ON A THEOREM OF SOBCZYK

ANÍBAL MOLTÓ

In this paper the result of Sobczyk about complemented copies of c_0 is extended to a class of Banach spaces X such that the unit ball of their dual endowed with the weak* topology has a certain topological property satisfied by every Corson-compact space. By means of a simple example it is shown that if Corson-compact is replaced by Rosenthal-compact, this extension does not hold. This example gives an easy proof of a result of Phillips and an easy solution to a question of Sobczyk about the existence of a Banach space E, $c_0 \subset E \subset \ell_\infty$, such that E is not complemented in ℓ_∞ and c_0 is not complemented in E. Assuming the continuum hypothesis, it is proved that there exists a Rosenthal-compact space K such that $C(K)$ has no projectional resolution of the identity.

There are two results that play an important role in deciding whether a copy of c_0 is complemented in a Banach space. The first one, due to Sobczyk, asserts that c_0 is complemented in every separable Banach space and the second one, due to Phillips, that c_0 is not complemented in ℓ_∞. In this paper the result of Sobczyk is extended to a class of Banach spaces X such that the unit ball U^* of their dual, endowed with the weak* topology w^*, has a certain topological property. In particular, every X such that (U^*, w^*) is a Corson-compact space, belongs to this class. By means of a simple example, it is shown that if Corson-compact is replaced by Rosenthal-compact, this extension does not hold. Moreover that example gives an easy proof of the result of Phillips. In fact a Banach space E is obtained such that $c_0 \subset E \subset \ell_\infty$; E is not complemented in ℓ_∞ and c_0 is not complemented in E. This gives an easy solution to a problem raised in [10] by Sobczyk. At the end of the paper, assuming the continuum hypothesis, it is proved that there exists a Rosenthal-compact space K such that $C(K)$ has no projectional resolution of the identity.

If X is a Banach space, we denote its dual by X^*, by U^* the unit ball of X^* and by $\sigma(X^*, X)$ the weak* topology. Given a subset A of X^*, (A, w^*) stands for the...
topological space obtained when A is endowed with the topology induced by $\sigma(X^*, X)$. The cardinal of a set J is denoted by $|J|$. A compact topological space K is said to be Rosenthal-compact if there is a Polish space X such that K is homeomorphic to a subspace of $(B_1(X), J_p)$ where $B_1(X)$ is the set of functions of the first Baire class on X and J_p the topology of the pointwise convergence [5].

Definition 1: Let X be a topological space and $\{F_n\}$ a sequence of disjoint subsets of X. A point x in X is said to be cofinitely near to $\{F_n\}$ if for every neighbourhood V of x, the set

$$\{n \in \mathbb{N}: V \cap F_n = \emptyset\}$$

is finite.

Definition 2: A topological space is called cofinitely sequential if for every x_0 cofinitely near to a disjoint sequence of closed G_δ sets $\{F_n\}$ there exists a sequence $\{y_n\}$ such that $y_n \in F_n$ and $\{y_n\}$ converges to x_0.

It is easily seen that every metric space is cofinitely sequential. Let X be a Fréchet space (that is, each point in the closure of a set A in X is the limit of a convergent sequence of points in A [4]); given a point x cofinitely near to a disjoint sequence of sets $\{F_n\}$, there exists a subsequence $\{F_{n_k}\}$ and points $x_k \in F_{n_k}$ such that $\lim x_k = x$. Nevertheless a Fréchet compact space will be constructed that is not cofinitely sequential.

Theorem 3. If c_0 is a closed linear subspace of a Banach space X such that (U^*, ω^*) is cofinitely sequential, then there is a continuous projection of X onto c_0 with norm not greater than two.

Proof: Let $\psi: c_0 \to X$ be the inclusion mapping, that is, $\psi(x) = x$, $\forall x \in c_0$. If $\phi^*: X^* \to c_0^*$ is the conjugate mapping, let us take

$$F_n = \psi^{-1}(\{e_n^*\}) \cap V^*,$$

where e_n^* is the nth coordinate functional and

$$V^* = \{x^* \in X^*: \|x^*\| \leq 2\}.$$

According to the Hahn-Banach theorem, no $F_n \cap U^*$ is empty. Moreover each F_n is a closed G_δ set in (V^*, ω^*) since each e_n^* is a closed G_δ in (c_0^*, ω^*). We will show that 0, the null functional, is cofinitely near to $\{F_n\}$. Indeed, otherwise there would exist a neighbourhood W of 0 and an infinite sequence of natural numbers $\{n_k\}$ such that

$$W \cap F_{n_k} = \emptyset, \quad \forall k \in \mathbb{N};$$

then
Let us take

\[y_n^* \in [U^* \cap \psi^{-1}\{e_{n_k}\} - W] \]

Since \((U^*, w^*)\) is compact there must exist an accumulation point \(y_0^*\) of \(\{y_n^*\}\) and it is easily seen that \(y_0^*(x) = 0, \forall x \in c_0\). Then

\[(y_n^*) - y_0^* \in V^* \cap \psi^{-1}\{e_{n_k}\} \]

and 0 is an accumulation point of this sequence, which contradicts (1).

It is obvious that \((V^*, w^*)\) is homeomorphic to \((U^*, w^*)\), so \((V^*, w^*)\) is cofinitely sequential. Therefore there exists a sequence \(x_n^* \in F_n\) such that \(\{x_n^*\}\) converges to 0. Then \(P: X \to c_0, P(x) = \{x_n^*(x)\}\) is a continuous projection and \(\|P\| \leq 2\).

Since every metric space is cofinitely sequential, every separable Banach space satisfies the hypothesis of Theorem 3, so we obtain the result of Sobczyk [10, 12]. (In fact the proof of Theorem 3 is an adaptation of the proof of Veech of that result [12].) There are cofinitely sequential spaces that are not metrisable. In fact, we will see that every Corson-compact space is cofinitely sequential. Let us recall some notation and results. For any set \(I\), we denote by \(\sum(I)\) the subset of \([0, 1]^I\) consisting of functions \(x(i)\) which are zero except on a countable subset of \(I\). A compact space is said to be a Corson-compact space if it is homeomorphic to a subset of \(\sum(I)\) for some set \(I\).

Lemma 4. [1]. Let \(K\) be a compact subset of \([0, 1]^I\) such that \(K \cap \sum(I)\) is dense in \(K\) and \(J_0 \subset I\). There exists a subset \(J_1\) of \(I\), containing \(J_0\), such that \(|J_1| = |J_0|\) and \(R_{J_1}(K) \subset K\), where, if \(J\) is a subset of \(I\), \(R_J: [0, 1]^I \to [0, 1]^I\) is defined by declaring \(R_J(x)(i)\) to be \(x(i)\) if \(i \in J\) and 0 otherwise.

Proposition 5. Every Corson-compact space is cofinitely sequential.

Proof: Let \(\{F_n\}\) be a disjoint sequence of closed sets in a Corson-compact space \(K\) and \(y_0\) a cofinitely near point to \(\{F_n\}\). We can assume that \(K\) is included in \(\sum(I)\) for some set \(I\). If

\[J_0 = \{i \in I: y_0(i) \neq 0\}, \]

Lemma 4 enables us to construct inductively a sequence \(\{J_n\}\) of countable subsets of \(I\) such that

(i) \(J_0 \subset J_n \subset J_{n+1}, \forall n \in \mathbb{N}\).

(ii) \(R_{J_n}(F_n) \subset F_n, \forall n \in \mathbb{N}\).

Let us take \(J = U\{J_n: n \in \mathbb{N}\}\). Since \(J\) is countable, \([0, 1]^J\) is metrisable, so there exists \(x_n \in F_n\) such that \(\{x_n(i)\}\) converges to \(y_0(i)\) for every \(i \in J\). Now it is enough...
to show that \(\{R_{J_n}(x_n)\} \) converges to \(y_0 \) since from (ii), \(R_{J_n}(x_n) \in F_n \). Indeed, let \(I_0 \)
be a finite subset of \(I \). Then

\[
(1) \quad y_0(i) = R_{J_n}(x_n)(i) = 0, \quad \forall i \in I_0 - J.
\]

Moreover, if \(i \in I_0 \cap J \) there exists an \(n_0 \) such that \(i \in J_n, n \geq n_0, \) so \(x_n(i) = R_{J_n}(x_n)(i) \) and

\[
(2) \quad y_0(i) = \lim x_n(i) = \lim R_{J_n}(x_n)(i).
\]

From (1) and (2), \(\lim R_{J_n}(x_n)(i) = y_0(i), \quad \forall i \in I_0. \)

COROLLARY 6. Let \(X \) be a Banach space that contains \(c_0 \). If \((U^*, w^*) \) is a Corson-compact space then there is a continuous projection \(P \) of \(X \) onto \(c_0 \) with \(\|P\| \leq 2 \).

REMARK 7. In [11] a result is proved that improves Corollary 6 since its applications are not restricted to copies of \(c_0 \). A compact space \(K \) is said to be a Valdivia-compact space if there exists a set \(I \) such that \(K \) is homeomorphic to a closed subset \(F \) of \([0, 1]^I \) such that \(F \cap \bigcup (I) \) is dense in \(F \) [3]. Then in [11] it is shown that if \(K \) is a Valdivia-compact space then every separable subspace of \(C(K) \) is contained in a complemented separable subspace \(S \) of \(C(K) \). In fact, there is a projection \(P \) from \(C(K) \) onto \(S \) with \(\|P\| \leq 1 \).

Therefore if \(X \) is a Banach space containing \(c_0 \), such that \((U^*, w^*) \) is a Valdivia-compact space, there is a projection \(P \) of \(X \) onto \(c_0 \) with \(\|P\| \leq 2 \). Indeed it is enough to consider \(c_0 \subset X \subset C(U^*) \) and apply the previous observation and the result of Sobczyk.

If Corson-compact is changed for Rosenthal-compact in Corollary 6, the assertion becomes false; this and other facts will be derived from the following example.

EXAMPLE 8. Let us take \(L = \bigcup \{\{0, 1\}^\alpha : 0 \leq \alpha \leq \omega \} \). An element of \(L \) is a function whose domain is \(\alpha \) with \(0 \leq \alpha \leq \omega \), where \(\omega \) is the first infinite ordinal. When \(\alpha = 0 \) there is exactly one element of \(\{0, 1\}^\alpha \), namely the empty mapping from \(0 \) to \(\{0, 1\} \); we shall write \(0 \) for this trivial object. We will define an order \(\leq \) on \(L \) (the usual order in the real numbers is denoted by \(\leq \)).

\[
[s \leq t] \leftrightarrow [\text{dom } s \leq \text{dom } t \text{ and } t|_{\text{dom } s} = s].
\]

We equip \(L \) with a topology (the order-topology) by declaring the element \(0 \) to be an isolated point while taking basic neighbourhoods of points \(t \neq 0 \) to be intervals \((s, t] \) with \(s < t \). Thus \(L \) is scattered and locally compact. Let \(K \) be the Alexandroff compactification of \(L \); \(K = L \cup \{\infty\} \).

https://doi.org/10.1017/S0004972700028835 Published online by Cambridge University Press
We will show that K is a Rosenthal-compact space such that there exists a non-complemented copy of c_0 in $C(K)$. Let E be the closed linear subspace of $C(K)$ spanned by $\{1_{\{t\}}: t \in L_0\}$, where 1_A stands for the indicator function of the set A and $L_0 = L - \{0, 1\}^\omega$. Then if we write $L_0 = \{x_n: n \in \mathbb{N}\}$ it is easy to check that $\psi: c_0 \to E$, $\psi(\{t_n\}) = \sum t_n 1_{\{x_n\}}$ is a linear isometry. Moreover E is not complemented in $C(K)$. Indeed, otherwise there would exist a projection $R: C(K) \to E$; then if $P = \psi^{-1} \circ R$, by considering $P^*(e_i^*)$ we would obtain measures $\{\mu_t: t \in L_0\}$ such that

1. $\langle 1_{\{t\}}, \mu_t \rangle = 1, \forall t \in L_0$.
2. $\langle 1_{\{t\}}, \mu_s \rangle = 0, \forall s, t \in L_0, s \neq t$.
3. $\{\mu_t: t \in L_0\}$ weak*-converges to zero.

Let us take

$$B_t = \{p \in K: \mu_t(\{p\}) \neq 0\}.$$

According to (i) and (ii) we have $B_t \cap L_0 = \{t\}, \forall t \in L_0$. Moreover each B_t must be countable so $\bigcup \{B_t: t \in L_0\}$ is countable; then

4. $H = \{0, 1\}^\omega - (\bigcup \{B_t: t \in L_0\}) \neq \emptyset$.

Let s_0 be an element of H and let us consider the clopen set

$$C = \{s \in L: s \leq s_0\}.$$

Since $s_0 \in H$, according to (iv) we have

$$\langle 1_C, \mu_t \rangle = 1, \forall t \in C \cap L_0,$$

which contradicts (iii).

In order to see that K is a Rosenthal-compact space we will define a function $\varphi: K \to C(\Delta)$, where Δ stands for $\{0, 1\}^\omega$ endowed with the pointwise topology. If $\alpha \in L$ we take

$$\varphi(\alpha) = 1_{U(\alpha)}$$

where $U(\alpha) = \{\beta \in \{0, 1\}^\omega: \alpha \leq \beta\}$, and

$$\varphi(\infty) = 0,$$

the null function.

If $\alpha \in L_0$, $\varphi(\alpha)$ is the characteristic function of a clopen set so $\varphi(\alpha)$ is continuous in $\{0, 1\}^\omega$ and $\varphi(\alpha) = \lim \varphi(\alpha | n)$, for $\alpha \in \{0, 1\}^\omega$. Therefore every element of $\varphi(K)$ is a function of the first Baire class on Δ. Moreover, if $\varphi(K)$ is endowed with the topology of the pointwise convergence it is easy to check that φ is continuous. Since φ is injective and K is compact we have that K is homeomorphic to $\varphi(K)$ which shows that K is a Rosenthal-compact space.

https://doi.org/10.1017/S0004972700028835 Published online by Cambridge University Press
REMARK 9. This example gives a simple proof of the fact that c_0 is not complemented in ℓ_∞. Indeed, let us write $L_0 = \{x_n : n \in \mathbb{N}\}$. Since L_0 is dense in K the mapping $\varphi : C(K) \to \ell_\infty$ defined by $\varphi(f) = \{f(x_n)\}$ is an isometric embedding. Moreover we have that $\varphi(E) = c_0$. Then c_0 is not complemented in ℓ_∞ since E is not complemented in $C(K)$. (For other simple proofs see [8] and [13].) Since every ℓ_∞-valued continuous linear mapping defined in a subspace of a Banach space can be extended to a linear continuous mapping in the whole space, it is easy to deduce that there is no complemented copy of c_0 in ℓ_∞.

REMARK 10. In [10] p.945 it is asked if there exists a closed linear subspace S of ℓ_∞, $c_0 \subset S$, such that there is no projection of ℓ_∞ onto S, and no projection of S onto c_0. By means of the previous example it is easy to construct a subspace with these properties. Indeed, let φ be the mapping defined in Remark 9 and $\varphi(C(K)) = S$; it has been shown that $c_0 \subset S$ and c_0 is not complemented in S, so we have only to show that S is not complemented in ℓ_∞. By construction there are infinite convergent sequences in K so $C(K)$ is not a Grothendieck space [6]. Since φ is a linear isometry, S is not a Grothendieck space, therefore S is not complemented in ℓ_∞.

REMARK 11. If K is the Rosenthal-compact space constructed in Example 8, we have that (U^*, w^*), the unit ball of the dual of $C(K)$, is a Rosenthal-compact space [5], so it is a Fréchet topological space [2]. Therefore, according to Theorem 3, we have an example of a Fréchet compact space that is not cofinitely sequential. Moreover $C(K)$ is a Banach space with a non-complemented copy of c_0, such that the unit ball of its dual (U^*, w^*) is a Rosenthal-compact space; this fact shows that if Corson-compact is changed for Rosenthal-compact in Corollary 6, the assertion becomes false.

Let us recall that a projectional resolution of identity on a Banach space X is a set of projections $\{P_\alpha : \omega \leq \alpha \leq \mu\}$ where μ is the first ordinal whose cardinality equals the density character $\text{d}ens(X)$ of X, which satisfies:

1. $\|P_\alpha\| = 1$, $\forall \alpha$.
2. $P_\alpha P_\beta = P_\beta P_\alpha = P_\alpha$ if $\omega \leq \alpha \leq \beta \leq \mu$.
3. $\text{d}ens(P_\alpha(X)) \leq |\alpha|$, $\forall \alpha$.
4. $\bigcup\{P_{\beta+1}(X) : \beta < \alpha\}$ is dense in $P_\alpha(X)$.
5. $P_\mu = \text{Id}_X$.

THEOREM 12. Assuming the Continuum Hypothesis, there exists a Rosenthal-compact space such that there is no projectional resolution of the identity in $C(K)$.

PROOF: Let K be the Rosenthal-compact space constructed in Example 8. We will suppose there is a projectional resolution of the identity on $C(K)$ and obtain a contradiction. The density character in $C(K)$ is ω, the continuum. Therefore, assuming the continuum hypothesis, there exists a set of projections $\{P_\alpha : \omega \leq \alpha \leq \omega_1\}$ which
satisfies the above conditions. In Example 8 a non-complemented copy \(E \) of \(c_0 \) was obtained. Let \(\{e_n\} \) be a basis of this copy and \(\{f_n\} \) linear functionals on \(E \) satisfying

\[
x = \sum f_n(x_n)e_n, \forall x \in E.
\]

According to (iv) and (v) there exist \(\alpha_n, \omega \leq \alpha_n \leq \omega_1 \) and \(a_n \in P_{\alpha_n}(C(K)) \) such that

\[
\|e_n - a_n\| < 2^{-(n+1)} \|f_n\|^{-1}.
\]

So

\[
\sum \|f_n\| \|e_n - a_n\| < 1.
\]

Then \(\{a_n\} \) is a basis equivalent to \(\{e_n\} \) and its closed linear span \([a_n] \) is not complemented in \(C(K) \) [7].

On the other hand, the supremum \(\alpha \) of the sequence \(\alpha_n \) must satisfy \(\omega \leq \alpha < \omega_1 \), so \(a_n \in P_{\alpha_n}(C(K)) \subseteq P_{\alpha}(C(K)) \) and \([a_n] \subseteq P_{\alpha}(C(K)) \). Then \([a_n] \) is a copy of \(c_0 \) in the separable space \(P_{\alpha}(C(K)) \) so \([a_n] \) is complemented in \(P_{\alpha}(C(K)) \) [10]. Since \(P_{\alpha}(C(K)) \) is complemented in \(C(K) \), \([a_n] \) must be complemented in \(C(K) \), a contradiction.

According to the result of Sobczyk, whenever \(c_0 \) is a closed linear subspace of a Banach space \(X \) with countable density character (that is, separable), \(c_0 \) is complemented in \(X \) [10]. On the other hand, \(c_0 \) is not complemented in \(\ell_\infty \) [9] and \(\text{dens}(\ell_\infty) = c \), the continuum. Then the following question arises: Which are the cardinal numbers \(\alpha \) such that \(c_0 \) is complemented in every Banach space \(X \), containing \(c_0 \) as a closed subspace and \(\text{dens}(X) = \alpha \)? According to the previous remarks such a cardinal \(\alpha \) satisfies \(\omega \leq \alpha < c \), but this does not give a complete answer unless we assume the continuum hypothesis. In the following example we will show that there exists no cardinal \(\alpha \) with this property such that \(\omega < \alpha < c \).

Example 13. Let \(\rho \) be a cardinal number such that \(\omega \leq \rho \leq c \). Let \(A \) be a subset of \(\{0, 1\}^\omega \), \(|A| = \rho \), and let us consider

\[
M = \bigcup \{D(\alpha) : 0 \leq \alpha < \omega\} \cup A, \text{ where } D(\alpha) = \{0, 1\}^\alpha.
\]

Thus \(M \) is included in \(L \) of Example 8, and we will consider \(M \) endowed with the subspace topology, for which \(M \) is scattered and locally compact. Let \(K_0 \) be the Alexandroff compactification of \(M \). Then \(\text{dens}(C(K_0)) = \rho \) and we can construct a non-complemented copy of \(c_0 \) in \(C(K_0) \). Indeed, a copy of \(c_0 \) is spanned by \(\{\delta_t : t \in L_0\} \) where \(L_0 \) was defined in Example 8. Reasoning as in Example 8, we obtain that this copy is not complemented.
REFERENCES

[10] A. Sobczyk, ‘Projection of the space \(m \) on its subspace \((c_0) \)’, Bull. Amer. Math. Soc. 47 (1941), 938–947.

Departamento de Análisis Matematico
Universitat de Valencia
Dr. Moliner 50
46100 Burjassot, Valencia
Spain