increases and that particles migrate
to the centre, are smoothly continued in these simulations. This allows for the long-time
asymptotic steady state to be approximately realised, one which can be compared with
time-independent solutions of the proposed equations. However, as will be seen during
the model development, such steady solutions are sensitive to both the mean solid volume
fraction φ0 and the width of the chute W. Because the walls of the pipe are constructed
from frozen particles, which are irregularly spread over a range of x at each wall, both the
width and total volume that the flowing particles occupy are subject to uncertainties.

An alternative idealisation of vertical chute flow is made here which allows for precise
control of the parameters φ0 and W and also guarantees that steady flow is accompanied
by no slip at the sidewalls. This is achieved through a doubly wide domain containing
two equally partitioned counter-flowing regions. This geometry is perfectly cubic with
dimensions x ∈ [0, 2W], y ∈ [0, Ly] and z ∈ [0, Lz], and each boundary face is periodic
with its opposite. A counter-flow, which represents two simultaneous vertical chute flows,
is then driven by an asymmetric gravitational body force such that

g =
{

gŷ for 0 ≤ x < W,

−gŷ for W ≤ x < 2W,
(2.2)

where ŷ is the unit vector in the vertical direction and g is the gravitational acceleration
magnitude, as shown in figure 5. Because of the exact asymmetry in x of this arrangement,
equilibrium states have equal mass in each half of the domain and no net flux in y. This
therefore forces the average vertical velocity to be zero at the outer edges x = 0, 2W and
at the centre x = W, which demarcates the two flows. This counter-flow arrangement was
recently employed by Kim & Kamrin (2020) for hard granular material and previously by
Chaudhuri et al. (2012) for soft jammed particles.

After a sufficiently long time, the periodic flows reach time-independent steady states.
The averaged flow fields, as they vary across the chute, are plotted in figure 6 alongside
the starting flows from the full hopper-fed set-up. The symmetry about x = W/2 is
immediately clear as is the similarity in the spatial variation of the fields for each
case. The principal evolution which happens between the hopper-fed initial condition
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Figure 6. Progressive idealisation of the geometry. A comparison between flows within the pipe for the full
set-up and with equivalent long-time flows in periodic cells. Diamonds are the hopper-fed data, circles the
rigid-walled periodic cells and the solid lines are the doubly wide fully periodic data. Panel (a) is the solid
volume fraction, varying across the chute, whereas panel (b) is the velocity. All cases are identical apart from
the mass flux, which varies due to different outlet opening angles θout. Error bars in panel (b) indicate the
change in maximal velocity when the mean solid volume fraction is changed by ±1 % in the fully periodic
cells. Horizontal dashed lines in (a) are the critical packing φc, in black, and random close packing φrcp in red.

and the long-time periodic states is the slow migration of particles towards the centre.
This redistribution of mass is accompanied with a slow overall acceleration, leading to
faster velocities for all x. Whilst this is a subtle effect, the precise value of the volume
fraction, particularly close to the walls, clearly plays a key role in setting the velocity
magnitude. For the fully periodic cell, perfect matching with the bumpy-walled cases is
not straightforward. In figure 6(b) three realisations are presented, one with a mean volume
fraction φ0 equal to that estimated from the coarse-grained hopper fields and another two
differing above and below by 1 % increments. The deviations observed given this small
relative change is another clear indication of the importance of φ0 to vertical chute flow.

3. Exact solutions of the μ(I),Φ(I)-rheology

Mathematical modelling of the steady uni-directional flows in vertical chutes and pipes
is presented here. Because the flows of interest in § 2 are invariant of the gravity
coordinate, a one-dimensional treatment is undertaken in which variations are restricted
to the cross-pipe coordinate only. These solutions link the vertical velocity v and the
solid volume fraction φ to the chute width W and mean solid volume fraction φ0, which
are the only remaining variables of importance. Here, exact solutions of the linearised
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Exact solutions for steady granular flow in vertical chutes

μ(I),Φ(I)-rheology are found for both planar parallel walls and for cylindrical pipe walls
under the assumption of no slip. These solutions, which share similar scaling laws, are
compared against DEM simulations in each geometry and for a range of the controlling
parameters.

3.1. Vertical flow between rough parallel walls
Given the steady one-dimensional approximation, momentum conservation in x reduces
to

∂p
∂x

= 0, (3.1)

and in y
∂τ

∂x
= −ρ∗φg, (3.2)

where p is the constant pressure and τ = τxy is the only non-zero component of shear
stress. These equations are closed here using the μ(I), Φ(I)-rheology (Pouliquen et al.
2006) which states that the bulk friction

|τ |
p

= μ(I), (3.3)

and solid volume fraction
φ = Φ(I), (3.4)

are functions solely of the inertial number

I = dγ̇√
p/ρ∗

, (3.5)

where γ̇ = |dxv| is the strain rate in this geometry.
To complete the problem statement, boundary conditions and functional forms are

needed. Firstly, the pipe walls are assumed to be sufficiently frictional to ensure no slip
and are impenetrable such that mass is conserved. This implies

v = 0 at x = 0, W, (3.6)

and that the mean solid volume fraction φ0 is a constant such that

1
W

∫ W

0
φ(x) dx = φ0. (3.7)

Symmetry about x = W/2 suggests that the weight of material will be equally supported
by the stresses on the walls so

τ = ±ρ∗φ0g
W
2

at x = 0, W, (3.8)

and thus τ = 0 at x = W/2. Finally, the analysis will be restricted to the linear functions

Φ(I) = φc − aI, (3.9)

μ(I) = μc + bI, (3.10)

with parameters given in table 2, which are good approximations when I is not very
large (see da Cruz et al. (2005) and Hung, Stark & Capart (2016) for related works using
linear forms).
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μc = 0.382 b = 0.295 φc = 0.598 a = 0.2

Table 2. Parameters for the linear μ(I) and Φ relations to match with the DEM simulations. See Appendix B
for details of the rheological data and fitting.

Given that the inertial number (3.5) is strictly positive, the μ(I) function (3.10) has a
minimum value μc when I = 0. In turn this means that a static yield stress exists and so this
model cannot accommodate the vanishing shear stress at x = W/2. Instead this relation
implies that there are two regions of yielding material close to the walls and a region of
solid-like material in the centre of the pipe. Denoting the width of the yielding regions as
δ, the remaining analysis will only consider solutions within the range 0 ≤ x ≤ δ, which
will be termed the shear zone. The central core will be assumed to behave as a plug flow
with dxv = 0 and φ = φP, where the mean plug density φP is a free parameter. Finally,
the flow in the other yielding region (W − δ) ≤ x ≤ W can be readily reconstructed by
symmetry.

An important feature of the Φ(I) compressible rheology is that at steady state I and φ

are interchangeable variables. Specifically, it is useful in the following to define the inverse
function

Ψ (φ) ≡ Φ−1(φ) = φc − φ

a
, (3.11)

which is equivalent to the inertial number I at steady state given the functional form (3.9).
Substituting this into the μ(I) relation gives the shear stress

|τ(x)| = μ(Ψ (φ(x)))p, (3.12)

which converts the y-component of momentum balance (3.2) into an autonomous ordinary
differential equation (ODE) for φ as

∂φ

∂x
= −ρ∗g

p
φ

∂Ψ μ(Ψ (φ))∂φΨ (φ)
= aρ∗g

bp
φ. (3.13)

General solutions for φ in the shear zone are then simply exponentials, which match the
edge of the yielding region (φ = φc at x = δ) with the form

φ(x) = φc exp
(

x − δ

lp

)
, (3.14)

where some of the constants have been grouped into a useful length scale

lp = bp
aρ∗g

. (3.15)

Given this solution, it is straightforward to derive an ODE for the velocity by equating the
two definitions of the steady inertial number (3.5) and (3.11) which gives

∂v

∂x
=

√
p

ρ∗d2 Ψ (φ(x)) =
√

p
ρ∗d2

φc

a

[
1 − exp

(
x − δ

lp

)]
, (3.16)

where the assumption that dxv ≥ 0 has been made. As with φ(x) this equation can be
solved exactly, with the boundary condition coming from the no-slip walls (3.6), to give

v(x) =
√

p
ρ∗d2

φc

a
t(x − lp exp(−δ/lp)[exp(x/lp) − 1]). (3.17)
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Exact solutions for steady granular flow in vertical chutes

The final task is to ascertain the pressure p and shear zone width δ from the remaining
constraints. Given the assumption that φ = φP inside the central plug, conservation (3.7)
implies ∫ δ

0
φ(x) dx + φP

(
W
2

− δ

)
= φ0

W
2

, (3.18)

which leads to an equation relating p (through lp) and δ as

lpφc[1 − exp(−δ/lp)] = φ0
W
2

− φP

(
W
2

− δ

)
, (3.19)

making use of the exact solution (3.14) for φ(x) in the shear zone. Similarly, the shear
stress at the wall (3.8) can be equated to (3.12) evaluated at φ(x = 0) ≡ φW to give

μ(Ψ (φW))p = ρ∗φ0g
W
2

, (3.20)

which in turn gives another equation

a
b
μc + φc[1 − exp(−δ/lp)] = φ0

W
2lp

, (3.21)

linking lp and δ. Rearranging (3.21) gives an expression for the shear zone width

δ = −lp log
[

1 + aμc

bφc
− φ0

φc

W
2lp

]
. (3.22)

Substituting this expression into (3.19) gives an equation of the form

Alp − lp log
(

B − C
lp

)
+ D = 0, (3.23)

where the parameter groupings are

A = aμc

bφP
, B = 1 + aμc

bφc
, C = φ0

φc

W
2

, and D = −W
2

. (3.24a–d)

Finally, this equation has solution

lp = CD

BD − CW (D
C exp[A + BD/C]

) = W
2

φ0

φc + aμc/b + φ0W(−φc exp[X]/φ0)
,

(3.25)

where W is the Lambert-W function and X = A + BD/C is a dimensionless variable
depending on φ0, φP and the rheological parameters.

When combined with the exact solutions for the volume fraction (3.14) and the velocity
(3.17), the scaled pressure (3.25) completes the solutions for flow between parallel
vertical walls. In order to remove the remaining free parameter, the plug density φP, the
approximation φP = (φc + φRCP)/2 is made throughout this paper based on the data in
figure 6 showing a parabolic φ(x) bounded by the critical and random close packed values.
Because this range is quite narrow, the solutions are not very sensitive to this choice.

Figure 7 shows that these solutions provide a good approximation to many aspects of the
DEM simulation results in the fully periodic cells. Because the exact solutions are based
on the linearised μ(I) and Φ(I) relations, there is clearly some nonlinear spatial variation
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W

Figure 7. Long-time steady solid volume fractions and vertical velocities from the fully periodic DEM
simulations (open squares) and the equivalent exact solutions (solid lines). Panels (a) and (b) are for variation
of the chute width, given φ0 = 0.59, whereas panels (c) and (d) detail differing mean solid volume fractions
for a fixed chute width W = 110d.

which is missing. However, as highlighted in panels (a, c), the DEM values of the volume
fraction closely straddle the exact solutions provided that the mean packing fraction is
not too low. Due to the Φ(I) relation, linking the volume fraction to the strain rate, this
straddling conspires to ensure realistic values for the total strain rate in the shear zone and
hence good values for the maximum velocity, as shown in panels (b, d).

For small values of the mean volume fraction (φ0 � 0.59), the discrepancies between
the exact solutions and the DEM results become noticeable, especially close to the walls
of the chute. This is to be expected as the volume fraction at the wall is low and hence the
inertial number is high. In this limit the linear approximations do not provide a good fit to
the rheological data, as detailed in Appendix B. In spite of these differences, the simplified
linear theory is shown here to provide very good predictions for the magnitude of the flow
velocity. In every case in figure 7 the plug velocity is within 5 % of the prediction, except
for the extremely dense case φ0 = 0.61 which has a relative error of 21 %. As this outlier
value was ruled out by the hopper-fed simulations, the conclusion is that the present model
may be employed directly as a practical tool for estimating flow rates.

3.2. Scaling laws
One of the most useful outcomes of the simplified analysis presented above is the
establishment of clear relationships between the input parameters describing the material
and geometry and the resultant flow fields. Unlike non-local theories, which include other
length scales, this local theory is formulated solely in terms of the pipe width W and
grain diameter d. One surprising outcome of the analysis is that the spatial structure of the
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Exact solutions for steady granular flow in vertical chutes

solutions scales with W only and that the values of W and d control the velocity magnitude
but not the values of φ.

These features can be best seen by re-writing lp from (3.25) as

lp = WF(φ0;φc, μc, a, b), (3.26)

i.e. the width W multiplied by a non-dimensional function F of the mean concentration φ0
and the rheological constants. Given this relation, it is also clear from (3.22) that the shear
zone width δ can be written in an equivalent form

δ = WG(φ0;φc, μc, a, b). (3.27)

Defining x̂ = x/W gives the solid volume fraction

φ(x̂) = φc exp
(

x̂ − G
F

)
, (3.28)

from (3.14) and the velocity as

v(x̂) = φc
W3/2√g

d

√
F
ab

(x̂ − F exp(−G/F)[exp(x̂/F) − 1]), (3.29)

from its exact solution (3.17).
Another important quantity to consider is the mass flux of material

QM = 2ρ∗Lz

∫ δ

0
v(x)φ(x) dx + ρ∗LzφPvP(W − 2δ), (3.30)

where the velocity in the plug

vP = φc
W3/2√g

d

√
F
ab

(
G − F + F exp

(
−G

F

))
, (3.31)

comes from evaluating (3.29) at the inner edge of the shear zone x̂ = G. As with the other
derivations in the parallel plate geometry, the integral in (3.30) can be found exactly. The
key features of the resultant solution can be most conveniently expressed in the compact
form

QM = ρ∗W5/2Lz
φc

d

√
g

ab
H(φ0, φP;φc, μc, a, b), (3.32)

where H is a grouping of the terms involving F and G. Incidentally, the dependence on
W and d in these scaling laws is mirrored by the incompressible μ(I)-rheology (see § 4.1
and Cawthorn 2010) and ultimately comes from the dimensional arguments inherent in
the formulation of the inertial number. However, the key roles played by φ0 and φp are
naturally absent from incompressible theories.

The power and veracity of these scaling relations is demonstrated in figure 8. Despite
the simplified nature of the exact solutions, these plots clearly show that many important
global features of the flow are accurately reproduced. Panels (a–c), for which the chute
width is varied at fixed φ0, show a particularly good match between the DEM simulations
and the linear relations for pressure (3.26) and shear band with (3.27) as well as the 5/2
power law for mass flux (3.32). Varying the mean solid fraction, as is done in panels (d–e)
of figure 8, reinforces the viewpoint that flow in the vertical chute is very sensitive to the
mass flux. Both the DEM results and the theory predict rising pressures and narrower shear
zones as the flux diminishes due at higher packings.
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Figure 8. Scalings and trends for the fully periodic vertical flow. The pressure, shear zone width and mass flux
are plotted in (a–c) with varying chute widths and in (d–f ) for different mean solid volume fractions. Circles
are the averaged DEM data whereas solid lines are the predictions of the exact solution.

It is also worth noting that, due to the definition (3.15) of lp, the pressure

p = agρ∗
b

WF, (3.33)

scales with W, g and ρ∗ identically to the shear stress at the walls (3.8). However, unlike
the wall traction, the dependence of p on φ0 is not linear due to the product-log term in
the denominator of (3.25). As such, this finding is contradictory to the assumption of a
constant wall friction coefficient μW as the model presented here instead has

μW = τW

p
= φ0b

2aF(φ0;φc, μc, a, b)
, (3.34)

where τW is the shear stress at x = 0.

3.3. Vertical flow in rough cylindrical pipes
Many practical apparatus involve grains flowing in pipes with a circular cross-section,
rather than the elongated rectangular channels detailed in the previous sections. Here,
a cylindrical vertical pipe with gravity-aligned axis z and diameter W is considered, as
shown in figure 9. Like the rigid parallel-plate geometry, the pipe walls in the DEM
simulations are constructed from fixed particles because this geometry does not allow
for a doubly periodic arrangement. As will be seen, these walls are sufficiently frictional
to ensure no slip.

As in the parallel plate case, steady-state flow is described by one non-zero velocity
component uz which, along with the volume fraction φ, is a function of the radial
coordinate r only. Due to the natural azimuthal symmetry, the non-trivial momentum
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Exact solutions for steady granular flow in vertical chutes
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Figure 9. DEM particles coloured by vertical velocity at steady state in the periodic cylindrical flow
geometry. Particles in the slice −π/3 < θ < π/3 have been removed for illustration purposes.

balances are in r
∂p
∂r

= 0, (3.35)

so the pressure is again a constant, and the z-component gives

1
r

∂(rτ)

∂r
= ρ∗φg, (3.36)

where τ = τrz. Conservation of the initial mass of material, with a presumed uniform
density φ0, implies∫ 2π

0

∫ W/2

0
φ(r)r dr dθ = 2π

∫ W/2

W/2−δ

φ(r)r dr + πφP

(
W
2

− δ

)2

= πφ0
W2

4
, (3.37)

and that at steady state the traction on the walls of pipe balances the weight of this material
such that integrating along the wall∫ 2π

0
τW

W
2

dθ = π
W2

4
ρ∗φ0g, (3.38)

gives the wall stress boundary condition

τW = W
4

ρ∗φ0g. (3.39)

The equations can be processed, as in § 3.1, by substituting τ = μ(Ψ (φ))p into the
vertical momentum balance (3.36) to recover an ODE for φ(r). For cylindrical pipes this
takes the form

∂φ

∂r
= −φ

lp
+ aμc/b + φc − φ

r
, (3.40)

where the pressure-dependent length scale lp = pb/(aρ∗g) is the same as the parallel
plate case (3.15). The condition of no yielding on the edge of the shear zone is given
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by φ(W/2 − δ) = φc in this geometry, so that the volume fraction has the exact solution

φ(r) = lp
r

(aμc/b + φc) + φc(W/2 − δ) − lp(aμc/b + φc)

r

× exp
(

−r − W/2 + δ

lp

)
. (3.41)

As the assumptions of the μ(I),Φ(I)-rheology limit the deformation to be within the
annulus (W/2 − δ) < r ≤ W/2, the singular behaviour of φ at r = 0 is not of concern
unless δ = W/2. However, this artefact of the chosen coordinate system does lead
to greater complexity in the subsequent derivation of the full solution. For example,
analogously to (3.16), the velocity may be recovered from

∂v

∂r
= sign(drv)

√
p

ρ∗d2a2 (φc − φ(r)), (3.42)

which, given sign(drv) = −1, results in solutions of the form

v(r) = a1
√

lp

(
r + (δ − W/2 + a2lp) exp

[
W/2 − δ

lp

]
Ei(−r/lp) − a2lp log(r/lp)

)

+ c1, (3.43)

where

Ei(X) = −
∫ ∞

−X
t−1 e−t dt, (3.44)

is the exponential integral, a1,2 are non-dimensional parameter groupings and c1 is a
constant chosen to satisfy no slip u(r = W/2) = 0 at the walls.

Given such divergent general solutions for φ and v, it is perhaps not surprising that
exact expressions for the pressure and shear-band width are in general not forthcoming.
Deriving simultaneous equations, as in the parallel plate case, based on conservation (3.37)
and the traction condition (3.39) are instead most conveniently solved numerically, here
using MATLAB’s ‘vpasolve’ function. The resultant flow field solutions (3.41) and (3.43),
given numerically estimated p and δ, are plotted for a range of pipe widths in panel (a)

of figure 10 and the dependence on the mean solid volume fraction φ0 is explored in
panel (b). Interestingly, these solutions provide a better fit to the DEM data than in the
parallel walls case at small values of the mean packing fraction φ0. Part of this success
may be due to the circular geometry weighting more highly the packings at larger r, due
to the r dr component of the elemental volume in (3.37). This means that lower overall
packings come with relatively larger fractions close to the pipe walls compared with the
parallel case so stay closer to the range of the linear rheology.

Despite the additional complexities arising in the cylindrical geometry, the effect of
changing the wall separation distance is found to be almost equivalent to the parallel wall
case. As the shear stress at the wall (3.39) scales with W, the μ(I) relation means that
the pressure (and hence lp) also scales linearly with pipe diameter. As such, introducing
the scaled radial position r̂ = r/W converts (3.41) into φ(r̂) which is invariant of the
value of W. Similarly to (3.29) the same scalings reveal that the velocity (3.43) in the
cylindrical pipe also scales with W3/2. The only significant difference is that the mass flux
QM ∝ W7/2 for the cylindrical case, compared with the 5/2 power law for parallel walls,
because the cross-sectional area scales with W2 rather than with W. These relations are
plotted alongside equivalent DEM simulations in figure 11. The close fit of these results
demonstrates the universality of the scaling laws, across the geometries considered here.
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Figure 10. Solid volume fraction and vertical velocity profiles for a range of flows in cylindrical pipes. DEM
simulation results, averaged in z and θ , are plotted as open symbols whereas the predictions of the exact
solutions are plotted as solid curves. Panels (a) and (b) show the results for φ0 = 0.565, with different pipe
widths, and panels (c) and (d) have results with fixed W = 50d and a variety of mean solid volume fractions.
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Figure 11. Scalings and trends for cylindrical pipe flow. The pressure, shear zone width and mass flux are
plotted in (a–c) with varying chute widths and in (d–f ) for different mean solid volume fractions. Circles are
the averaged DEM data whereas solid lines are the predictions of the exact solution.
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4. Comparison with other models

4.1. The incompressible μ(I)-rheology
Neglecting the Φ(I) relation (3.4) and fixing the volume fraction to a constant value φ =
φ∗ reduces the modelling to the incompressible μ(I)-rheology, introduced by Jop et al.
(2006). For flow in a vertical chute, the task is then to find the constant pressure p∗ along
with the shear stress τ and velocity v, which are functions of x. Solving momentum balance
in the vertical direction (3.2), given the wall stress condition (3.8), gives a precisely linear
variation of shear stress

τ(x) = ρ∗φ∗g
(

W
2

− x
)

. (4.1)

The μ(I)-rheology then sets the width of the shear zone x = δ because τ/p∗ = μc at

δ = W
2

− μcp∗
ρ∗φ∗g

. (4.2)

This expression has precisely the same linear scaling in W as predicted by the compressible
μ(I), Φ(I) theory (3.27). However, the theory is severely limited beyond this as the two
remaining unknown variables p∗ and v(x) must be found from just one equation

∂v

∂x
= ±

√
p∗

ρ∗d2 μ−1
( |τ(x)|

p∗

)
, (4.3)

along with the no-slip condition (3.6) at the walls. As such, the theory would require either
p∗ to be specified, or an additional closure to be introduced. Incidentally, taking instead a
constant value for μ leads to a classical Coulomb-type theory. This theory is even more
limited as spatial variation of τ is prohibited at yield so a sliding plug flow would be the
only admissible solution.

4.2. Kinetic theory
Savage (1998) modelled vertical chute flow using a theory which combined the collisional
kinetic terms of Jenkins & Savage (1983) with the critical state soil mechanics of Schofield
& Wroth (1968). The resultant formulation includes equations of state for the stresses
which depend on both the solid volume fraction and the granular temperature

Tg = 〈c · c〉
ND

, (4.4)

where c = ui − 〈u〉 is the per-particle instantaneous velocity fluctuation vector, ND
is the number of spatial dimensions and angle brackets denote ensemble averaging.
In application, this extension necessitates an additional balance law, to complement
conservation of mass and linear momentum, which represents the balance of work done
by stresses, body forces and the fluctuating collisions. The version of this equation derived
by Savage (1998) is analogous to diffusion of the granular temperature with a variable
nonlinear source term and diffusion coefficient.

Analysis of the full system of balance equations shows that Tg tends to zero smoothly as
the centre of the chute is approached from the walls. In turn the constitutive equations
and momentum balance imply that the strain rate tends to zero whilst φ approaches
a maximal value in the same limit. These aspects are all qualitatively reflected in the
DEM results of the present paper. However, Savage (1998) goes on to claim that the
solutions are not spatially similar as the chute width is changed. Instead, the boundary
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Figure 12. A comparison of the shear zone width δ from the DEM simulations for different chute widths W.
Here, the data for parallel walls, from figure 8(b), are plotted as red squares and the cylindrical pipe data, as
detailed in figure 11(b), are plotted as blue circles. Both axes are scaled logarithmically and the black lines
represent different proposed scaling relations from the literature and the present study.

layers, which are equivalent to shear zones, remain roughly constant such that δ � 10d
irrespective of W. A comparison of this relation with the DEM simulations and linear
scaling proposed by the present study is given in figure 12. As with the experiments of
Pouliquen & Gutfraind (1996) and DEM simulations of Gutfraind & Pouliquen (1996),
this key difference is most likely due to the very large mean solid volume fractions studied.
Indeed, as shown in Appendix B, the rheological behaviour is markedly different to the
linear μ(I), Φ(I)-rheology when φ is large and hence I is very small.

4.3. Cosserat continuum
In addition to translation, grains may rotate relative to one another. This particle-level spin
may thus contribute to a bulk angular velocity vector ω and a couple-stress tensor M at
the continuum level. Cosserat theory (Mühlhaus & Vardoulakis 1987; Harris & Grekova
2005) then provides a framework in which these quantities are modelled and linked to
the existing conservation laws of mass and momentum. Significantly, in these models the
vorticity ∇ × u is not necessarily equal to the bulk angular velocity, so that ω is a new
independent vector, and the rotational motion may be accompanied by asymmetry of the
stress tensor.

As illustrated by Mohan, Nott & Rao (1999), application of Cosserat theory to vertical
chute flow generates an additional differential equation, coming from angular momentum
conservation, for the single non-zero component of the couple-stress tensor Mxz. This
combines with the shear-stress components to modify the Mohr–Coulomb yield condition,
thus allowing spatial variation of the flow in x. As with the kinetic theory, these
modifications imply that all material in the vertical chute is yielding and that no precisely
static central plug exists. Despite this, Mohan et al. (1999) performed an asymptotic
analysis for wide chutes to find

lim
W→∞

δ → l̂L2/3W1/3, (4.5)

where l̂ is a non-dimensional constant and L is a proposed length scale, over which the
couple-stress moments act. This relation is plotted alongside the DEM data and exact
linear scaling of the present study in figure 12. Part of the mismatch may be explained
by Ananda, Moka & Nott (2008), who have since shown that full numerical solutions
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approximate this scaling for chute widths much greater than W � 100d and that quite
different behaviour is observed for narrow chutes. However, this trend is not observed
here.

4.4. Finite-size effect non-local modelling
Recent models have been proposed with the aim of including the effects of both
fluctuations and finite-size effects. In particular, the theories of Kamrin & Koval (2012)
and Bouzid et al. (2013) propose that grain motions may be correlated over so-called
‘cooperative length scales’ and that these connections enable deformations to occur even
when local stress fields are not sufficient to overcome the static yield stress. In effect,
the stress solutions are those of the ‘local’ equations, but deformations obey dynamic
equations modified by the presence, or lack, of fluctuations.

Originally the non-local granular fluidity (NGF) theory of Kamrin & Koval (2012) was
formulated phenomenologically in terms of a scalar G reflecting the ‘granular fluidity’
(labelled g in the literature). The connection of this concept to flow propensity and yield
is made clear through the definition

G ≡ γ̇

μ
, (4.6)

and a more direct link between ‘fluidity’ and velocity fluctuations has been established by
Zhang & Kamrin (2017) who suggest G = √〈c · c〉F(φ)/d, where F is a non-dimensional
function of the volume fraction. This fluidity field is governed by an additional differential
equation which is loosely based on the partial-fluidisation theory of Aranson & Tsimring
(2002) and shares structural similarity with the Ginzburg–Landau theory of phase
transitions. As in the kinetic theory, at steady state the NGF model predicts smooth
diffusion of the fluctuations, and as in Cosserat theory, a proposed length scale mediates
the spatial variations.

The NGF theory was applied to steady vertical flow by Kamrin & Koval (2012) who
used a pressure-controlled cell in which the fixed vertical direction was periodic and the
bounding transverse walls moved dynamically to set a prescribed pressure. Coupled to the
incompressible μ(I)-rheology, as detailed above in § 4.1, the non-local theory smoothed
the transition between the shear regions and the plug and thus provided a good fit for DEM
data. A recent extension to this is the work of Kim & Kamrin (2020) who detail collapses
of both μ and Tg against φ in the shear-plug transition region for vertical flow and a range
of other geometries. Their proposed linear φ − μ fit is similar to the laws here, which can
be seen by combining (3.10) with (3.9) to give

Φ(μ) = φc − a
b
(μ − μc). (4.7)

However, the parameter values are different as the fits in the present work account for the
high-I values close to the walls whereas Kim & Kamrin (2020) neglect these regions. This
suggests that a nonlinear or piecewise curve could bridge the gap between these fits.

Liu & Henann (2018) also considered vertical chute flow as a test case for the NGF
model. The focus of that paper being the isolation of the transition between fully static
material and flowing material. This transition was found to occur when the channel is
sufficiently wide, a finite-size effect that would not be present in the μ(I),Φ(I)-rheology.
It remains to be seen, however, how the non-local length scale affects the fully developed
flow solutions and hence δ.
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5. Conclusions and discussion

The exact solutions derived here match the scaling behaviour of equivalent DEM
simulations very well and even provide a good approximation to the spatial variation of
the flow fields in both the cylindrical pipe and parallel-walled geometries. This success is
despite the simplified nature of the linearised μ(I),Φ(I)-rheology, which has enabled the
exact solutions, and which means that certain complexities of the real flow are neglected.
However, the direct link provided here to the realistic flow in a hopper-fed system hopefully
ensures a broad range of applicability of the present model. Furthermore, the simplicity
and veracity of these results suggests a universality that should be tested experimentally
with real granular materials and in a range of geometries.

Whilst much novelty has been revealed by this study, particularly in the scaling of the
shear zone, this does not necessarily rule out other theories, such as those detailed in § 4,
which may indeed by more relevant for flows in distinctly different regimes, such as slow
quasi-static deformations and in narrow pipes. There is also much scope for improving
the handling of the interface with and flow in the approximate plug in the centre of the
flow. This transition between inertial fluid-like and quasi-static solid-like flow is already
the focus of extended theories, such as those proposed by Chialvo et al. (2012) and Vescovi
& Luding (2016), although they have not yet been applied to vertical chute flow. It is also
evident in the flow field comparisons of figures 7 and 10 that the DEM velocities vary more
smoothly than the current solutions, suggesting that the non-local extension of Kamrin &
Koval (2012), in which diffusing fluctuations modify the flow, could improve these.

Other physically relevant extensions may also be made to account for the specifics of
the bounding walls and for the particular granular material used in real systems. One
aspect, that has been neglected here is the slip velocity observed along insufficiently
frictional confining walls. It is well known that forming appropriate boundary conditions
for this purpose is problematic (see Shojaaee et al. 2012) and it may require additional
closure equations, physical variables and extended DEM contact models to fully realise.
Polydispersity of the grains has also been neglected here, but, as shown by Fan &
Hill (2011), can invoke important feedbacks between the flow fields and distribution of
material. A framework for handling this coupling has recently been proposed by Barker
et al. (2021) and capturing segregation in a vertical channel would be an important test
case.

Whilst the approximations presented here are quasi-one-dimensional, the DEM
geometries are all fully three-dimensional. This makes the fitting successes even more
surprising as the μ(I),Φ(I)-rheology has most commonly been justified using planar
quasi-two-dimensional flow. This tendency is reflected in the studies of Rauter, Barker
& Fellin (2020) and Baker et al. (2018) who each found that granular flows in complex
three-dimensional scenarios may reliably be approximated by planar flow fields. However,
even with this reduced complexity, normal stress differences (see Alam et al. 2005) are
apparent and are likely to be sensitive to the geometrical details, especially if the confining
boundaries are not symmetric.

This paper has considered only steady solutions for this problem. However, as shown
by Heyman et al. (2017), the μ(I),Φ(I)-rheology leads to ill-posed dynamic equations
for transient flows. Alternative theories have been proposed recently by Barker et al.
(2017) and by Schaeffer et al. (2019) which are instead made well posed via additional
dependence on the dynamic compression and dilation of material. Given that the present
work has established accurate steady solutions, a study of transient flows in pipes using
these dynamic models would be of significant interest.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.909.
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Appendix A. Convenient coarse-graining formulae for one-dimensional flow fields

Many flows of interest have variation in only one spatial coordinate x that is normal
to the flow direction y. As an alternative to first coarse graining the data in two or
three dimensions, which is expensive, here a convenient formula is derived for directly
evaluating one-dimensional variations. This follows Goldhirsch (2010) and Weinhart et al.
(2012) by replacing the spherical particles with smoothed functions W . Continuum fields
are then constructed from the sum over Np particles located at positions ri = xix̂ + yiŷ +
ziẑ such as the volume fraction

φ(r, t) =
Np∑
i=1

ViW(r − ri), (A1)

where Vi = πd3
i /6 is the volume of particle i. Instead of evaluating this for all y and z, just

the average in 0 ≤ y ≤ Ly and 0 ≤ z ≤ Lz is computed here i.e.

〈φ〉y,z(x, t) = 1
LyLz

Np∑
i=1

Vi

∫ Lz

0

∫ Ly

0
W(r − ri) dy dz. (A2)

Different choices of W is possible, but here Gaussian kernels

W = 1
c3(2π)3/2 exp

(
−(x − xi)

2 + ( y − yi)
2 + (z − zi)

2

2c2

)
, (A3)

where c is the coarse-graining width, will be used. Because these functions technically
extend to infinity, some vanishingly small contribution will be lost when evaluating definite
integrals. To limit this, yi = Ly/2 ∀i and zi = Lz/2 ∀i will be taken, in essence stacking all
the particles in the middle x plane far from the boundaries. Evaluating (A2) then gives

〈φ〉y,z(x, t) = erf
(

Ly

2
√

2c

)
erf

(
Lz

2
√

2c

)
1√

2πcLyLz

Np∑
i=1

Vi exp
(

−(x − xi)
2

2c2

)
, (A4)

for which the error functions tend to unity if c � Ly and c � Lz. If the x ∈ [0, Lx]
coordinate is also periodic, contributions from x < 0 and x > Lx need to be shifted
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Figure 13. Steady-state rheology extracted from DEM simulations of differing pipe width W. Panel (a) shows
the bulk friction μ and (b) is the solid volume fraction φ as functions of the inertial number I. Squares are
from the doubly wide periodic cells and circles are for the cylindrical pipe simulations. These cases all have
φ0 = 0.56 whereas additional cases with W = 150d and φ0 = 0.5 and φ0 = 0.6 are plotted as upward � and
downward � triangles,respectively. Solid lines are the linear μ(I) and Φ(I) functions given in (3.10) and (3.9)
respectively with parameters found in table 2. Inset in each panel are the same data but plotted on a linear,
rather than logarithmic, scale for the horizontal axis.

accordingly, as was done for the fully periodic simulations. The other fields of interest,
such as the velocity

〈u〉y,z(x, t) � 1√
2πcLyLz〈φ〉y,z

Np∑
i=1

Viui exp
(

−(x − xi)
2

2c2

)
, (A5)

may also be easily computed using this procedure.

Appendix B. Stress calculation and the μ(I) and Φ(I) relations

In order to calculate the pressure p and shear stress τ , which are required to for estimating
μ and I, the full stress tensor σ is first computed. This calculation necessarily involves
fully three-dimensional considerations, so a simplified one-dimensional treatment, like
that of Appendix A, is not easily achieved. Instead we first calculate the stress components
for all particles within each cubic sample volume V = d3 before averaging. The stress is
composed of contributions from contacts as well as from the kinetic motion of the grains
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and is defined for each volume as

σ = 1
V

∑
∀i∈V

⎡
⎣ ∑

∀j /= i∈V

rijF ij + m(ui − ū)2

⎤
⎦ , (B1)

where rij and F ij are the pair centre-to-centre vector and force respectively, m = ρ∗πd3/6
is the grain mass and ū is the mean velocity of the sample. Given this, the pressure and
non-zero shear stress are

p = −1
3 Tr(σ ), and τxz = σxz. (B2a,b)

Figure 13 shows how the stress ratio μ = τxz/p and solid volume fraction φ vary with the
inertial number I, which is defined in (3.5). Here, data are collated for each of the different
geometries and for a range of different control parameters. At intermediate values of I
both plots show a universal collapse, indicating that the μ(I),Φ(I)-rheology is a good
description in the shear zones. As expected, the collapse is not so good in the plug,
where I is small, and additional physics come into play. In addition to the non-inertial
flow behaviour, the plots show some nonlinearity, even in the shear zones. However,
inclusion of these effects in the analysis of § 3 would obscure the clarity achieved by the
leading-order behaviour, which is well approximated by the linear functions.
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