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Pressure and shear-driven flows of a confined film of fluid overlying a periodic
one-dimensional topography of arbitrary shape are considered for prediction of
the effective hydraulic permeability in the Stokes flow regime. The other surface
confining the fluid may be a planar no-slip wall, an identically patterned wall, a
free surface or a surface with prescribed shear. Analytical predictions are obtained
using spectral analysis and the domain perturbation method under the assumption
of small pattern size to pitch ratio. Using a novel decomposition of the channel
height effects into exponentially and algebraically decaying components, a simple
surface-metrology-dependent relationship which connects the eigenvalues of the
effective permeability tensor is obtained. Two representative topographies are assessed
numerically: the infinitely differentiable topography of a phase-modulated sinusoid
which has multiple local extrema and zero crossings and the non-differentiable
triangular-wave topography. Non-differentiability in the form of corners of triangular
patterns and the cusps of scalloped patterns are not found to be an impediment to
meaningful and numerically accurate asymptotic predictions of effective permeability
and effective slip, contradicting an earlier suggestion from the literature. Several
distinct applications of the theory to the friction-reduction and shear-stability
performance of the recently developed lubricant impregnated patterned surfaces
as well as to scalloped and trapezoidal drag-reduction riblets are discussed, with
comparison to experimental data from the literature for the last application. Analytical
approximations which have an extended domain of numerical accuracy are also
proposed.

Key words: Hele-Shaw flows, general fluid mechanics, drag reduction

1. Introduction
The subject of this study, a flowing film of fluid contacting a surface with

complex topographic patterns, is a prominent feature of both technology and nature.
Superhydrophobic surfaces (SHS) (Choi et al. 2006; Ybert et al. 2007; Zhou et al.
2013; Song, Daniello & Rothstein 2014) and liquid-impregnated surfaces (LIS)
(Wexler, Jacobi & Stone 2015; Asmolov, Nizkaya & Vinogradova 2018; Solomon

† Email address for correspondence: subhra.datta@mech.iitd.ac.in

This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution,
and reproduction in any medium, provided the original work is properly cited.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-6746-254X
mailto:subhra.datta@mech.iitd.ac.in
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.134&domain=pdf
https://doi.org/10.1017/jfm.2020.134


891 A12-2 M. K. Dewangan and S. Datta

et al. 2018) have been shown to reduce the frictional resistance of flow passages with
potential applications to microfluidics and flow batteries. An important application
of SHS and LIS in the form of antimicrobial surfaces for implants and surgical
instruments involve contact with flowing blood (Wong et al. 2011; Parmar et al.
2018). Similarly, contact with flowing sea water may arise in applications of SHS
and LIS to prevent marine bio-fouling (Ware et al. 2018). In fact, the stability of LIS
under shear is a specific area of concern (Wexler et al. 2015) for their technological
viability. The anisotropy of flow over topographic patterns can be leveraged to
successfully mix reagents in microfluidics (Stroock & McGraw 2004) and even to
effect separations (Asmolov et al. 2015).

In addition to relevance to the above-discussed more recent technological advances,
a substantial motivation behind studying wetted topographic patterns has historically
been in the realm of reduction of skin-friction drag in turbulent flows through riblets
immersed within the viscous sublayer (Bechert & Bartenwerfer 1989; Luchini, Manzo
& Pozzi 1991; Choi, Moin & Kim 1993; Chang et al. 2019). Inspiration for this
application is drawn from the micro-structure of the skin of marine organisms like
fast-moving sharks. Also of relevance to the current study on confined flows is the fact
that fractured rocks in natural/man-made geological formations also present complex
topographies to even the laminar flow of oil and water, causing departures from the
Poiseuille law that need careful consideration (Sisavath et al. 2003).

Corrugations provide often the smallest or the least-resolvable scale in the hierarchy
of scales that affect fluid flow (Bechert & Bartenwerfer 1989; Miksis & Davis 1994;
Tuck & Kouzoubov 1995; Kamrin, Bazant & Stone 2010). A powerful theoretical
paradigm in the assessment of the hydrodynamic effects of wall corrugation arises
from the realization that the feature-averaged effects of wall corrugations accessible
to coarse-scale measurements can be quantified easily through effective equation
approaches such as locating an effective no-slip plane (Tuck & Kouzoubov 1995;
Kamrin et al. 2010) or evaluating for confined flows the hydrodynamic conductance of
an equivalent channel with a simpler wall geometry (Stroock et al. 2002; Feuillebois,
Bazant & Vinogradova 2009). The location of the effective no-slip plane, which
depends of course on the reference plane for measuring distances, has been specified
variously through closely related parameters such as the ‘effective slip length’
or the ‘protrusion height’, the latter term being used almost exclusively in the
turbulent-drag-reduction literature (Bechert & Bartenwerfer 1989). In what follows,
the above-discussed effective equation approach will play an important role.

In SHS, the liquid does not contact all points of the pattern and the details of the
solid-contacting gas flow is not usually resolved (Lauga & Stone 2003; Asmolov et al.
2013a; Kumar, Datta & Kalyanasundaram 2016). In contrast, the current study will
deal with a fluid contacting a solid no-slip surface. Crucially, in creeping flow, SHS
(Zhou et al. 2013) and wetted surfaces (Lecoq et al. 2004) with the same pattern
waveform (e.g. trapezoidal, as in the above two studies) act as drag-reducing and drag-
enhancing surfaces, respectively, as judged from the location of the effective no-slip
plane, which is closer to the troughs in SHS and closer to the peaks in wetted surfaces.
Wetted trapezoidal surfaces such as in Lecoq et al. (2004) will be investigated as an
application in the current study. The literature on SHS will not, therefore, be surveyed
in great detail. The literature on channels with non-planar mean wall shapes will also
be left out of scope.

The problem of predicting the location of the effective no-slip plane in shear
flows bounded only on one side by a specialized topography such as rectangular
or sinusoidal topographic patterns has attracted the attention of several researchers
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over last half a century (Richardson 1973; Hocking 1976; Tuck & Kouzoubov 1995;
Wang 2003, 2010; Dewangan & Datta 2019). Unconfined flows with trapezoidal,
triangular and other cornered topographies having specialized analytical forms have
been accessed through conformal mapping (Bechert & Bartenwerfer 1989) and
semi-analytical approaches such as those based on boundary integral formulations
(Luchini et al. 1991; Wang 2003) and spectral-asymptotic analyses (Lecoq et al.
2004). However, the studies by Luchini et al. (1991) and Kamrin et al. (2010)
stand out for providing expressions for the effective slip in unconfined shear flows
over arbitrarily shaped periodic one- and two-dimensional topographies respectively,
although under the assumption of small peak height to pitch ratios. Miksis & Davis
(1994) also provide an expression of similar generality using the asymptotic method of
multiple scales, but at a lower order of accuracy that places the effective slip plane on
the metrological ‘mean line’. Einzel, Panzer & Liu (1990) and Panzer, Liu & Einzel
(1992) analyse arbitrary topography shapes through a spectral approach, but only
evaluate the effective slip of small-amplitude sinusoidal topographies in closed form.
Luchini (2013) provides asymptotic and numerical results connecting the shear-flow
predictions obtained by two distinct paths of approach to the small-amplitude limit,
viz. fixed-pitch approach and fixed pitch-to-amplitude ratio approach. The former limit
is relevant to the current study.

The current study deals with confined flow passages rather than an isolated surface.
So the concept of tensorial effective permeability (or the effective friction factor)
is considered to be more appropriate here than effective slip, as discussed in
Feuillebois et al. (2009), Feuillebois, Bazant & Vinogradova (2010) for SHS and
Ajdari (2001) for wetted patterns. In relation to confined pattern-wetting flows,
analytically tractable results are available for planar passages with small-amplitude
sinusoidal wall topography (Chu 1996; Vasudeviah & Balamurugan 1999; Stroock
et al. 2002; Wang 2011). Pattern-wetting flows through planar passages that are
thin compared to the pattern wavelength have also been studied with the help of
lubrication theory (Sisavath et al. 2003; Sun & Ng 2017; Tavakol et al. 2017). The
lubrication theory, despite its limitation to channel sizes much thinner than the
pattern pitch, has the advantage of allowing facile specification of arbitrarily shaped
wall-pattern waveforms, as leveraged by these studies. It appears that the literature
lacks analytical findings on the permeability (or friction factor) of finite-thickness
channels with arbitrarily specifiable wetted wall patterns. Finite-thickness channels
are definitely not accessible by the ‘slow-variation’ approach of lubrication theory
(Van Dyke 1987) and for such channels, the findings from analysis of an unconfined
shear flow do not translate directly.

The approach employed to develop effective equations can also be used as a
classification basis of the works relevant to the current study. For example, Richardson
(1973), Tuck & Kouzoubov (1995), Scholle, Wierschem & Aksel (2004) and Bechert
& Bartenwerfer (1989) realize the no-slip condition on specialized topographies using
conformal maps on the complex plane which are inclusive of Schwartz–Christoffel and
Kutta–Joukowski transformations. Hocking (1976) and Luchini et al. (1991) employ
the Wiener–Hopf technique to resolve infinite groove depths. Spectral methods are
employed by Einzel et al. (1990), Panzer et al. (1992) and Dewangan & Datta (2018).
The asymptotic method of domain perturbations is employed by Luchini et al. (1991),
Stroock et al. (2002), Wang (2003), Kamrin et al. (2010), Wang (2010) and Asmolov
et al. (2018). While the works mentioned in the previous paragraph attempt to resolve
the effective no-slip plane and effective friction factors analytically, a complementary
set of methods furnishing numerical solutions exist for flows over corrugated surfaces.
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Among them, mention may be made of molecular dynamics simulations (Guo, Chen
& Robbins 2016), the finite-element method (Choudhary et al. 2011; Guo et al.
2016), the point-collocation boundary integral method (Wang 2003), finite-volume
and finite-difference methods (Asako & Faghri 1987; Yutaka, Hiroshi & Faghri 1988;
Schönfeld & Hardt 2004; Annepu, Sarkar & Basu 2014; Sharma et al. 2019), the
lattice-Boltzmann method (Li & Chen 2005), dissipative particle dynamics simulations
(Asmolov et al. 2013b; Zhou et al. 2013), multiple scattering theory and stochastic
averaging (Sarkar & Prosperetti 1996). A semi-analytical spectral approach has been
utilized to resolve confined flows over SHS with alternating finite-slip no-slip patterns
(Zhou et al. 2013). The phase-field method (Chakraborty 2007), front-tracking method
(Sun & Ng 2017) and volume-of-fluid method (Alamé & Mahesh 2019) have been
employed to resolve interfaces in two-phase systems.

Studies which report experiments on pattern-wetting flows and use well-controlled
pattern/roughness elements with precise measurement of all their significant dimensions
in addition to reporting of averaged parameters such as absolute and/or the root-mean-
squared roughness values (abbreviated Ra and Rq, respectively) are mostly based on
rectangular ridges (Stroock et al. 2002; Wierschem, Scholle & Aksel 2003; Gamrat
et al. 2008), with the exception of Lecoq et al. (2004), who characterize the shear and
squeeze-film flows over trapezoidal patterns. Interestingly, the force on a sphere from a
squeezed liquid film which is amenable to precise measurements (see e.g. Lecoq et al.
(2004) and Mongruel et al. (2013) for a study on rectangular-grooved surfaces), has
an interesting connection to the effective slip in shear that can be brought out through
lubrication theory (Asmolov, Belyaev & Vinogradova 2011) as well as the application
of the Lorenz reciprocity theorem (Lecoq et al. 2004). Superhydrophobic trapezoidal
grooves as studied in Zhou et al. (2013) would reduce the net creeping-flow drag
vis-à-vis a planar surface located on the mean line, while the wetted surfaces studied
here (Zhou et al. 2013) enhance the drag. Although SHS involve two fluids, the flow
field in the non-wetting fluid overlying the superhydrophobic trapezoidal grooves can
be resolved analytically through a boundary-condition formalism different from wetted
flows, that is based on the ‘gas cushion model’ (Nizkaya et al. 2015; Dubov et al.
2018). As detailed in § 4.4 as well as Zhou et al. (2013), the ‘gas cushion model’
involves application of a slip boundary condition on the plane connecting the tips of
trapezoids.

The purpose of the current work is to study analytically the effect of arbitrarily
shaped one-dimensional corrugation waveforms on the hydraulic permeability (or
the effective conductance) of channels with sizes that are neither large enough to
be accessible for treatment as a shear flow, nor small enough to be accessible for
treatment through lubrication approximation. The effect of inertia will be assumed to
be vanishingly small, as typical in microfluidic applications. The method of domain
perturbations (Van Dyke 1987; Hinch 1991), which involves the assumption of small
characteristic amplitude to wavelength ratio and the shifting of boundary conditions
to a convenient reference plane, will be employed. Finite-element simulations fully
resolving the Stokes flow field are used for assessment of the analytical predictions
for two specific shapes of wall undulations differing in their degree of smoothness.
To enable the evaluation of the permeability when flow is oblique to the patterns,
permeability will be evaluated in both the principal directions, i.e. in longitudinal flow
where the applied pressure differential (or shear) is aligned along the pattern, and in
transverse flow, where the applied forces are aligned across the pattern. Several new
and convenient analytical results will be derived and validated for numerical accuracy.
A hitherto unreported universal relationship valid for any prescribed periodic surface
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Channel geometry Flow oblique to stripes
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FIGURE 1. Panel (a) shows longitudinal/transverse flow through a channel with an
arbitrarily shaped pattern on the bottom wall and a flat top wall. The pattern wavelength
and the mean height of the channel is L and h, respectively. Panel (b) shows local
coordinate systems xoz and x′oz′ with the ordinates aligned with the stripes and at an angle
β to the stripes, respectively. The permeabilities along and across the pattern direction are
K‖ and K⊥, respectively.

profile in confined flow, along the lines of those already known for the effective slip
of isolated surfaces with patterned hydrodynamic slippage (Asmolov & Vinogradova
2012), which enables easy evaluation of permeability in the second principal direction
once the permeability in the first principal direction is known, will be derived.

In § 2 a canonical confined flow problem, which is to be solved with arbitrary wall
topography shape and arbitrary height is defined. In § 3 the hydraulic permeability
is evaluated in longitudinal and transverse flow. A relationship is derived in this
section between the components of the diagonalized permeability tensor. Section 3
also discusses the adaptation of the theory to other boundary conditions and flow
configurations arising in applications. Section 4 specializes the analysis to specific
test topographies, assesses the numerical accuracy of the asymptotic predictions and
also discusses two distinct applications of the theory in the currently active area of
slippery lubricant infused patterned surfaces placed in a dynamic fluid environment.
This section also performs an experimental comparison with data from a complex
topography studied in the literature. Section 5 discusses the main conclusions from
the current work.

2. Problem definition

Incompressible laminar flow of a Newtonian fluid of viscosity µ and density ρ is
considered. The periodic cell of the channel through which the flow occurs is shown
in figure 1(a). The lower wall is patterned topographically and can be located by
the function y= eg(x), where e is a characteristic amplitude of the L-periodic pattern
specified by the function g(x). The channel has a flat wall at y= h. No-slip boundary
condition is considered to apply on both the walls. The reference plane (y= 0) from
which the ordinate g(x) is measured is chosen to be the ‘mean line’, to borrow a
nomenclature from surface metrology (Whitehouse 1994). By this definition, g(x) has
to satisfy

∫ L/2
−L/2 g(x) dx= 0. The nominal thickness of the channel measured from the
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mean line is denoted by h. The flow is considered to be driven by a pressure drop
1P although extensions to shear-driven flow are discussed in and onward from § 3.4.
The velocity components along the rectangular Cartesian coordinates x, y, z (figure 1a)
are denoted by u, v,w and the pressure is denoted by p.

A channel configuration with an unpatterned wall opposing a patterned wall,
as shown in figure 1(a), is often preferred in microfluidic experiments from
considerations such as ease of alignment (Feuillebois et al. 2009) and/or optical
access (Devasenathipathy, Santiago & Takehara 2002). While details of the analysis
are demonstrated through the configuration in figure 1(a), several other confined flow
configurations are studied later in § 3.4. It can be noted here that the geometry of
figure 1(a) is also used by Stroock et al. (2002) with a cosine shaped topography
(g(x) = cos(x)). Our subsequent findings would reduce to those of Stroock et al.
(2002) as special cases, providing partial validation of our results.

In the following, the inertia of the fluid will be neglected so that the flow is
governed by the Stokes equations, as appropriate for microfluidic applications where
the Reynolds number based on the characteristic size of the channel is small (Stone,
Stroock & Ajdari 2004). There are also situations where physical and/or scaling
arguments can justify the neglect of inertia in spite of a finite value of the Reynolds
number based on the nominal channel height. These include unidirectional flow
situations, e.g. when the periodic cell of figure 1(a) is located sufficiently far from
entrances/exits and other disturbances to the flow, with the flow being directed
parallel to the corrugations (longitudinal flow), as in § 3.1. Inertial effects can also
be neglected on scaling grounds in the limiting situation of the channel size being
an infinitesimal fraction of the patterning wavelength (Van Dyke 1987). Interestingly,
the flow within the viscous sublayer of a turbulent external flow has been modelled
as a zero-inertia flow by Bechert & Bartenwerfer (1989) and Luchini et al. (1991).

The following dimensionless variables are introduced for use in the rest of the
article: x= (L/2π)X, y= (L/2π)Y , u= (Us)U, v= (Us)V , w= (Us)W, p= (1p/2π)P,
where the velocity scale Us will be specified shortly. The symbol ∇ will signify
the dimensionless gradient operator in the plane (x–y) of the topographic pattern.
Incidentally, following the above non-dimensionalization scheme, the ratio of the
inertia to viscous terms in the full Navier–Stokes equation would scale as Re/H,
where Re = ρUsh/µ. The neglect of inertia will either require a strict Stokes flow
assumption, or that 1/H be vanishingly small in the case Re∼O(1) (or higher). Finite
(but possibly large) H is an important concern in what follows and the O(1/H) terms
retained in the finite-H analysis are not of inertial origin. Therefore, the finite-H
analysis applies only to Stokes flow and additional corrections stemming from the
inertia terms would be needed for a flow where Re∼O(1) or higher. The shear-based
scale Us = 1ph/2πµ for velocity is used in the remainder of the articlehere. This
scale is crucial for understanding the effect of finite channel size studied later in the
article.

The concern of this article is to obtain reliable analytical (preferably closed-form)
estimates of the channel hydraulic permeability in Stokes flow, in the presence of
arbitrary wall patterns. The permeability (k) is defined as the volumetric flow rate
of a fluid of unit viscosity in a channel subject to unit pressure gradient, and has
dimensions of length squared. However, in most of the subsequent development, k will
be normalized by the permeability of the corresponding channel of height h where
the wall patterns are absent (e= 0), leading to the dimensionless permeability K. The
symbol for permeability may be superscripted/subscripted where necessary to indicate
flow, channel and pattern types. It may be noted that the dimensionless permeability
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can also be interpreted as the ratio of the Poiseuille number of the unpatterned channel
to that of the patterned channel. The Poiseuille number is proportional to the product
of the Fanning/Darcy friction factor and the Reynolds number (Taylor 1971).

If the flow direction is oblique to stripes (figure 1b), the resultant tensorial
permeability (Bazant & Vinogradova 2008; Schmieschek et al. 2012) is completely
determined by the permeability in the two canonical directions (z and x) along and
across the stripes, which are termed longitudinal and transverse flow, respectively.
Further details on the tensorial nature of permeability relevant to the current study
are discussed in the beginning of the next section.

3. The hydraulic permeability tensor
In an infinite Hele-Shaw cell with one-dimensional wall topography, the direction

of net fluid permeation is, in general, different from the direction of applied
forces (Ajdari 2001; Ghosal 2002). Let the vector Kβ encode the magnitude of
the normalized hydraulic permeability and the direction of fluid permeation. Referring
to figure 1(b), the components of Kβ along and perpendicular to any direction

−→
OX′

oriented at an angle β with respect to the one-dimensional striped pattern can be
calculated using the relation Kβ = M l̂, where l̂ = (l′, m′) are the direction cosines of
the applied force causing the fluid flux in the x′ − z′ coordinate system. The tensor
M is given by M = R−β diag(K‖, K⊥)Rβ (Ajdari 2001; Bazant & Vinogradova 2008;
Feuillebois et al. 2010) and will be termed the hydraulic permeability tensor here.
Here, Rβ is the two-dimensional matrix that rotates points in the (x–z) plane by an
angle β. Since the only non-geometrical parameters affecting M are K‖ and K⊥, the
rest of the theoretical development is devoted to evaluating K|| for longitudinal flow
(§ 3.1) and K⊥ for transverse flow (§ 3.2) by solving the respective flow problems.

3.1. Longitudinal flow
With respect to the longitudinal flow through the geometry shown in figure 1(a), the
velocity W(X, Y) of the unidirectional flow is governed by the balance of viscous and
pressure forces while the no-slip boundary conditions apply at both the corrugated
bottom wall and the flat top wall, leading to

∇
2W =−

1
H
, (3.1a)

W(X, εg(X))= 0, (3.1b)
W(X,H)= 0. (3.1c)

Here, ε = 2πe/L and H = 2πh/L are a characteristic pattern size and the nominal
channel thickness, rendered dimensionless through multiplication with the pattern
wavenumber 2π/L. The H-dependent right-hand side of (3.1a) is a consequence of
the wall-shear-based velocity scale (1ph/2πµ).

In the following, ε will be treated as a small parameter, and asymptotic expansions
in the form W = W0

+ εW1
+ ε2W2

+ o(ε2) together with the method of domain
perturbations (Hinch 1991), which involves the transfer the boundary condition on the
curved surface (3.1b) to Y = 0 through the Taylor expansion W(X, εg(X))=W(X, 0)+
εgWY(X, 0) + ε2g2WYY(X, 0)/2 + o(ε2), will be employed. Here, subscripts denote
derivative. Since the highest-order correction evaluated in this study is W2, algebraic
expressions for the normalized permeability derived in §§ 3, 3.4 and 4 will contain
an o(ε2) error term, even though the same will be indicated explicitly only when
important to the discussion. The ‘little o’ asymptotic notation used here may be noted.
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3.1.1. Leading order (O(1))
The leading-order solution is obtained by setting ε = 0 and corresponds to a flat

bottom wall at Y = 0, where the X independent flow velocity W0 is given by

W0
=

Y
2
−

Y2

2H
. (3.2)

3.1.2. The O(ε) correction
The governing equation and no-slip boundary conditions for W1 are

∇
2W1
= 0, (3.3a)

W1(X, 0)+ g(X)W0
Y(X, 0)= 0, (3.3b)

W1(X,H)= 0, (3.3c)

which have the solution

W1(X, Y)=
∞∑

n 6=0

C1n(e−|n|Y − e−2|n|He|n|Y)einX, (3.4a)

C1n =−
gn

2(1− e−2|n|H)
. (3.4b)

In (3.4a) and the remainder of the article, a summation symbol subscripted with n 6= 0
denotes a sum taken through all integers except zero.

3.1.3. The O(ε2) correction
The governing equation and no-slip boundary conditions for W2 are

∇
2W2
= 0, (3.5a)

W2(X, 0)+ g(X)W1
Y(X, 0)+

g(X)2

2
W0

YY(X, 0)= 0, (3.5b)

W2(X,H)= 0, (3.5c)

for which it is sufficient for the purpose of obtaining an O(ε2)-accurate prediction of
the permeability, to find an expression for the period-averaged velocity 〈W2(X, Y)〉,
which is the part of W2 obtained by excluding its harmonic (∝einX, n 6= 0) parts. The
quantity 〈W2(X, Y)〉 is given by

〈W2(X, Y)〉 =C‖
(

1−
Y
H

)
, (3.6a)

C‖ =−S‖1 +
S2

H
, (3.6b)

S‖1 =
∞∑

n=1

n coth (nH)|gn|
2, (3.6c)

S2 =

∞∑
n=1

|gn|
2. (3.6d)

The series S‖1 arises from convolution of the Fourier series of g into that of its y
derivative and for a given surface topography, its convergence is crucial to obtaining
meaningful answers from the domain perturbation method. The series S2 converges to
1/4π times the variance of the topography, as per Parseval’s identity.
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3.1.4. Effective permeability
The effective dimensionless permeability K is obtained from the dimensionless flow

rate Q(ε,H) using its definition discussed in § 2, which leads to K=Q(ε,H)/Q(0,H).
Here, the functional argument of Q within parentheses indicate the dependence of Q
on ε and H. In longitudinal flow, Q is obtained from an O(ε2)-accurate Taylor-series
approximation of

Q‖(ε,H)=
∫ π

−π

∫ H

εg(X)
W dY dX =

∫ π

−π

∫ H

εg(X)
[W0
+ εW1

+ ε2
〈W2
〉 + o(ε2)] dY dX. (3.7)

As discussed below equation (3.5), the harmonic parts of W2 do not contribute to the
O(ε2)-accurate flow rate.

Below, we first provide expressions for K which are applicable to arbitrary channel
height. Then, at the cost of errors that decay exponentially fast with H, we derive
expressions for large but finite channel height that are simpler and often more tractable
in closed form. Below, a ‘relative roughness’ parameter α = e/h= ε/H is introduced
in the expressions for K in favour of ε as one of the independent variables, borrowing
familiar terminology from the celebrated Moody chart for the Darcy–Weisbach friction
factor (Taylor 1971) and notation from the study on sinusoidal patterns by Stroock
et al. (2002).

For arbitrary channel height. The following expressions for the normalized permeability
are obtained on integrating W using (3.7) to O(ε2) accuracy:

K‖ = 1− 6α2(HS‖1 − S2)+ o(ε2). (3.8)

For the special case of g(x) = cos(x), equation (3.8) reduces to a scaled version of
(13) from Stroock et al. (2002), reassuring our H-dependent calculations.

Exponentially accurate approximation of the effect of finite channel height. The
nominally ‘large H’ approximation to be discussed now is one of the important
contributions of the current study. It amounts to setting to zero all terms that signify
integral powers of e−H in the preceding expressions, without altering any terms that
decay algebraically with H, i.e. the terms containing integral powers of 1/H. The
important consequences from this limiting process are

W1(X, Y)=
1
2

∞∑
n 6=0

gne−|n|YeinX
+ e.s.t.(H), (3.9a)

C‖ =−S1 +
S2

H
+ e.s.t.(H)=−S1 +O(1/H), (3.9b)

S1 =

∞∑
n=1

n|gn|
2 (3.9c)

and that W2 still continues to be given by (3.6).
In (3.9) and the remainder of the article, the abbreviation e.s.t.(H) signifies terms

that decrease exponentially fast with increase of H, i.e. ‘exponentially small terms’ at
large H. The e.s.t.(H) always arise in the contribution from non-zero wavenumbers in
the dependent variables, i.e. in their harmonic (n 6= 0) parts. The convergence of the
sum S1 is crucial to the meaningfulness of large H predictions.
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The first equality of (3.9b) pertains to the large-H approximation promulgated in
the current work. The intuitively ‘cruder’ algebraically accurate estimate of C‖ given
by the second equality of (3.9b) will also be discussed shortly and later subject to
numerical evaluations.

In terms of the steps followed in §§ 3.1.1–3.1.3, the neglect of e.s.t.(H) terms in
the manner discussed above leaves the governing equations and the patterned wall
boundary condition unaffected. Also, 〈W0

〉=W0, 〈W1
〉= 0 and 〈W2

〉 remain compliant
to the boundary condition of Y = H (here no slip). However, errors that decrease
exponentially fast with increase of H are incurred at Y =H for the harmonic (n 6= 0)
parts of the functions W1 and W2. It may also be worthwhile to recall here that
imposition of boundary conditions on a non-planar boundary such as Y = εg(X) by
any domain perturbation method is only algebraically accurate in ε (Van Dyke 1987).

Interestingly, another equivalent, algebraically less cumbersome way of deriving the
large-H solution can be perceived. In this method, the exact imposition of the top wall
boundary condition can be avoided from the onset of the analysis, except for zero
wavenumber terms at each order. Thus, an effective far-field condition can instead be
specified (with certain constants for the yet-to-be-determined far field), as follows:

As y→∞, W→
Y
2
−

Y2

2H
+ (εC̃‖ + ε2C‖)

(
1−

Y
H

)
. (3.10)

Equation (3.10) can also be interpreted as a carefully chosen superposition of linear
and quadratic shear flows. On further analysis, the constant C̃‖ in (3.10) can be
evaluated to be zero due to the boundary condition on the patterned wall and the
choice of the origin on the mean line, whereas the constant C‖ comes out as given in
(3.9b). In contrast to the overall presentation of the current section, the authors could
infer the large-H relations, before formally deriving the finite-H relations using the
method outlined above. To infer the pattern-averaged streamwise velocity field 〈W〉 in
the large-H regime, the adjusted effective slip length Leff − ε

2/HS2 can be used, where
Leff is the effective slip length for the corresponding unbounded (infinite-H) shear
flow. The adjustment −ε2S2/H is a consequence of the curvature of the 〈W〉 field
(〈W〉YY = W0YY 6= 0 unlike shear flow) and arises from the application of Parseval’s
identity to the last term on the left-hand side equation (3.5b).

On evaluating the flow rate, the final large-H permeability estimate is obtained from

K̃‖ = (1− 6α2HS1)+ 12α2S2 + e.s.t.(H)+ o(ε2). (3.11)

Here and henceforth in the article, the superscript ∼ is used to signify the
exponentially accurate approximation of the finite channel height effect. The term
enclosed by brackets in (3.11) signifies an estimate of permeability based on the
expression to the right of the second equality in (3.9b), which amounts to also
neglecting terms of C‖ that are algebraically decaying in H. Incidentally, and as
discussed later in the article, the expression to the right of the second equality
(without the term under the order symbol) in (3.9b) also signifies half the effective
slip length of the patterned surface in shear flow (Luchini et al. 1991).

3.2. Transverse flow
The transverse flow is solved conveniently in terms of the streamfunction ψ defined
through U= ∂ψ/∂Y and V=−∂ψ/∂X. For Stokes flow with a specified pressure drop
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between X=−π and X=π in a channel subject to no slip and no penetration on both
the corrugated and planar boundaries of figure 1(a), the following need to be observed:

∇
4ψ = 0, (3.12a)

∂3
〈ψ〉

∂Y3
=−

1
H
, (3.12b)

ψ(X, εg(X))= 0, (3.12c)
ψY(X, εg(X))= 0, (3.12d)
ψX(X,H)= 0, (3.12e)
ψY(X,H)= 0. (3.12f )

In the following, ε= 2πe/L will be treated as a small parameter, and the asymptotic
expansions in the form ψ = ψ0

+ εψ1
+ ε2ψ2

+ o(ε2) together with the method
of domain perturbations (Hinch 1991), which involves the transfer the boundary
conditions on the curved surface ((3.12c) and (3.12d)) to Y = 0 through the Taylor
expansion ψ(X, εg(X)) = ψ(X, 0) + εgψY(X, 0) + ε2g2ψYY(X, 0)/2 + o(ε2) and a
similar expression for ψY(X, εg(X)), will be employed. Here, subscripts denote
a derivative. Since the highest-order correction evaluated in this study is ψ2, all
algebraic expressions derived in the current section will contain an o(ε2) error term.
However, for conciseness, this error will not be indicated explicitly in the equations
to follow, barring a few exceptions.

3.2.1. Leading order (O(1))
The leading-order solution is obtained by setting ε = 0 and corresponds to a flat

bottom wall at Y = 0, where the X independent streamfunction ψ0 is given by

ψ0
=

Y2

4
−

Y3

6H
. (3.13)

3.2.2. The O(ε) correction
The first correction ψ1 is governed by

∇
4ψ1
= 0, (3.14a)

∂3
〈ψ1
〉

∂Y3
= 0, (3.14b)

ψ1(X, 0)+ g(X)ψ0
Y(X, 0)= 0, (3.14c)

ψ1
Y(X, 0)+ g(X)ψ0

YY(X, 0)= 0, (3.14d)
ψ1

Y(X,H)= 0, (3.14e)

which has the solution

ψ1
=

∞∑
n 6=0

(C1nSn(Y)+D1nTn(Y))einX, (3.14f )

with constants {C1n,D1n} and functions {Sn, Tn} as given in appendix A.
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3.2.3. The O(ε2) correction
The second correction ψ2 is governed by

∇
4ψ2
= 0, (3.15a)

∂3
〈ψ2
〉

∂Y3
= 0, (3.15b)

ψ2(X, 0)+ g(X)ψ1
Y(X, 0)+

g(X)2

2
ψ0

YY(X, 0)= 0, (3.15c)

ψ2
Y(X, 0)+ g(X)ψ1

YY(X, 0)+
g(X)2

2
ψ0

YYY(X, 0)= 0, (3.15d)

ψ2
Y(X,H)= 0, (3.15e)

for which it is sufficient for calculation of the hydraulic permeability to obtain a
solution from the pitch-averaged value 〈ψ〉:

〈ψ2(Y)〉 =C⊥
(

Y −
Y2

2H

)
+D⊥, (3.15f )

where

C⊥ = 2
∞∑

n=1

(C1nS′′n(0)+D1nT ′′n (0))gn −
1
H

∞∑
n=1

|gn|
2, (3.16a)

D⊥ =−2
∞∑

n=1

(C1nS′n(0)+D1nT ′n(0))gn −
1
2

∞∑
n=1

|gn|
2. (3.16b)

Here, superscripts containing ′ denote differentiation of appropriate order in y.

3.2.4. Effective permeability
The effective permeability is obtained by K = Q(ε, H)/Q(0, H). In transverse (⊥)

flow, Q⊥(ε,H) is evaluated conveniently from

Q⊥(ε,H)= 〈ψ(X,H)〉 = 〈ψ0(X,H)〉 + ε2
〈ψ2(X,H)+ o(ε2)〉. (3.17)

As in longitudinal flow, we also provide expressions for transverse permeability not
only for arbitrary channel height but simpler expressions for a channel height large
enough to take advantage of the exponentially decaying part of the effect of H.

For arbitrary channel height. The following O(ε2)-accurate expression for the
normalized permeability is obtained with no restrictions on channel height:

K⊥ = 1− 6α2(HC⊥ − 2D⊥), (3.18)

with C⊥ and D⊥ defined through (3.16a) and appendix B. For the special case of
g(x) = cos(x), equation (3.8) reduces to a scaled version of equation (6) of Stroock
et al. (2002).

Exponentially accurate approximation of the effect of finite channel height. This ‘large
H’ approximation amounts to setting to zero all terms that signify integral powers of
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e−H in the preceding expressions, but retaining terms that depend algebraically on 1/H.
For example,

C⊥ =−2S1 +
S2

H
+ e.s.t.(H)=−2S1 +O(1/H), (3.19a)

D⊥ =−
S2

2
+ e.s.t.(H). (3.19b)

Here, e.s.t.(H) signifies terms that decrease exponentially fast with increase of H.
From a spectral viewpoint, these terms are associated at each order with non-zero
wavenumbers. Since terms of the above exponential form are needed to impose the
top wall no-slip condition on ψ1 and ψ2 but not ψ0, an equivalent way of deriving
this approximate solution would be to solve the following specific superposition of
quadratic and shear flows with a yet-to-be-determined far field which respects the top
wall boundary condition only for the zero wavenumber:

As y→∞, ψ→
Y2

4
−

Y3

6H
+ (εC̃⊥ + ε2C⊥)

(
Y −

Y2

2H

)
+ (εD̃⊥ + ε2D⊥). (3.20)

The constants (C̃⊥, D̃⊥) come out to be zero due to the no-slip boundary condition on
the curved wall and the choice of the origin on the mean line, whereas C⊥ and D⊥
come out as given in (3.19). The final expression for the permeability in transverse
flow is as follows:

K̃⊥ = (1− 12α2HS1)+ 12α2S2 + e.s.t.(H)+ o(ε2). (3.21)

Equation (3.21) is the transverse flow counterpart of (3.11) for longitudinal flow.
Comparing (3.21) and (3.11), it is clear that, for sufficiently large H, the boundary
shape g(x) affects the permeability in either principal direction through the same pair
of infinite sums S1 and S2 derived from its spectral coefficients gn.

The term enclosed by brackets in (3.21) signifies an estimate of permeability which
amounts to taking an infinitely large H in the expressions for C⊥ and D⊥ given in
(3.16a) (or evaluating C⊥ and D⊥ using the last equality in (3.19)), thus neglecting
even terms that decay much slowly (linearly) with increase of 1/H. To infer the
pattern-averaged streamwise velocity 〈U〉 field in the large-H limit, the adjusted
effective slip length Leff − ε

2S2/H can be used, where Leff is the effective slip length
for the corresponding unbounded (infinite-H) shear flow. The adjustment −ε2/HS2 is
a consequence of the curvature of the 〈u〉 field (〈U〉YY =U0YY 6= 0 unlike shear flow)
and arises from application of the Parseval’s identity to the last term on the left-hand
side of (3.15d).

3.3. Universal relationship between eigenvalues of the permeability tensor
For isolated surfaces in shear flow represented through the effective slip formalism,
a simple algebraic relationship is known to exist between the eigenvalues of the
effective slip length tensor (Kamrin et al. 2010). It is worthwhile investigating if
similar relations exist in confined flow between the eigenvalues of the effective
permeability tensor.

Unlike isolated surfaces, the permeability of a patterned surface in both principal
(eigen-) directions depends on the channel size (H) in a manner which may at
first appear non-trivial to eliminate (e.g. compare equations (3.8) and (3.18) using
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respective dependencies) or scale out. However, the situation simplifies considerably
when the dependence on H is split into exponentially and algebraically decaying parts,
as discussed above. We now derive an interconnecting relationship of comparable
simplicity to that applicable between the eigenvalues of the effective slip length
tensor (Kamrin et al. 2010). This relationship only demands the specification of
certain global hydrodynamic and metrological characteristics of the channel and the
patterned surface.

Appearance of the sums S1 and S2 in both (3.11) and (3.21) allows for the easy
elimination of any one of the two, in order to connect the large-H permeabilities K̃‖

and K̃⊥. We prefer eliminating S1 as S2 has an intrinsic geometrical (and metrological)
significance, as discussed below. Thus, the following relationship between the effective
permeability calculated in the two mutually perpendicular principal directions of the
flow is obtained:

2K̃‖ − K̃⊥ = 1+ 12α2S2 = 1+
3α2

π
〈g2
〉. (3.22)

In the second equality, Parseval’s identity has been used to eliminate the Fourier
coefficients in favour of the root-mean-squared spatial average 〈g2

〉 of the topography.
In dimensional terms,

2k̃‖ − k̃⊥ =
h2

12
(1+ 3R2

q/πh2), (3.23)

where Rq is the notation used in the field of surface metrology for root-mean-squared
roughness in distance units measured from the mean line (Whitehouse 1994). The
equations above indicate that, for sufficiently large channel thickness, a universal
relationship completely determined by the variance of the topography exists between
K⊥ and K‖ and, therefore, it may be sufficient to know only one of the pair {K‖,K⊥}
to infer the fluid fluxes parallel and perpendicular to any given direction, provided
the Rq value of the topography is known from surface metrology (Whitehouse 1994).
It can be noted that a similar universal relationship is known to exist among the
eigenvalues of the effective slip tensor on isolated surfaces (Kamrin et al. 2010;
Asmolov & Vinogradova 2012).

Similar relationships can be derived for other flow configurations, such as flow
through a channel with applied shear on the walls, free-surface flow, flow with two
identical topographic patterns on opposite walls and a combination thereof (see § 3.4).
If an otherwise identical pattern is phase shifted on the opposite wall, as may arise in
practice due to difficulties in alignment, the effect of phase shift does not appear in
the large-H theory, but can be resolved through straightforward but somewhat tedious
finite-H-theory calculations following the lines of § 3.

3.4. Adaptation of asymptotic findings to other flow configurations
Certain other boundary conditions and flow configurations that arise in practice may
be treated by straightforward alterations to the governing equations and boundary
conditions. In this section, the normalized permeabilities of certain important
configurations will be reported. For example, of relevance to SHS and LIS (Wexler
et al. 2015; Dubov et al. 2018), the boundary condition at y = H can either be
(a) a prescribed shear with zero applied pressure gradient, or (b) a no shear
condition under applied pressure gradient, or a combination thereof, as discussed in
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Wexler et al. (2015) in the context of the shear stability of the lubricants entrapped
in the longitudinal grooves of rectangular cross-section in their experiments. For shear
flows like (a), the dimensional permeability (k) can be defined analogously as before,
i.e. the flow rate of a fluid of unit viscosity through the confined passage subject
to unit tangential traction at the (solid–fluid or fluid–fluid) interface. The resultant
flow for (a) will be indicated by the subscript ‘s’, standing for shear, and that for (b)
by subscript ‘pzs’, standing for pressure-driven flow with ‘zero surface shear’. The
resultant normalized permeabilities can then be calculated by steps similar to those
described in § 3, differing only in the imposition of the top wall boundary condition.
In fact, the expressions for permeability are particularly simple, if in addition, H is
large enough to allow the neglect of terms exponentially decaying in H. They are

K̃||s = 1− 2α2(2HS1 − S2), (3.24a)

K̃⊥s = 1− 2α2(4HS1 − S2), (3.24b)

K̃||pzs = 1− 6α2(HS1 − S2), (3.24c)

K̃⊥pzs = 1− 6α2(2HS1 − S2). (3.24d)

To address channel height effects completely in longitudinal flow, S1 in the above
expressions can be replaced by the sum

∑
∞

n=1 n tanh(nH)g2
n. Corresponding expressions

containing finite height effects in transverse flow are placed in appendix B. A selection
of the above results can be used to assess the extent of shear-driven drainage of the
lubricant entrapped by more general groove shapes than the rectangular shape used in
Wexler et al. (2015), as discussed later in the article. Owing to the unique scale for
velocity used in this study, a shear flow bounded only on one side by the patterned
surface can be studied by simply observing the limit H → ∞ in all H-dependent
equations reported so far in the article. For such unconfined flows, the pitch-averaged
velocity field can be characterized by its effective slip length (Leff ), which is the
distance between the apparent origin of the flow determined from extrapolation of the
far-field velocity (as Y→∞) to the mean line. The quantity Leff is positive/negative
according as the apparent origin lies below/above the mean line. For a no-slip
topography Leff is negative.

If the above definition is applied to (3.10) and (3.20) in the limit H→∞ while
setting the constants superscripted with ∼ to zero, as discussed in their respective
following paragraphs, Leff can be found to be given by

Leff = lim
H→∞

2C‖/⊥ε2. (3.25)

Here, C is given by C‖ calculated by (3.9b) in longitudinal flow and (3.19a) in
transverse flow. Using (3.9b) and (3.19a) in (3.25), the relations Leff ,‖ =−2S1ε

2 and
Leff ,⊥ = −4S1ε

2 earlier reported in Luchini et al. (1991) and Kamrin et al. (2010)
are recovered for longitudinal and transverse flows, respectively. In the literature on
turbulent drag reduction, a parameter closely related to Leff , named the protrusion
height, is also used, which in the current notation will equal ε + Leff . More specific
details on the above three alternate flow configurations (shear driven, pressure driven
with zero surface shear and unconfined shear) are discussed later in the article,
along with demonstrations of their practical application to experimentally significant
settings from the literature in §§ 4.4 and 4.5. It may be noted here that it follows
from symmetry considerations that Kpzs is also the normalized permeability of a
two-dimensional straight channel with identically patterned walls separated by the
distance 2H.
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4. Numerical assessment and applications
Perturbation methods such as in the current study make assumptions on the size

of a small parameter (here ε = 2πe/L). Comparison with solutions from methods
which avoid this approximation is therefore useful in quantifying the errors involved
in asymptotic approximation, thereby enabling an assessment of the usability of the
perturbation method. In this section, after making specific choices for the topographies
in § 4.1, comparison with numerical results from a complementary technique, viz.
finite-element-based fully resolved solutions of the Stokes equation will therefore be
made in §§ 4 and 4.3, with an approach for improved numerical accuracy discussed
in the latter. Practical applications of the theoretical model will be discussed in §§ 4.4
and 4.5 along with experimental comparisons in the latter. Below, we discuss the
motivation as well as rationale for choosing the test topographies defined in § 4.1 for
the numerical comparisons in § 4.2.

The degree of smoothness of the topography is an important consideration in
applications of the domain perturbation method. The importance on smoothness can
be anticipated from a spectral viewpoint, as non-smooth functions have slower decay
of Fourier coefficients (Canuto et al. 1987) which can in principle cause the sum
S1 of § 3 to diverge, even if a finite variance of the surface profile will ensure that
the sum S2 remains bounded as per Parseval’s identity. There are specific studies
(Kamrin et al. 2010; Asmolov et al. 2013b), where the domain perturbation method
is shown to produce unbounded results when the boundary shape (Kamrin et al.
2010) or the degree of boundary slippage (Asmolov et al. 2013b) is given by certain
non-smooth functions. In fact, based on their calculated error bounds, Kamrin et al.
(2010) mention (p. 417) that it might be incorrect to calculate the effective slip
length of an isolated corrugated surface in the form given by (3.25), for ‘surfaces
with corners and vertical slopes’, thus anticipating difficulties with both discontinuous
and C0 smooth functions. An important example of the former is the square-wave
topography, where the Fourier coefficients have such a slow decay (∝ 1/n) that the
infinite sum S1 in the results of the previous section diverges, rendering effective slip
prediction using (3.25) and permeability predictions with (3.11) and (3.21) useless.
The difficulty with corners as they appear, e.g. in a triangular-wave topography is
less apparent and will be subject to numerical investigations below. Interestingly, for
shear flow over discontinuous stick–finite-slip patterns on a planar superhydrophobic
surface, where the ratio of the maximum slip length to the pattern pitch is small
enough to be employed as a small parameter for asymptotic analysis, Asmolov et al.
(2013b) have shown a divergence of a series similar to S1 in the coefficient of the
second-order term, in case the gauge functions are naively chosen to be powers of
the small parameter. Asmolov et al. (2013b) also present an asymptotic approach that
addresses such divergence for discontinuous waveforms. This approach crucially leads
to a gauge function of the form ε2ln(ε). However, no such analysis is available for
non-planar (corrugated) and wetted no-slip surfaces.

In this section, two test problems are set up with specific wall topography
shapes based on the above smoothness consideration. The first topography (labelled
Topography A) belongs to the infinitely differentiable or C∞ class of functions. The
second topography (Topography B), which is purposely chosen to be an example with
a corner, is a triangular wave. A striking difference between the triangular waveform
and the square waveform is the convergence of the sum S1, which motivated our
interest in the former.

In this context, it can be mentioned that the domain perturbation method is also
well known to have certain limitations in reproducing local velocity fields, such as
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FIGURE 2. Surface topography shapes for the two test cases.

inexact imposition of the no-slip condition (Van Dyke 1987). Assessment of the
velocity field predictions is therefore not an important concern for the current study.
However, for arbitrary periodic topography, our theoretical model reveals another
limitation of the domain perturbation method in velocity field prediction, through its
spectral decomposition. Depending on the smoothness of the profiles, it is desirable
that the expressions for velocity field at various orders must remain bounded (being
formed by convergent sums). The Topography B (triangular wave) discussed below
actually does not satisfy this criterion for W1 and U1; however, our subsequent
numerical assessments, perhaps counter-intuitively, reveal that accurate predictions of
the permeability (and the effective slip of unbounded surfaces) can nevertheless be
obtained for this topography. In this sense, and apprehending the findings of § 4.1,
the recommendation of Kamrin et al. (2010) based on their error bounds, to avoid
the use of the domain perturbation method for predicting the effective slip length of
cornered topographies, can be considered to be too stringent.

4.1. Test problems
Both the specific topographies to be studied here are normalized to have max(g(x))=
1, which ensures that the topography is bounded above by Y = ε. As a result, when
the relative roughness α equals unity, the peak(s) of the topographies will touch the
opposing wall. The spectra, sums S1 and S2 are evaluated in closed form as far as
possible using known results about integral forms and infinite series pertinent to the
special functions appearing below (Abramowitz & Stegun 1964).

Topography A: phase-modulated sinusoids. As seen in figure 2(a), a family of
phase-modulated sinusoids can be parameterized by a dimensionless shape factor a
as follows:

gA(X)=
cos (a cos X)− J0(a)

1− J0(a)
. (4.1)

Note that a base shift has been applied to the basic phase-modulated cosine function
cos (a cos X) to ensure 〈g〉 = 0. In addition, the denominator provides a scale shift
that ensures that the peak value of gA does not exceed unity, so that the value of ε
is indeed representative of the characteristic pattern size. Equation (4.1) exemplifies
a reasonably complex but smooth topography which can have a number of local
and global extrema tuneable with the parameter a. The three a values shown are
a = π/2, 5π/4, 5π/2. For a = 5π/4, eight extrema (four global minima, two local

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.134


891 A12-18 M. K. Dewangan and S. Datta

maxima and two global maxima) and four zero crossings occur over one wavelength
of topography, although the variance of 0.225 for gA(X) with a= 5π/4 (as calculated
from (4.2c) using Parseval’s identity) is the lowest of the three profiles shown. For
a = 5π/2, twelve extrema (six global maxima, four global minima, two additional
local minima) and twelve zero crossings occur per pattern pitch, and the variance is
also the largest (0.49). The relatively less complex (in terms of types and number
extrema) profile for a = π/2 has four extrema (two maxima and minima) with four
zero crossings but the second highest variance of 0.449 among the three a values
shown. The asymptotic variance for large a calculated from (4.2c) is 1/2, but is
reached through very slow oscillations. Although, a phase-modulated sinusoid in
time is an important waveform in signal processing and optics (Dunlop 2017), we
are unaware of any study utilizing its spatial version in the study of fluid flow
phenomena. The Fourier coefficients of Topography A are available in closed form,
thanks to Jacobi–Anger expansions (Abramowitz & Stegun 1964). Topography A can
be represented by

gA(X)=
∞∑

n=−∞

gA
n einX, (4.2a)

gA
n =

{
(−1)n/2Jn(a), if n is an even integer,
0, otherwise,

(4.2b)

SA
2 =

∞∑
n=1

|gA
n |

2
=

1
4
(J0(2a)− 2J2

0(a)+ 1)
(1− J0(a))2

. (4.2c)

A closed-form expression for SA
1 =

∑
∞

n=1 |ngA
n |

2 appears not to be available, although
p. 532 of Watson (1995) equates this sum to an iterated integral. It was found to be
convenient to approximate SA

1 to at least four-digit accuracy numerically by truncation
to a sufficiently large number of terms.

Topography B: triangular grooves. The triangular-wave topography (figure 2b) which
is represented by the wall shape given by (4.3a), and on which periodicity is imposed
by (4.3b), is a non-smooth topography possessing ‘corners’. The permeability for this
topography has a spatial and spectral description that allows the convenience of closed
forms, as revealed by the following results:

gB(x)= 2
|X|
π
− 1 in −π6 x 6π, (4.3a)

gB(X + 2π)= gB(X), (4.3b)

gB(X)=
∞∑

n=−∞

gB
n einX, (4.3c)

gB
n =

2(−1+ (−1)n)
n2π2

, (4.3d)

SB
1 =

∞∑
n=1

n|gB
n |

2
=

14
π4
ζ (3), (4.3e)

SB
2 =

∞∑
n=1

|gB
n |

2
=

1
6
. (4.3f )
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The closed forms given by (4.3e) and (4.3f ) for the sums required for the large-
H exponentially accurate calculation of the normalized hydraulic permeability of the
triangular-grooved surface are obtained using the properties of Riemann zeta functions
(Abramowitz & Stegun 1964), leading to

K̃B
‖
= 1−

12α2

π4

(
7Hζ (3)−

π4

6

)
, (4.4a)

K̃B
⊥
= 1−

12α2

π4

(
14Hζ (3)−

π4

6

)
. (4.4b)

Here, ζ stands for the Riemann zeta function for which precise enumeration/tabulation
and numerical implementations are readily available and ζ (3) = 1.20205 · · · is also
known as Apéry’s constant (Sloane 2019). Equation (4.4b) is an important closed-form
result from this study applicable for the friction factors of the oft-studied triangular
topography (Taylor 1971; Dey, Saha & Chakraborty 2018).

4.2. Numerical assessment of analytical results
The expressions for permeability provided in § 3 are expected to be accurate only for
sufficiently small values of ε. For numerical assessment of the errors arising from
the asymptotic approximation, a finite-element-method-based solution of the governing
equations and boundary conditions discussed in § 3 is obtained using the commercial
software COMSOL Multiphysics c© (COMSOL AB, Sweden). The permeability values
are calculated on the basis of the numerically calculated flow rate. Independence of
the calculated permeability values from the sizes of the unstructured triangular mesh
used in the simulation is tested for the largest reported ε (ε = 5) and for α = 0.99
(99 % channel blockage in transverse flow) up to four-digit accuracy. In transverse
flow, mass conservation was ensured between the three cross-sections at x=−π, 0,π
up to at least four-digit accuracy, and the flow rate through the x= 0 plane is used for
permeability evaluation. Any infinite sums required by the theoretical model, for which
a closed form is not reported in this article, are evaluated by numerical truncation to
at least four-digit accuracy.

In figures 3–5 the asymptotic predictions for permeability are compared against the
corresponding numerical predictions for a range of ε values. The range of ε shown
in the abscissae of this figures correspond to either <5 % error committed relative
to the numerical predictions by the arbitrary-H theory, or the pattern peaks touching
the opposite wall (α = 1), depending on which of these two limits is reached at a
smaller ε. The latter situation occurs only for figures 4(a) and 5(a). Based on the
above definition, the largest value of ε appearing in all other figures will be designated
as ε5 %

max.
In figures 3–5, whenever the arbitrary H prediction (shown as solid black lines)

is indistinguishable up to four-digit accuracy from the exponentially accurate large
H predictions, which have simpler analytical forms, only the latter (blue dashed
curves) is shown. Also, shown as dotted curves, whenever numerically comparable
predictions are obtained, are the approximations obtained from removing even the
algebraically H-decaying terms, i.e. using only the bracketed terms of (3.11) and
(3.21) to estimate the permeability. A dotted curve thus signifies the best permeability
prediction that can be obtained by using only the existing domain-perturbation-based
theoretical models (Luchini et al. 1991; Kamrin et al. 2010) for arbitrary periodic
surface topographies, which are all limited to shear flows. It is clear that, in none
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FIGURE 3. Variation of effective permeability with dimensionless characteristic pattern
size (ε) in longitudinal (a,c,e) and transverse flow (b,d, f ) for different values of a and H=
π/2 in Topography A. The solid black line, blue dashed line and black dotted line indicate
the asymptotic predictions from finite channel height theory (3.8)/(3.18), exponentially
accurate theory for the finite channel height effect (3.11), (3.21) and O(1/H) theory (only
the bracketed terms of (3.11), (3.21)). The red square symbols are data from fully resolved
numerical simulations employing the finite-element method. The range of ε values shown
in each figure corresponds to <5 % numerical error by the finite height theory.
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FIGURE 4. Variation of effective permeability with dimensionless characteristic pattern
size (ε) in longitudinal (a) and transverse flow (b) for a=π/2 and H=π/4 in Topography
A, as predicted by fully resolved simulations (symbols) and asymptotic theories. The
colour/pattern of lines with respect to different asymptotic theories have the same meaning
as in figure 3. The range of ε values shown in each panel corresponds to <5 % numerical
error by the finite height theory. The peaks of the pattern touch the planar top wall (α= 1)
at the rightmost value of abscissa in (a).

of figures 3–5, can the shear-flow model be applied at levels of accuracy comparable
to the large-H and finite-H models, although its performance is superior in transverse
flow. This can be rationalized from the algebraic decay of errors in the expressions
to the right of the second equal sign in (3.9b) and (3.19a). The shear-flow model is
therefore excluded from subsequent discussions, although it is shown in the figures.
Lubrication theory predictions of K (not shown) for thin channels which equal the
arithmetic and harmonic means over one period of the function of (1 + αg)3 in
longitudinal and transverse directions, respectively, were found to be exceedingly
inaccurate even for the smallest H studied in figures 3–5, and are therefore kept out
of consideration. The numerical errors (not shown) were monotonic with ε for all
situations studied in figures 3–5.

Figures 3 and 4 pertain to wall Topography A and show the effect of parameter
a and channel size H, respectively. Figure 5 shows the effect of channel size H
with wall Topography B. While for sufficiently small ε the asymptotic theories
are expectedly accurate, qualitatively different patterns emerge in the behaviour of
both the permeability and the error of the asymptotic prediction, depending on the
functional form of the topography and the orientation of the topography with respect
to the mean flow.

For longitudinal flow, ε5 %
max increases with miniaturization (decreasing the dimension-

less nominal channel size H) for both topographies. For transverse flow, the
corresponding εmax decreases with miniaturization for both the topographies. The
latter behaviour can be expected since, in transverse flow, a decrease of H implies
the creation of more significant blockages in the flow passage, and as ε approaches
H (α→ 1) the flow passage is completely blocked.

Figure 3 along with figure 2(a) suggest that more complex Topography A shapes
(with a larger number of extrema) have a steeper drop in the numerically calculated
permeability values with ε and also pose a stronger challenge to asymptotic theories in
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FIGURE 5. Variation of effective permeability with dimensionless characteristic pattern
size (ε) in longitudinal (a,c) and transverse flow (b,d) for different values of H in
Topography B, as predicted by fully resolved simulations (symbols) and asymptotic
theories. The colour/pattern of lines with respect to different asymptotic theories have the
same meaning as in figure 3. The range of ε values shown in each figure corresponds to
<5 % numerical error by the finite height theory, except for H =π/2 (a) in longitudinal
flow, where the numerical error is <1.67 % up to the rightmost value of the abscissa where
the peaks of the pattern touch the planar top wall (α = 1).

the sense that ε5 %
max is smaller for a= 5π/2 than a= 5π/4. Qualitatively, this finding

may be attributed to the appearance of strong velocity gradients not amenable to
asymptotic treatment. Strong gradients can be expected from both the larger variance
(0.49 versus 0.225 for a= 5π/4) as well as the more complex shape of the a= 5π/2
topography (figure 7c). The narrow wall-proximal gorges for a = 5π/2 create large
gradients in longitudinal flow; in transverse flow the tortuous path of near wall fluid
particles is also a reason for the appearance of large gradients. The larger variance
of the topography with a = 5π/2 also signifies a larger distance between peaks and
troughs and a larger ‘sidewall’ perimeter of liquid–solid contact per pitch. Despite its
relatively simple shape, the topography with a = π/2 has nearly twice the variance
(0.449) of the topography with a = 5π/4 (0.225). The ε5 %

max values for a = π/2 and
a = 5π/4 are broadly of comparable magnitude, regardless of the flow orientation.
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This finding can be interpreted in terms of an interplay between the comparable
simplicity in shape of the a=π/2 and its larger variance. The former is expected to
make the asymptotic approximations accurate, while the latter is expected to disrupt
the accuracy.

To understand the role of the shape of the topography, two distinct forms of
Topography A were chosen with the variance controlled strictly to its asymptotic
value 1/2. The a values of these topographies can be obtained by numerically finding
the roots of (4.2c) with the right-hand side set to 1/2. The two smallest roots are
a= {a1, a2} with a1 = 5.68 and a2 = 8.12. It was found that a stronger ε-dependence
of the numerically calculated permeability as well as a larger degree of inaccuracy (as
estimated by ε5 %

max) in asymptotic prediction occurred for the more complex topography
(a2 = 8.12). Thus, in addition to the role of the root-mean-square (r.m.s.) height (or
variance), the specific a-dependent shape of ‘Topography A’ plays an important
and independent role in determining the degree of (in)accuracy of the asymptotic
predictions. The ‘complexity’ of the a-dependent shape reflects in the number of zero
crossings, depth, width and number of gorges and hills. For a more ‘complex’ shape
obtained with a larger a, the asymptotic theory has the prescribed numerical accuracy
of 5 % up to a smaller ε value in comparison to that for a shape with smaller a,
even when both have the same Rq roughness.

There are observable distinctions between longitudinal and transverse flows across
all topographies. At H is lowered progressively, the large-H trend of permeability
decreasing with pattern amplitude (ε) transitions into an increase with ε in longitudinal
flow, whereas the trend of decrease of permeability with ε occurs at all H in transverse
flow. In general, the asymptotic approaches are more accurate for longitudinal flow
than transverse flow. Further, the numerical accuracy of the predictions worsens with
decreasing channel size in transverse flow, while the accuracy improves in longitudinal
flow on reducing the channel size. In transverse flow, the asymptotic theory obviously
encounters more difficulties as it has to cope with a stronger decrease of permeability
with ε, as signified by the complete flow blockage at ε = H. If H is small enough,
contact with the top wall (α= 1) poses no significant challenge to numerical accuracy
of the arbitrary-H theory in longitudinal flow, e.g. the error is <1.67 % for a triangular
wave at H = π/2 (figure 5a) and <5 % for the phase-modulated cosine at H = π/4
(figure 4a). This observation will be useful in studying an application of the theory
to the shear stability of lubricant-infused textured surfaces later in the article.

Between the two topographies, comparison of height effects in figures 3 and 4
reveals that, in the smoother topography (Topography A), the onset of the large-H
behaviour occurs at a smaller height, whereas the cornered peaks of a triangular
pattern (Topography B) exert their influence up to larger distances, requiring larger
H values for a reasonable accuracy from the large-H theory in comparison to the
smoother Topography A.

Figure 5 provides verification that the presence of corners in the triangular
profile does not preclude the asymptotic theory from providing numerically accurate
permeability predictions for a triangular profile for sufficiently small ε values. As
per the steps of our theoretical model shown in § 3, correct effective permeability
prediction necessarily requires correct effective slip prediction. The findings in figure 5
therefore contradict the directive of Kamrin et al. (2010) on the avoidance of ‘surfaces
with corners’ in using domain perturbation for prediction of effective slip, as discussed
at the beginning of current section. This finding can be anticipated theoretically from
the convergence of S1, as it follows that S1 ∝ Leff , when Leff is calculated either by
(5.1) of Kamrin et al. (2010) or equation (3.25). The latter can be recalled to be
obtained in the limit H→∞ of the current theoretical model.
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Interestingly, the effective permeability with the triangular profile is accurately
predicted, despite the fact that the series in certain intermediate results pertaining to
the local flow field such as W1 from (3.4a) and U1 from (3.14f ) (up to e.s.t.(H)) are
actually divergent.

Another consequence of the smoothness of the test topographies is corroborated by
the numerical comparisons. If the sums required for the expression for permeability
are truncated to the same number of (sufficiently large) modes, the predictions for
C∞ smooth Topography A was found to provide higher numerical accuracy than those
for C0 smooth Topography B, which can be anticipated from the faster convergence
gained from the faster asymptotic decay of the Fourier coefficients (Canuto et al.
1987) of Topography A.

4.3. Extension of the range of accuracy of the asymptotic approximations
For the usability of asymptotic approximations, ‘how large an ε’ can be admitted
by a nominally small-ε theory is an important question (Dyke 1984; Dewangan &
Datta 2019). Polynomial form approximations (even with higher orders) do not often
provide numerically encouraging answers to this question, which can be attributed
to convergence limitations imposed by the singularities in the complex ε-plane
possessed by the functions these polynomials expand in Taylor series. Although
obtaining an extended accuracy solution requires a knowledge of a sufficiently
large number of terms of the polynomial which cannot be afforded here, we note
that for any a + bε2

+ o(ε2)-form prediction in this article, an alternative form
avoiding polynomials and attempting to anticipate singularities can be heuristically
chosen as the asymptotically equivalent (1, 2) Padè (rational) approximant form
a2/(a − bε2) + o(ε2). In the typical situation, except for small H, where the
permeability decreases with ε, there is also a large-ε tendency in the numerically
evaluated scaled permeability value to saturate, which is broadly consistent with the
infinite groove depth effective slip predictions from the literature obtained by the
Wiener–Hopf method (Hocking 1976; Luchini et al. 1991). This behaviour can be
anticipated to be captured better by a rational approximant due to the presence of a
denominator. Thus, the rational approximations accessible to the current theoretical
model were subject to numerical experimentation.

Figure 6 for triangular grooves with H=2π in transverse flow over Topography B is
an example of extending the ε-range of validity using rational approximations, where
approximately 50 % lower permeability values (from ∼0.8 to ∼0.4) or permeability
at nearly three times larger ε (up to ε ' 5) can be predicted with 5 % accuracy using
the Padè approximant corresponding to the two-term polynomial approximation given
by (3.18). The polynomial approximation produces unphysical negative results at
ε ' 5 where the Padè approximant reaches five per cent error. Qualitatively similar
improvements were offered by the Padè approximant for both the topographies,
whenever permeability decreased with ε in either longitudinal or transverse flow.
For permeability increasing with ε where there is no saturation effect at large ε,
polynomial (here parabolic) approximation was expectedly (although marginally)
superior until α = 1 is reached.

4.4. Application to slippery lubricant impregnated surfaces
Biologically inspired patterned surfaces infused with a lubricant (LIS) have gained
attention for a diversity of applications for their much-desirable liquid repellency,
self-cleaning, self-healing, anti-icing, dropwise-condensation-promoting properties
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FIGURE 6. Demonstration of range extension through use of the (1, 2) Padè approximant
(dashed lines) and polynomial form (solid lines) of the asymptotic predictions for
triangular grooves with H = 2π. The symbols are from fully resolved simulations. The
range of ε values shown corresponds to <5 % numerical error by the Padè (1, 2)
approximant. The double arrow indicates the location where 5 % error is incurred by the
polynomial form approximation.
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FIGURE 7. (a) Shows a schematic of a pitch-averaged gas/lubricant cushion model of
effective slip for hydrodynamic characteristics of LIS/SHS. (b) Is an adapted reproduction
of figures 1(a) and 2(c) of Wexler et al. (2015) showing their flow cell (above) and the
rectangular groove containing the lubricant (below). (c) Is the cross-section of a conceived
complex-shaped lubricant groove under experimental conditions otherwise identical to
Wexler et al. (2015). In (a), the stripes are transverse to the period-averaged velocity 〈U〉.
Panel (b) is reproduced from Wexler et al. (2015) with permission from the American
Physical Society.
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(Wong et al. 2011), in addition to a possible capability to reduce drag (Solomon
et al. 2018). Two distinct applications of the developed theory to LIS will be
discussed. Capacity to represent the role of a complex texture analytically is a
connecting feature of the applications. For simplified modelling of these multi-phase
systems, a simplification used here will involve giving prescribed shapes to fluid–fluid
interfaces, which helps us maintain analytical tractability. In principle, more-resolved
multi-phase model(s) of flows over LIS may, however, be constructed numerically or
in the long-wave limit (Qi & Ng 2015; Sun & Ng 2017).

Roughness effects on the lubricant cushion model. Consider a submerged complex
topography underneath the interface between a lubricant (with viscosity µ2) and
the working fluid (with viscosity µ1) as shown in figure 7(a). Here, a procedure to
incorporate the effects of the topography into the pitch-averaged velocity field of
the working fluid will be shown, based on the gas/lubricant cushion model (Nizkaya
et al. 2015; Dubov et al. 2018). In principle, the interface may touch the peaks
of the topography in figure 7(a) without invalidating the subsequent description.
The macroscale (period-averaged) construction for the gas/lubricant cushion model
(Vinogradova & Belyaev 2011; Nizkaya et al. 2015; Dubov et al. 2018) for the
effective slip length Beff of the LIS referred to the mean line of the topography is
shown in figure 7(a), assuming a case favourable for drag reduction (µ1/µ2 > 1).
In figure 7(a), stripes are transverse to the period-averaged velocity 〈U〉 although in
principle the tensorial slip length (Bazant & Vinogradova 2008) formalism can be
used to generalize this description. Note that Beff must be distinguished clearly from
Leff . The latter gives the location of the effective no-slip plane for the submerged
topography with respect to the mean line. The magnitude of the negative-signed Leff
is shown in figure 7(a). As per the construction of the ‘gas/lubricant cushion model’
shown in figure 7(a), the continuity of stress and the fact that the effective no-slip
plane is shifted upward by a distance Leff due to the complex topography allows us
the following adaptation of the traditional ‘gas cushion model’ to calculate the scaled
effective slip length Beff :

Beff =

(
µ1

µ2
− 1
)

H −
µ1

µ2
|Leff |. (4.5)

Equation (3.25) of the current work can provide the Leff required in (4.5), thus
allowing the effect of topographies encapsulated by the lubricant to be evaluated
under a gas-cushion model-based effective slip formalism. It can be noted, however,
approaches to improving the local resolution of the traditional gas cushion model
employed here has been proposed, which require specification of a distribution of the
slip length over the gas–liquid interface (Dubov et al. 2018).

In figure 7(a), a provision is maintained for a film of liquid overlying the tips of the
topography, which has been found experimentally to be desirable for drag reduction
(Solomon et al. 2018), but not necessarily for shear stability of the lubricating fluid
(Wexler et al. 2015).

Shear stability of lubricant entrapped by complex groove shapes. Stability under
shear is a perceived weakness of lubricant-infused patterned surfaces that needs
to be addressed, if they are to be used in dynamic fluid environments, e.g. for
antibacterial/anti-fouling protection in the human circulatory system or on marine
surfaces. The next application is inspired by the study of shear stability of lubricant
fluid in patterned surfaces with infused lubricants conducted by Wexler et al. (2015).
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In this study, for the experimental configuration of longitudinal flow (‘worst-case
scenario’ for shear stability, to quote the authors) shown in figure 7(b), it is
demonstrated that the lubricant (in the regime µ1/µ2�1) combats the drainage effects
of shear τxy from the overlying fluid through a pressure-driven back flow arising from
the Laplace pressure at the interface with surface tension γ as a result of which an
equilibrium length L∞ of the lubricant is always adherent. According to Wexler et al.
(2015), the larger the value of L∞ the more shear stable is the surface. Equation (2) of
Wexler et al. (2015) provides an equation for L∞ applicable to rectangular grooves.
If the derivation of equation (2) as discussed in section 2 of the supplementary
material for Wexler et al. (2015) is retraced, an essential component of their model
involves evaluating the permeability for the fully developed combined shear and back
pressure driven flow in a channel of rectangular cross-section. From § 3.4 of the
current study, the permeability of the component longitudinal shear-driven (s) and
free-surface pressure-driven (pzs) flows can be evaluated for more general shapes,
using the finite-H generalization of (3.24b) and (3.24c) which, as discussed earlier,
involves replacing the sum S1 appearing in this equation by

∑
∞

n=1 n coth(n)g2
n.

Given the generality of certain results (specifically the finite-H versions of (3.24b)
and (3.24c) from § 3.4) of this study on longitudinal shear-driven (s) and free-surface
pressure-driven (pzs) flows, in this section we outline the procedure to generalize their
result to groove shapes that are more complex than rectangular.

A plausible situation where more complex topographical patterns given by a
function g(x) are used to contain the lubricant can be envisaged as shown on
figure 7(c), where the lubricant film thickness measured from the mean line is given
by H. The physical requirement of pinning the interface to the tips of the topography
(encapsulation being considered undesirable for shear stability) and the geometrical
requirement of the side ‘walls’ in addition to the bottom ‘wall’ of a complete
‘groove’ being formed by specifying the single function g(x) together with the need
for 2π-periodic extension enforce the following restrictions on the groove shape and
size: α = 1 (or ε = H) and g(±π) = max(g(x)) = 1. It is assumed here that g(X) is
so scaled that α= 1 corresponds to tips touching the interface. These restrictions are
also indicated in figure 7(c).

For such a groove, otherwise retracing the derivation of equation (2) of Wexler et al.
(2015) leads to the following proposed generalization with the new definitions written
in the notation of the current work:

L∞ =
2A
3

Kpzs‖

Ks‖
. (4.6)

Recollecting Wexler et al. (2015), the constant of proportionality is A= (hγ )/(τyxrmin),
where rmin is the minimum transverse radius of curvature on the upstream edge of the
lubricant layer (shown for rectangular grooves in figure 7b). If the quantity Kpzs‖/Ks‖

is evaluated using (3.24b) and (3.24c), it may be inferred that a complex groove
topography with a large Rq measure (leading to larger S1) for the ‘roughness’ appears
to be desirable for increasing L∞, which in turn offers improved shear stability.

It should be noted, however, that numerical comparisons in § 4 have indicated that
the small −ε theory underlying the permeability predictions is numerically accurate
even at α = 1 for sufficiently shallow (small-H) grooves. For example, for H = π/2,
the triangular grooves in figure 5(a), the accuracy at α= 1 is 1.67 %. Incidentally, the
value of H for the rectangular-wave topography fabricated by Wexler et al. (2015),
which is shown in panel (d) of figure 1 of their study, is approximately 2.8 using
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X
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g(X)

g(X)(a)
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Scalloped

2π

2a

2π

620-2

-1.0

-0.5

-0.5

-1.0
Trapezoidal (with a = π/4)

FIGURE 8. Trapezoidal and scalloped topographies. The function g(x) is shown by blue
lines, which overlie the grey-shaded solid zone.

the data provided in that work. It is worthwhile, however, to recall that the domain
perturbation approach, despite its applicability to complex groove shapes similar
to that shown in figure 7(c), does not specialize meaningfully to the rectangular
topography, because of its jump discontinuity (Kamrin et al. 2010).

4.5. Other surface topographies and experimental comparison
In this section, we study certain distinctive topographies arising in applications and
perform a comparison with experimental data from the literature. The closed-form
results presented here are obtained using known results on the infinite series pertinent
to the special functions appearing below (Abramowitz & Stegun 1964).

Topographies presenting a cusp have attracted the attention of several researchers
(Richardson 1973; Bechert & Bartenwerfer 1989), partly because of their importance
in the design of turbulent-drag-reduction riblets. Geometrically, and in terms of local
flow resolution, cusps are interesting in comparison to corners (such as in Topography
B) as the left- and right-side derivatives are not finite. The scalloped pattern obtained
by joining semicircles shown in figure 8(b) is in fact a common motif in engineering
and biology (Imani & Elbestawi 2001; McCarthy, Ring & Rana 2010). The current
spectral approach is very convenient to access the oft-used semicircle-based scalloped
pattern, as shown through the evaluation of the parameters for closed-form large-H
permeability prediction in the second row of table 1. Unlike the current study, the
cusped patterns obtained through conformal-mapping approaches in the literature
(Richardson 1973; Bechert & Bartenwerfer 1989) involve approximations to the
semi-circle, necessitated by the specific mapping functions.
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Pattern gn(n 6= 0) S1 S2

Trapezoidal
[−1+ (−1)n] cos an

π2n2
(

1− 2
a
π

) Equation (4.7)
1
6
+

2a
3π

Scalloped
πJ1(nπ)

2n
0.3498 · · ·

π2

3
−

π4

32
TABLE 1. The Fourier coefficients and sums required for large-H permeability evaluation
with trapezoidal and scalloped topographies shown in figure 8. The parameter a<π/2 for
the trapezoidal profile.

Converged predictions are provided by the current theory even for cusped profiles
(but not for profiles with jumps). The results of table 1 concerning the trapezoidal and
scalloped topographies shown in figure 8 are in closed form, except the numerically
summed S1 for the scalloped profile. The asymptotic validity of the permeability
predictions from table 1 were also numerically tested against finite-element predictions,
although not shown here for brevity.

The first row of table 1 presents parameters for trapezoidal grooves parameterized
by the distance a (figure 8a). Lecoq et al. (2004) have performed experiments on the
effect of trapezoidal wall corrugations on the drag on an approaching sphere, while
Bechert & Bartenwerfer (1989) have studied the protrusion length of trapezoidal
grooves in shear flow through conformal mapping. Trapezoidal grooves often arise
as inevitable consequences of fabrication and machining processes (Rangsten et al.
1998; Lecoq et al. 2004), even when square (a= π/2) or triangular grooves (a= 0)
are targeted. For the domain perturbation approach to give bounded permeability
predictions, the value of a must be restricted in the trapezoidal surface profile to
0 6 a < π/2, again due to its non-resolution of jump discontinuities (Kamrin et al.
2010).

We have evaluated the sum S1 required for the trapezoidal grooves shown in
figure 8(a) analytically, including an asymptotic form avoiding special functions. The
sum S1 is given by

S1 =
7ζ (3)+ 8Re(Li3(e2ia)− 1

8 Li3(e4ia))

π2(π− 2a)2

= −

14ζ (3)+ 8a2 log(a)−
100a2(907a2

− 5292)
67a4 + 5925a2 − 44 100

+O(a10)

π2(π− 2a)2
. (4.7)

In the above, Li is the polylogarithm function. The second equality obtained with Padè
approximants, although nominally valid for small a, gives <1 % error for 0 6 a <
1.355, i.e. over 86 % of the domain of definition 0 6 a<π/2.

Lecoq et al. (2004) have performed experiments inquiring about the location of the
effective no-slip plane when a sphere approaches a precisely fabricated corrugated
surface. More recent experiments with a similar configuration are available (Mongruel
et al. 2013), but for rectangular grooves, the domain perturbation approach of the
current model fails to give a bounded prediction, as discussed elsewhere in the
article and the literature (Kamrin et al. 2010; Asmolov et al. 2013b). Although
the current study mainly concerns confined flows, the location of the effective
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no-slip plane is a by-product of the current study, as per (3.25). The experimental
amplitude to pitch ratios of the trapezoidal corrugations used in Lecoq et al. (2004)
nominally appear too large for asymptotic treatment with the shear-flow limit of the
current domain-perturbation theory. However, as an heuristic approach, if rational
approximations are used to the two-term protrusion length polynomials and the
smallest amplitude (ε = 1.14) ‘Topography B’ discussed in tables 1 and 3 of that
work is studied, a prediction Leff = 0.51 is obtained following the procedure for
interpreting their squeezed-film rather than shear-flow experimental data discussed in
this study, whereas Leff = 0.47± 0.02 is reported experimentally. Thus, considering the
error bounds, an error magnitude of 4.3 %–12.8 % between the rational approximation
variant of the current theory and the experiment of Lecoq et al. (2004) is obtained.
The semi-analytical model used by (Lecoq et al. 2004) to model their experimental
data lacks a closed form, unlike the current model, but because of the inclusion
of ε orders higher than two and the subsequent range extension through Euler
transformation (Dyke 1984), it may be better suited for the specific large pattern
size to pitch ratio used in their experiments, which might explain its better accuracy
(±4.3 %) than the current model.

Note that ‘Topography B’ of Lecoq et al. (2004) is not related to the Topography
B of the current work. Note also, excepting the scalloped topography, that all
topographies studied as special cases in the current study are normalized for
convenience to have max(g(x))= 1.

It can be pointed out in the current context that Bechert & Bartenwerfer (1989)
use a slight generalization of the trapezoidal topography used here which has unequal
flat zone length on its peak and valley and evaluate the protrusion height using
Schwartz–Christoffel transformations. Closed-form results for S1 and S2 (not shown
here for brevity) and therefore the protrusion height and large-H permeability can
also be obtained for the same in a straightforward manner from the procedure used
to calculate the trapezoidal topography entries in table 1.

5. Conclusions
Analytical predictions on the effective hydraulic permeability tensor in confined

fluid flow with an arbitrarily shaped wall topography has been obtained using the
assumption of small size-to-pitch ratio of the pattern. The flowing film of fluid may
be driven either along or across the one-dimensional stripes by pressure while being
enclosed between one smooth and one patterned wall or between two patterned walls,
or between a free surface and a patterned wall or otherwise it could also be driven
by a prescribed shear. In particular, applications of the last two configurations to
slippery liquid-impregnated surfaces are demonstrated.

An important special case of the theoretical model is the large-height theory
obtained through the approach of separating the effect of finite channel size into
algebraic and exponentially decaying components. The large-height theory also implies
that the pattern-averaged streamwise velocity for both longitudinal and transverse flow
can be obtained by adapting the classical effective slip boundary condition for shear
flows to the cross-channel variation of shear rate. Using the large channel height
theory, a novel universal relationship connecting the two principal components of the
permeability tensor is derived as a function of the root-mean-squared roughness
(Rq) for channels with large (but finite) thickness to pattern pitch ratio. With
this relationship, metrological characterization of the patterned surface along with
knowledge of the permeability in any one direction will be sufficient to characterize
the flow directed at an arbitrary angle to the stripes.
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Two representative topographies formed by grooves in the shape of a phase-
modulated sinusoid and triangles which differ in their degree of smoothness are
studied as special cases. In particular, new closed-form analytical predictions for
permeability with triangular, trapezoidal and scalloped wall grooves are obtained. The
accuracy of the analytical predictions for these test problems are assessed against fully
resolved numerical simulations for two representative topographies differing in their
degree of smoothness. Corners of the form present in a triangular profile and even
cusps of the form present in a scalloped profile are not found to be an impediment
to accurate asymptotic prediction of hydraulic permeability, in contrast to an earlier
suggestions from the literature (Kamrin et al. 2010). For the infinitely differentiable
topography, the permeability is sensitive to the increase of the r.m.s. height of its
profile as well as the increase in the number of peaks and troughs per period,
when the former is fixed. In flow aligned along corrugations for either topography,
the permeability may increase as well as decrease with increasing amplitude of
corrugations depending on the channel size. In flow across corrugations, permeability
always declines. Analytical approximations with an extended domain of numerical
accuracy, which render the theory more useful at pattern sizes which are nominally
‘not small’, are also proposed.

Several applications of the theory to areas of technological importance, such
as predicting the shear stability of liquid-infused surfaces and drag reduction, are
demonstrated in the current study, along with an experimental comparison for
trapezoidal grooves. The future work may attempt to generalize the findings for
arbitrary topography shapes to other flow types (e.g. electrokinetic flow (Datta
& Choudhary 2013; Ghosh & Chakraborty 2015)), allow the fluid to undergo
hydrodynamic slippage, treat flows with inertia (Tuck & Kouzoubov 1995) and
stratified two-phase flows (Wexler et al. 2015) for lubricant-impregnated textured
surfaces. A formalism connecting the modelling of wetted surfaces to that of
superhydrophobic surfaces of similar shape, e.g. the trapezoidal shapes of the current
study and Zhou et al. (2013), for which a heuristic foundation is already laid by
Mongruel et al. (2013), would also be welcome.

Declaration of interests
The authors report no conflict of interest.

Appendix A. Expressions used for predicting channel height effects in pressure-
driven flow with one patterned and one no-slip wall

The constants and functions introduced in (3.14f ) are given by

Sn(Y)= e−|n|Y − (1+ 2|n|H)e−2|n|He|n|Y + 2|n|Ye−2|n|He|n|Y, (A 1a)
Tn(Y)= Ye−|n|Y − 2|n|H2e−2|n|He|n|Y + Y(−1+ 2|n|H)e−2|n|He|n|Y, (A 1b)

C1n =−
Tn(0)gn

2(Tn(0)S′n(0)− T ′n(0)Sn(0))
, (A 1c)

D1n =
Sn(0)gn

2(Tn(0)S′n(0)− T ′nSn(0))
. (A 1d)

Appendix B. Transverse permeability in free surface and forced shear confined
flows with finite channel size effects

With the mean line of topography pattern at Y = 0, if either a zero shear surface
(such as an undisturbed interface of a flowing fluid with another quiescent fluid of
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lower viscosity) exists at y=H or an identically patterned wall exists at Y = 2H, Kpzs
gives the normalized permeability of the H thick film for the former case and a 2H
thick film for the latter case. The permeability of the purely shear-driven flow with
prescribed shear at y=H is given by Ks. The finite-H expressions are as follows:

K⊥pzs = 1− 6α2(2HC⊥s − 2D⊥s + S2), (B 1a)

K⊥s = 1− 2α2(4HC⊥s − 2D⊥s − S2), (B 1b)

C⊥s =
1
2

∞∑
n6=0

(C1nS′′n(0)+D1nT ′′n (0))gn, (B 2a)

D⊥s =−
1
2

∞∑
n 6=0

(C1nS′n(0)+D1nT ′n(0))gn −
S2

2
, (B 2b)

with S2 as defined in (3.6d). The constants and functions required by (B 2) are

C1n =−
Tn(0)gn

(Tn(0)S′n(0)− T ′n(0)Sn(0))
, (B 3a)

D1n =
Sn(0)gn

(Tn(0)S′n(0)− T ′n(0)Sn(0))
, (B 3b)

Sn(Y)= e−|n|Y − e−2|n|He|n|Y, (B 4a)
Tn(Y)= Ye−|n|Y − 2|n|He−2|n|He|n|Y + Ye−2|n|He|n|Y . (B 4b)
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