
JFP 19 (2): 253–261, 2009. c© 2008 Cambridge University Press

Printed in the United Kingdom

253

Book reviews

Software Abstractions: Logic, Language, and Analysis by Daniel Jackson,

The MIT Press, 2006, 366pp, ISBN 978-0262101141.

doi:10.1017/S0956796808006977

Daniel Jackson’s Alloy project operates in a context where software requirements and designs

are frequently ill-specified or bogged down by a myriad of implementation details. The aim

of the project is to provide tools and analysis methods that software designers can use to

“bring them back to thinking deeply about underlying concepts.” The project is achieving its

goals and this fine book is an extremely good way for developers, students, and researchers

to learn about it.

After a short introductory chapter presenting a whirlwind tour of Alloy and its use, the

book settles into a structure foreshadowed by its subtitle: Logic, Language, and Analysis.

First, the relational logic used by Alloy is presented in detail. Alloy models software behavior

using signatures populated by un-interpreted atoms, and first-order relations between these

signatures. A rich collection of operators enables relations to be defined easily. Unlike some

similar systems, Alloy does not distinguish scalars and sets from general relations, representing

them as singleton and unary relations, respectively. This choice makes the logic more uniform

and eliminates explicit handling of some corner cases.

The Alloy language, described next, embeds the logic within constructs for defining

signatures and typed relations between them. Supplementing signature declarations are various

forms of constraints: facts (constraints that always hold), predicates (reusable constraints),

functions (reusable expressions), and assertions (implications to be checked). Commands allow

assertions to be checked or predicates to be run.

The last main chapter describes the analysis that can be performed on an Alloy model.

In brief, the model is converted into a Boolean satisfiability problem that is passed to a

separate constraint solver. Solutions found by the solver are mapped back to the model for

presentation to the user as very accessible graphical depictions of the relation instances. For

instance, violations of assertions are illustrated using counter-examples.

The most controversial aspect of the analysis is the finite scope under which it occurs. Alloy

commands specify the maximum number of atoms in each signature, since most models are

infinite and an exhaustive search is not possible. Alloy operates under a so-called small state

hypothesis, which asserts that most flaws in models can be illustrated by small instances. This

view takes some getting used to, but the book returns to this point frequently and presents

many examples to illustrate the effectiveness of the analysis that is possible.

A notable feature of the book is its comprehensive coverage. Apart from the main chapters

already discussed, it contains a lengthy chapter of nontrivial examples, and over a hundred

pages of appendices containing exercises, a complete reference manual, the semantics of

the kernel language, and, most interestingly, a review of alternative approaches to software

specification containing models contributed by the developers of the other approaches. The

presentation is very accessible, particularly due to the conversational style of the questions

and answers included in most of the main sections.

Since the book was published, the Alloy system has been updated to version 4 from version

3 that is described in the book. The relatively small number of user-visible differences between

the systems are well summarized on the Alloy website, including the updates necessary for

the examples in the book. Thus, the book is easily used with version 4.

https://doi.org/10.1017/S0956796808006977 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006977

254 Book reviews

In summary, I highly recommend Software Abstractions: Logic, Language, and Analysis to

anyone with an interest in modeling and analyzing software. It is suitable for both class-room

use and for reference long after the basics have been mastered. Systems like Alloy should be

in the toolbox of all software designers and developers, so such a comprehensive book on

this topic is very welcome.

Anthony M. Sloane

Macquarie University, Sydney, Australia

Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Com-

puter Programming. The MIT Press, 2004. ISBN: 0262220695 Price $70.

930pp.

doi:10.1017/S0956796808007028

I came to CTM, as this book is familiarly known, with a deep appreciation for the innovative

contribution Peter Van Roy made towards implementing logic programming systems in the

early 1990s. It is good to see him and his collaborators continue to push the frontiers of this

tradition, and making that work accessible to the masses through this book.

CTM is of similar stock to such rigorous introductory textbooks as the classics by Abelson

and Sussman (1996) and Bird and Wadler (1988), and is significantly less formal than any of

Dijkstra’s classics (1976). In contrast to these texts, the main theme of the book is concurrency

from a systems engineering perspective, culminating in discussions of three application

domains: graphical user interfaces, distributed programming and constraint programming.

The reader is expected to have a reasonable grasp of the basic techniques of sequential

programming, and so this book complements most other in-depth programming texts.

The target audience, late-undergraduate or early-postgraduate students, may find some

of the introductory material a bit patronising. It is unfortunate that while the book is

substantially about concurrency, it is itself mostly sequential-access: the reader will find it

necessary to carefully peruse these early sections in order to grasp the syntax and semantics

of Mozart/Oz, the programming language at the centre of the CTM world view. Some of

this tedium is alleviated by the delightful ease of experimenting with the mature Mozart

implementation.

Formal operational semantics are provided for the various ‘kernel languages’ that are

used to explain language features, ultimately collected and distilled in the relatively technical

Chapter 13. Readers of TaPL (Pierce, 2002) will be familiar with this approach, although

here the semantics is given in the style of a concurrent constraint language (Saraswat, 1993).

By itself it would be difficult to credit these sections as a sufficiently broad introduction to

programming language semantics, for no properties are established. Also it is unfortunate

that the Hoare logic so clearly presented in Chapter 6 is not formally related to the ongoing

operational story.

At the core of the Oz approach is the dataflow variable (also known as the declarative

variable), an object that can be declared in one scope and bound in another. Prolog

programmers will be on familiar ground with their use in difference structures (Section

3.4.4), and in the underpinnings of the declarative concurrency development (Section 4.3).

While this style of concurrency requires linguistic support to be completely natural, there are

library-based implementations in various languages that embody the abstraction.

CTM has the clearest presentation of declarative programming (broadly taken) that I

have yet found; the benefits for program structure and reasoning are strongly articulated

and beautifully illustrated, and the limitations are carefully teased out. The presentation of

declarative concurrency is a highlight of the book, and as the authors observe, deserves to

be much more widely understood and applied. To a functional programmer it is somewhat

https://doi.org/10.1017/S0956796808006977 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006977

