I FUNDAMENTALS OF NONEQUILIBRIUM STATISTICAL MECHANICS

1 Basic issues in nonequilibrium statistical mechanics 3
1.1 Macroscopic description of physical processes 4
1.2 Microscopic characterization from dynamical systems behavior 11
1.3 Physical conditions 16
1.4 Coarse graining and persistent structure in the physical world 21
1.5 Physical systems: Closed, open, effectively closed and effectively open 26
1.6 Appendix A: Stochastic processes and equations in a (tiny) nutshell 31

2 Relaxation, dissipation, noise and fluctuations 39
2.1 A simple model of Brownian motion 39
2.2 The Fokker–Planck and Kramers–Moyal equations 45
2.3 The Boltzmann equation 49

3 Quantum open systems 60
3.1 A quick review of quantum mechanics 60
3.2 Influence functional 68
3.3 The master equation 72
3.4 The Langevin equation 73
3.5 The Kramers–Moyal equation 79
3.6 Derivation of the propagator and the master equation 82
3.7 Consistent histories and decoherence functional 86

II BASICS OF NONEQUILIBRIUM QUANTUM FIELD THEORY

4 Quantum fields on time-dependent backgrounds: Particle creation 93
4.1 Basic field theory 94
4.2 Particle production in external fields 106
4.3 Spontaneous and stimulated production 111
4.4 Quantum Vlasov equation 114
4.5 Periodically driven fields 118
4.6 Particle creation in a dynamical spacetime 121
4.7 Particle creation as squeezing 131
4.8 Squeezed quantum open systems 143

5 Open systems of interacting quantum fields 148
5.1 Influence functional: Two interacting quantum fields 149
5.2 Quantum functional master equation 158
5.3 The closed time path coarse-grained effective action 162

6 Functional methods in nonequilibrium QFT 170
6.1 Propagators 171
6.2 Functional methods 174
6.3 The closed time path effective action 180
6.4 Computing the closed time path effective action 187
6.5 The two-particle irreducible effective action 195
6.6 Handling divergences 203

III GAUGE INVARIANCE, DISSIPATION, ENTROPY, NOISE AND DECOHERENCE

7 Closed time path effective action for gauge theories 211
7.1 Path integral quantization of gauge theories – an overview 214
7.2 The 2PI formalism applied to gauge theories 223
7.3 Gauge dependence and propagator structure 226

8 Dissipation and noise in mean field dynamics 231
8.1 Preliminaries 234
8.2 Dissipation in the mean field dynamics 235
8.3 Dissipation and particle creation 236
8.4 Particle creation and noise 238
8.5 Full quantum correlations from the Langevin approach 240
8.6 The fluctuation–dissipation theorem 242
8.7 Particle creation and decoherence 243
8.8 The nonlinear regime 244
8.9 Final remarks 249

9 Entropy generation and decoherence of quantum fields 251
9.1 Entropy generation from particle creation 251
9.2 Entropy of quantum fields 255
9.3 Entropy from the (apparent) damping of the mean field 258
9.4 Entropy of squeezed quantum open systems 262
9.5 Decoherence in a quantum phase transition 270
Contents

9.6 Spinodal decomposition of an interacting quantum field 274
9.7 Decoherence of the inflaton field 281

IV THERMAL, KINETIC AND HYDRODYNAMIC REGIMES

10 Thermal field and linear response theory 291
10.1 The thermal generating functional 291
10.2 Linear response theory 293
10.3 The Kubo–Martin–Schwinger theorem 294
10.4 Thermal self-energy: Screening 297
10.5 Landau damping 298
10.6 Hard thermal loops 305

11 Quantum kinetic field theory 315
11.1 The Kadanoff–Baym equations 315
11.2 Quantum kinetic field theory on nontrivial backgrounds 330

12 Hydrodynamics and thermalization 345
12.1 Classical relativistic hydrodynamics 346
12.2 Quantum fields in the hydrodynamic limit 353
12.3 Transport functions in the hydrodynamic limit 360
12.4 Transport functions from linear response theory 367
12.5 Thermalization 374

V APPLICATIONS TO SELECTED CURRENT RESEARCH

13 Nonequilibrium Bose–Einstein condensates 391
13.1 The closed time path integral approach to BECs 393
13.2 The symmetry-breaking approach to BECs 396
13.3 The particle number conserving formalism 420

14 Nonequilibrium issues in RHICs and DCCs 429
14.1 Relativistic heavy ion collisions (RHICs) 429
14.2 Disoriented chiral condensates (DCCs) 439

15 Nonequilibrium quantum processes in the early universe 447
15.1 Quantum fluctuations and noise in inflationary cosmology 448
15.2 Structure formation: Effect of colored noise 457
15.3 Reheating in the inflationary universe 474

References 490
Index 530