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Abstract

There has been much recent interest in developing data-driven models for weather and climate predictions. However,
there are open questions regarding their generalizability and robustness, highlighting a need to better understand how
they make their predictions. In particular, it is important to understand whether data-driven models learn the
underlying physics of the system against which they are trained, or simply identify statistical patterns without any
clear link to the underlying physics. In this paper, we describe a sensitivity analysis of a regression-based model of
ocean temperature, trained against simulations from a 3D oceanmodel setup in a very simple configuration.We show
that the regressor heavily bases its forecasts on, and is dependent on, variables known to be key to the physics such as
currents and density. By contrast, the regressor does notmake heavy use of inputs such as location, which have limited
direct physical impacts. The model requires nonlinear interactions between inputs in order to show any meaningful
skill—in line with the highly nonlinear dynamics of the ocean. Further analysis interprets the ways certain variables
are used by the regressionmodel.We see that information about the vertical profile of the water column reduces errors
in regions of convective activity, and information about the currents reduces errors in regions dominated by advective
processes. Our results demonstrate that even a simple regression model is capable of learning much of the physics of
the system being modeled. We expect that a similar sensitivity analysis could be usefully applied to more complex
ocean configurations.

Impact Statement

Machine learning provides a promising tool for weather and climate forecasting. However, for data-driven
forecast models to eventually be used in operational settings we need to not just be assured of their ability to
perform well, but also to understand the ways in which these models are working, to build trust in these
systems. We use a variety of model interpretation techniques to investigate how a simple regression model
makes its predictions. We find that the model studied here, behaves in agreement with the known physics of
the system. This works shows that data-driven models are capable of learning meaningful physics-based
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patterns, rather than statistically valid but potentially spurious links, strengthening trust in the suitability of
these systems for forecasting.

1. Introduction

1.1. Data-driven models for weather and climate

Applications of machine learning (ML) in weather and climate modeling, of both the ocean and the
atmosphere, have seen a huge rise in recent years. Traditionally, weather and climate predictions rely on
physics-based computational models of the Earth system, hereafter referred to as simulators or general
circulation models (GCMs). Recently, a number of papers have focused on creating statistical/data-driven
models for a variety of physical systems (Miyanawala and Jaimana, 2017; Pathak et al., 2018; Breen et al.,
2020). These show the ability of statistics and ML to complement existing methods for predicting the
evolution of a range of physical systems.

Lorenz models (Lorenz, 2006) are often used as a simple analogous system for weather and climate
models as they have similar properties albeit in a considerably simplified way. Many data-driven models
of the Lorenz equations have been developed and assessed (i.e., Dueben and Bauer, 2018; Chattopadhyay
et al., 2019; Doan et al., 2019; Scher and Messori, 2019a). These results show that data-driven methods
can capture the chaotic dynamics of the Lorenz system, and make skilled, short-term forecasts. A number
of papers (Dueben and Bauer, 2018; Scher, 2018; Scher and Messori, 2019b; Weyn et al., 2019;
Arcomano et al., 2020; Rasp and Thuerey, 2021) go further and apply statistical and ML methods to
simple weather prediction applications, using a variety of model architectures, and training on both
observational data and GCM output. Rasp et al. (2020) looks to standardize and formalize comparison of
these methods. They propose a common dataset and test experiments, creating a common framework for
assessing methods for predicting the short-term evolution of the atmosphere. The development of this
field provides great promise for weather and climate predictions, with the demonstration of skillful
forecasts, which could one day be used to provide efficient operational forecasts to complement existing
physics-based GCMs.

1.2. Interpretable machine learning

Using data-driven methods in place of physics-based GCMs raises questions about how these models
are making their predictions, and the reliability, trustworthiness, and generalizability of these models
(McGovern et al., 2022). GCMs are based on known physics, meaning a single model can be used to
reliably predict a variety of regimes. Data-driven models are instead dependent on the data used during
training and the patterns learned by the model. The ability of a data-driven model to generalize, that is,
to make skillful predictions for data which differs in some way to the data seen in the training set,
depends on how the predictions are being made. If statistically robust patterns or links are found that
hold well within the training data, but which ultimately have no physical basis, then we would not
necessarily expect these models to perform well on data outside of the training set. For new examples,
which bear little similarity to that seen in the training data and which are not close to any training
examples in feature space, that is, extreme events not included in the training set, any nonphysical
patterns that were learned are unlikely to hold and the model will not necessarily be expected to perform
well. By contrast, if the performance over the training data is skillful because the model is learning
meaningful physical links between the input and output variables, then we would expect the model to
perform well for any data that exhibit these same physics, irrespective of the similarity to training
samples. If data-driven methods for predicting weather and climate systems are able to learn the
underlying dynamics of the system, rather than statistically valid but nonphysical patterns between
inputs and outputs, we have increased confidence that these systems can be usable for a wide variety of
applications.
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A number of techniques exist to understand the sensitivity of data-driven models, and to interpret
how they are making their predictions, giving insight into their generalizability and reliability (Lipton,
2018;McGovern et al., 2019;Molnar et al., 2020). These techniques seek to help us understand not just
whether a model is getting the right results, but if the models are getting the right results for (what we
consider to be) the right reasons, that is, by learning meaningful physically consistent patterns. There
are a number of model interpretation and visualization techniques, which focus on different elements
of interpretability. Methods look at both identifying which features are important to a model
(i.e., sequential search [Stracuzzi and Utgoff, 2004], impurity importance [Louppe et al., 2013;
Breiman, 2001], permutation importance [Breiman, 2001]) and assessing how certain features are
used by the model (i.e., partial dependence plots [Friedman, 2001] and saliency maps [Simonyan et al.,
2013]). These methods seek to answer subtly different questions about how amodel is working, and so
it is common to use a variety of model interpretation techniques in parallel. Techniques that assess
feature importance highlight which features are fundamental to the forecast, but not how these are
being used. By contrast, methods that look at how features impact the forecast do not indicate the
relative importance of these features for the predictions. As data-driven methods become more
commonly used in weather and climate applications, so does an analysis into the interpretability of
these models (McGovern et al., 2019; Mcgovern et al., 2020; Barnes and Barnes, 2021; Rasp and
Thuerey, 2021).

1.3. Sensitivity study of a regression model of ocean temperature

The studies mentioned previously focus on atmospheric evolution, whereas, here, we focus on oceanic
evolution.We develop a data-drivenmodel to predict the change in ocean temperature over a day based on
data from aGCMof the ocean, and then interpret this model through a variety of methods. The underlying
physics explaining the dynamics of the Earth system is consistent across the atmosphere and the ocean.
While there are many differences between atmospheric and ocean dynamics, for example, the temporal
and spatial scales of interest, and compressibility of the fluid, these systems are driven by similar physics
(Marshall et al., 2004). As such, the skills shown in using data-driven methods for predictions of the
atmosphere (see references in Section 1.1) suggest that these same methods could provide skillful
predictions for the evolution of the ocean.

The model developed here is highly simplified, both in terms of the idealized GCM configuration on
which we train the model, and the data-driven methods used. However, the underlying configuration
(Munday et al., 2013) captures key oceanic dynamics, enabling a suitable test bed to see if data-driven
methods can capture the dynamical basis of these systems. Similarly, while we use a simple regression
technique, this has sufficient skill to assess the ways in which the model works and to improve
understanding of the potential of data-driven methods more generally.

We apply model interpretation techniques to our data-driven model to try to understand what
the model is “learning” and how the predictions are being made, and compare this with our
prior knowledge of the ocean dynamics. We analyze the sensitivity of the regressor to its input
variables, firstly through a direct analysis of the coefficients of the resultant model to show which
variables are heavily used in the forecasts, and secondly through withholding experiments to
indicate which variables are necessary for producing skillful forecasts. Lastly, we further analyze
some of the withholding experiments to infer how some of these key variables are contributing to the
predictions.

Section 2 discusses methods: the GCM we use to create our training and validation dataset; the
regressor we develop; and the sensitivity analysis we perform. Section 3 discusses the skill of the
developed regressor. Section 4 explores the sensitivity of the regressor to its inputs. The results and their
implications are discussed in Section 5.

Rachel Furner et al. e11-3

https://doi.org/10.1017/eds.2022.10 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2022.10


2. Methods

2.1. Simulator-generated dataset

2.1.1. Simulator configuration
Our training and validation data come from running the Massachusetts Institute of Technology general
circulation model (MITgcm). This is a physically based model capable of simulating the ocean or the
atmosphere due to isomorphisms in the governing equations (Marshall et al., 1997a,b). Specifically, we
use a 2° sector configuration following Munday et al. (2013) to simulate ocean dynamics. This
configuration features a single ocean basin, with limited topography, simplified coastlines, and constant
idealized forcing. This has been used in a number of idealized simulations of Southern Ocean processes
and their impacts on the global circulation (Munday et al., 2014). This configuration, while relatively
simple, captures the fundamental dynamics of the ocean, including a realistic overturning circulation. The
configuration is briefly described here, with key parameters given in Table 1. For further details, the reader
is referred to Munday et al. (2013).

The domain runs from 60° S to 60°N, and is just over 20°wide in longitude. The domain is bounded by
land along the northern (and southern) edge, and a strip of land runs along the eastern (and western)
boundary from 60° N to 40° S (see Figure 1a). Below this, in the southernmost 20°, the simulator has a
periodic boundary condition, allowing flow that exits to the east (west) to return to the domain at the
western (eastern) boundary. The domain has flat-bottom bathymetry of 5,000 m over most of the domain,
with a 2° region of 2,500-m depth at the southernmost 20° of the eastern edge (i.e., the spit of land forming
the eastern boundary continues to the southern boundary as a 2,500-m high subsurface ridge).

The simulator has 42 (unevenly spaced) depth levels, following a Z-coordinate, with the surface layer
being the thinnest at 10m, and the bottom 10 levels being the maximum at 250m. There are 11 cells in the
longitudinal (x) direction, and 78 cells in the latitudinal (y) direction. The grid spacing is 2° in the
latitudinal direction, with the longitudinal spacing scaled by the cosine of latitude to maintain approxi-
mately square grid boxes (this means that grid cells close to the poles are about a factor of 4 smaller in area
than those near the equator, but all cells remain approximately square). The simulator has a 12-hr time step
(two steps per day), with fields output daily.We focus on daily-mean outputs, rather than the instantaneous
state.

Table 1. Key parameter information for MITgcm simulation.

Parameter Value

Grid spacing (horizontal) 2°

Vertical levels 42 unevenly spaced vertical levels, with spacing ranging from 10 to 250 m

Harmonic viscosity (momentum) 0:0075m4=s

Vertical viscosity (momentum) 10�3m2=s

GM coefficient 1,000m4=s

Reference diapycnal diffusivity 3e�5m2/s

Wind stress 0:2sin2 π θþ60ð Þ=30½ �N=m2 for�60< θ<�30

Restoring timescale for salinity 30 days

Restoring salinity 34þ3=2ð1þ cosðπθ=240ÞÞPSU
Restoring timescale for potential temperature 10 days

Restoring potential temperature 30sin π θþ60ð Þ=120½ �°C for theta< 0

5þ25sin π θþ60ð Þ=120½ �°C for theta> 0

Abbreviations: GM, Gent–McWilliams; MITgcm, Massachusetts Institute of Technology general circulation model.
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At 2° resolution, the simulator is not eddy-resolving, but uses the Gent–McWilliams
(GM) parameterization (Gent and Mcwilliams, 1990) to represent the effects of ocean eddy transport.
We ran the simulator with a strong surface restoring condition onTemperature and Salinity (see Table 1)—
thus fixing the surface density.We applied simple jet-like wind forcing, constant in time, with a sinusoidal
distribution (see Table 1) between 60° S and 30° S, with a peak wind stress value of 0.2 N/m2 at 45° S.

2.1.2. Ocean dynamics
We are interested in predicting a change in temperature between two successive daily mean values.
Figure 1a–f shows the daily mean temperature for a given day, along with the 1-day temperature change
and the standard deviation in temperature across the 20-year simulation, for cross sections at 25-m depth

Figure 1. Plot of simulator temperature (°C) at 25 m below the surface (a) and at 13° E (d), for one
particular day. Change in temperature between over 1 day at 25 m below the surface (b) and at 13° E (e).
Standard deviation in temperature at 25 m below the surface (c) and at 13° E (f). Time series at 57° N,
17° E, and �25 m (g), and at 55° S, 9° E, and �25 m (h). Note that the depth axis is scaled to give each
GCMgrid cell equal spacing. The simulator shows a realistic temperature distribution with warm surface
water near the equator, and cooler water near the poles and in the deep ocean. Temperature changes are
largest in the very north of the domain and throughout the southern region. Though changes per day are
small, they accumulate over time to give cycles of around 0.2° in some regions of the domain.
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and 13° longitude. Panels g and h show a time series of temperature for a point in the northeast of the
domain, and a point in the Southern Ocean region.

From Figure 1, we can see that the simulator represents a realistic temperature distribution, with warm
water at the surface near the equator and cooler water nearer the poles and at depth. The largest changes in
temperature over a day are located in the south of the domain, and in a small region in the very north. These
changes result predominantly from the local vertical activity associated with the meridional overturning
circulation (MOC)—a wind- and density-driven circulation that is characterized by water sinking in the
north, traveling southward at depth, and then upwelling in the south, where it splits in two, with some
water returning northward near the surface, and some re-sinking to the south and returning north at depth
(Talley, 2013; Rintoul, 2018). This circulation occurs on timescales of hundreds to thousands of years
(this is the time taken for water parcels to complete one revolution); however, this large-scale circulation is
the accumulation of the local vertical movements happening at very short timescales seen here. The
largest daily temperature changes seen in the far north and south of this domain are the short timescale
changes associated with this large-scale circulation. The MOC reflects the density profile, which itself
arises from the surface forcing (the restoring term on temperature and salinity) and the wind forcing.
Further details of the model dynamics, in particular assessment of the contribution of different processes
to temperature change in the model, can be found in Appendix A.While we see from Figure 1b,e the daily
changes in temperature are small, we see in Figure 1g,h that they accumulate to give far larger changes in
temperature, up to 0.2°C per year, that is, on the order of 5�10�4°C per day. As such, the changes that we
see are significant in terms of the temperature variability that the model shows. Furthermore, predicting
these small changes accurately is essential in enabling us to capture the larger trends happening over
longer timescales, when using models that forecast iteratively over many time steps.

2.1.3. Training and validation datasets
Input and output data for training and validating the regressor come from a 70-year run of this simulator.
The first 50 years of the run are discarded, as this includes a period where the model is dynamically
adjusting to its initial conditions, which may be physically inconsistent. During this period, the evolution
of the simulator is driven by this adjustment, rather than the more realistic ocean dynamics, which we are
interested in; hence, we exclude these data. This leaves 20 years of data, which are used for training and
validating the model. As the GCM sees a constant wind forcing and a consistent restoring of surface
temperature and salinity, if left to run for long enough (thousands of years), the system would reach a
quasi-steady state; however, the 20-year period used here is prior to the model reaching this quasi-steady
state.

The data are highly autocorrelated, that is, fields are similar, particularly when considering fields that
are temporally close. This strong autocorrelation, found in many weather and climate applications,
impacts the ability of the algorithm. Therefore, as is common practice, we subsample in time to remove
some of the codependent nature of the training data, optimizing the ability of the data-driven method.
There are also computational constraints limiting the total size of our dataset. This leads us to choose a
subsampling rate of 200 days, so every 200th field from the simulator is used in the dataset, and the rest
discarded. This provides a balance between having large datasets (which in general benefit the algorithm),
while also fitting within computational constraints, and limiting autocorrelation within the dataset. While
this samples only around 40 temporal fields, the forcing is constant in our simulator and so we expect the
dynamics to be reasonably consistent across time and therefore it is not necessary to sample across a large
range of temporal fields.

To clarify, the subsampling is the time between sample fields used to train and validate the model. This
is in noway connected to the time of the prediction step, which in this work is 1 day.While acknowledging
that there is little variation in the dynamics over time, we still expect that the temperature change between
Day 0 and Day 1 is similar to the temperature change between Day 1 and Day 2, but less similar to the
temperature change between Day 200 and Day 201. In order for any data-driven method to learn well, we
need to provide a set of training samples that is large enough, and which are as different as possible, and
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adequately sample the variation in 1-day temperature change. Here, we ensure this by taking our first
sample from fields at t = 0 and t = 1, our second sample from fields at t = 200 and t = 201, and so forth.

This dataset is then split into training, validation, and test data with a split of 70–20–10. The data are
systematically split temporally, so the first 70% of samples are used as training data and so forth, meaning
that each dataset contains data from different temporal sections of the run, maximizing independence
across the datasets. For every 200th pair of days, we take all grid points from the model interior. We
exclude points next to land and points at the surface and seabed, as the algorithm developed here is not
suitable for forecasting these points—the regressor requires input from surrounding points, and so is only
suitable for predicting the interior of the domain. We do not subsample in space, as the domain is
reasonably small and the dynamics varies considerably across it, meaning that subsampling in space can
lead to some dynamic regimes being entirely missing from the dataset. This gives us approximately
650,000 training samples, 200,000 validation samples, and 100,000 test samples.

2.2. Regression model of ocean temperature

We develop a regression model to predict the daily mean change in ocean temperature for any single grid
cell, based on variables at surrounding locations at the current time step. The regressor is defined such that
it outputs temperature change at a single grid cell rather than predicting for the entire domain, but the cell
being predicted can be any of the cells in the domain interior—the regressor is not limited to predicting for
a specific location.

Equation (1) shows the formulation of the regressor.

ŷ =
XNf

i=1

βixiþ
XNf

i,j=1

i<j

γi,jxixj: (1)

Here, ŷ is the output from the regressor—an estimate of the change in daily mean temperature over a day
for the grid cell being predicted. This is calculated as the mean temperature at the next day (tþ 1) minus
the mean temperature at the present day (t).Nf is the number of input features used in the model. βi and γi,j
are the weights of the regressor, which are learnt during the training phase. xi and xj are the input features
being used to make the predictions.

Input variables are temperature, salinity, U (East–West) and V (North–South) current components,
density, U, V, andW (vertical) components of the GM bolus velocities, sea surface height (SSH), latitude,
longitude, and depth. The GM bolus velocities are a parameterization of the velocities resulting from
ocean eddies and are used in the GM scheme to calculate the advective effects of eddy action on tracers.
For 3D variables (temperature, salinity, current components, density, and GM bolus velocity compo-
nents), input features are taken from a 3� 3� 3 stencil of grid cells, where the center cell is the point for
which we are predicting, giving 27 input features for each variable. For SSH, which is a 2D variable, the
values over a 2D (3 � 3) stencil of surrounding locations are included, giving a further nine features.
Lastly, the location information (latitude, longitude, and depth) at only the point we are predicting is
included, giving the final three input features. All temporally changing variables are taken at the present
day (t). In total, this gives Nf = 228 features, represented by the first term in equation (1).

We also include second-order pairwise polynomial terms, in order to capture a limited amount of
nonlinear behavior through interaction between terms. This means that as well as the above inputs, we
have multiplicative pairs of features, represented by the second term in equation (1). Note that we include
second-order interactions between different features, but not squared terms, as we are interested in
representing the interaction between different features through this term. This gives 26,016 input terms in
total.

The model design means that all physical ocean variables at surrounding points are included in the
prediction, as these are likely to impact the change in temperature at the central point. Geographic
inhomogeneity in the dynamics is accounted for through inclusion of the location information.
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Furthermore, the combination of this geographic inhomogeneitywith physical ocean variables is included
to a limited extent through some of the multiplicative terms in equation (1) (those terms that are a
combination of latitude, longitude, or depth with a physical variable input). Lastly, the nonlinear
interaction between physical ocean variables is also included to a limited extent through the remainder
of the multiplicative terms. All input variables are normalized prior to fitting the model by subtracting
their mean and dividing by their standard deviation.

2.2.1. Limitations of the model
It should be noted that the model is a simple regressor, to allow for easy analysis of sensitivity. This,
however, limits how accurately the model can fit the data, and how well it can represent the underlying
system. In particular, we know the ocean to be highly nonlinear, but allow only second-order polynomial
terms in the regressor, restricting the level to which it can capture the true dynamics.

The regressor here takes input data from only immediately surrounding grid cells, meaning that it has
no information about what is happening in the wider domain. This potentially prevents the regressor from
making predictions far ahead, when the wider ocean state has more influence, but for the short time steps
being forecast here (1 day), this local information is expected to be sufficient. Indeed, here, we aremaking
predictions at time steps only double that used in the GCM—where the change at each cell is based
predominantly on the state of only immediately surrounding cells.

Lastly, we note that many existing papers looking at data-driven forecast systems focus on developing
methods that can be applied iteratively to provide an alternative forecast system able to predict an arbitrary
number of time steps ahead. However, themodel described herewould not, in its current form, be usable to
produce an iterative forecast in this same way. Our work is motivated by these examples of data-driven
models that are used iteratively to produce a forecast, but our interest is not in deriving a data-driven
analog of the MITgcm simulation, which might one day be used in place of the original simulator, but
simply in assessing the sensitivity of a data-driven model to different variables. Focusing our sensitivity
analysis on single time-step predictions means that we remain focused on the sensitivity of the model
directly, rather than any potential artifacts of the forecast associated with the iteration. The inability of the
model to iterate is therefore not an issue for the focus of this work.

There are two reasons why our existing setup is unable to iteratively forecast. First, the regressor
requires a wider set of inputs than the outputs it produces, and so iterative forecasting would require some
means of generating variables other than temperature to provide the full set of inputs to the regressor at all
time steps, that is, wewould require a number of regressionmodels, forecasting all variables. As our focus
onmodel sensitivity is best addressed through focusing on a single variable with a singlemodel, we do not
attempt that here. Second, this model is unable to forecast near the boundary as it requires a full set of
neighboring input points. We chose to focus our work on an ocean application; however, this introduces
the additional challenge of dealing with a land–sea interface. To the best of our knowledge, this has not yet
been approached from a data-driven perspective. As the focus of this work is on assessing the sensitivity of
the model, we chose not to attempt solutions to this problem here, but instead to work with a model
suitable for the ocean interior only.

We believe that focusing on a single variable and using an easily interpretable data-driven model best
allows us to assess the dependencies and sensitivities of an example data-driven model. Furthermore,
while our model is not capable of iterating, the analysis carried out and the conclusions around the
sensitivity and trustworthiness of our model are still relevant to the wider discussion of sensitivity of data-
driven models.

2.2.2. Training the regressor
The model is trained by minimizing least-squared errors with ridge regularization (Hoerl and Kennard,
1970). Training a standard least-squared model amounts to finding values of the coefficients (βi and γi,j),
which minimize the squared difference between the regression model predictions and the actual outputs
taken from the GCM over the training dataset. In any application of a regression model, it is expected that
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the model will be used on data other than that used in the training of the model. To ensure that the model
performs well on unseen data, we want to ensure that that model learns the general pattern of the data,
rather than specifically fitting to every point in the training data. This is particularly important where
datasets are known to contain noise, as here fitting the data exactly would mean “learning” the noisy
representation of the system that the data portrays, rather than learning the underlying system itself.
Regularization techniques are applied to avoid the problem of overfitting (of matching the training data
exactly) and work to limit the level at which the model can fit the data, ensuring that the model can
generalize well—that is, it still performs well on new unseen data that share the same underlying
dynamics. Ridge regression is one such regularization method, which works by minimizing the size of
the coefficients as well as themodel errors.When using ridge regression, an additional term is added to the
loss function, so the training now focuses onminimizing a combination of the square errors and the sumof
the magnitude of the βi and γi,j values, with α acting as a tuning parameter determining the balance
between these two terms.

We use a very small value of α=0:001. This was found through cross-validation with the values of α
ranging from 0.001 to 30.With larger values, the regressor performed poorly, particularly when predicting
larger temperature changes. Given that the dataset comes from simulator output, we know that, in this
case, noise or measurement error is not an issue, so the need for regularization is limited. Similarly, while
we have a large number of weights in our equation, the size of our training set is very large compared with
this, which already acts to limit overfitting. Because of this, we find that only very small values are
necessary.

2.3. Sensitivity studies

Wewish to investigate the sensitivity of the regressor to its inputs in order to understand the ways in which
the regressor is making its predictions. We do this in three ways. First, we directly assess the coefficients
(weights) used in the resulting regressor. This indicates which features are being most heavily used in the
predictions. Second, we run a series of withholding experiments, and this indicates which inputs are most
necessary for accurate forecasts. Lastly, for the inputs that thewithholding experiments identified as being
most critical to forecasts, we assess the impact these have on errors, giving insight into how these inputs
effect the forecasts.

We assess the coefficients simply through plotting a heat map of coefficients (Figure 4 and
Section 4.1). Inputs that are highly weighted by the regressor (those with large coefficients) are important
to the prediction, whereas those with low weights can be considered as less important for the predictions.

Alongside this, we run a series of withholding experiments (Table 1 and Section 4.2). For each of the
variables described in Section 2.2, with the exception of temperature, we train a new regressor leaving out
that one variable group, for example, we train a new regressor with all the existing inputs except for
salinity at all surrounding points and any multiplicative terms including salinity. This corresponds to
running the first pass of a Backward Sequential Search interpretability analysis. We also run two further
withholding experiments. In the first, we assess the importance of providing information in the vertical
neighborhood of points. Instead of the 3D stencil originally used, we take a 2D neighborhood of points
(3 � 3) in only the horizontal direction, thus giving nine inputs for each of temperature, salinity, and so
forth. Lastly, we also run without multiplicative terms, that is, the model consists of only the first term in
equation (1), giving a purely linear equation, enabling us to assess the impact of nonlinearity on
predictions. The new regressors are trained in exactly the sameway, using the same training and validation
samples—the only difference being the number of input features used. Comparing results from these
withholding experiments to the control run show the importance of the withheld variable—if error
increases significantly, then the variable is necessary for accurate predictions. However, if the impact on
error is small, the regressor is able to make predictions of similar accuracy with or without that variable,
indicating that it is not needed for good predictions.

While these two methods (coefficient analysis and withholding experiments) help to indicate the
feature importance in the model, it should be noted that they highlight different aspects of the importance
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of the input features. Looking at the coefficients of the trained regressor helps to identify which inputs are
being most heavily used for the predictions from that particular regressor. By contrast, the withholding
experiments indicate which variables are necessary to get predictions with the level of accuracy shown in
the control. There may, for example, be scenarios where certain variables are heavily weighted and
flagged as important through the coefficient analysis, but when these same variables are withheld, the
regressor re-weights other variables during the training step and maintains a similar level of accuracy due
to correlations and the strong codependency of ocean dynamics on multiple variables. Coefficient
analysis helps us to understand how a particular instance of a regressor is working, whereas the
withholding experiments help us to understand the impact and importance of each variable in creating
skillful regression models more generally.

Lastly, we analyze the resultant models from the three worst-performing withholding experiments. We
look at scatter plots of truth against prediction and spatial plots of averaged absolute error to see how these
models perform. We compare the average error plots to average errors in the control run (a run with all
inputs) to see where errors are increased. We then compare this with the dominant processes driving
temperature change in those regions (Figures A1 and A2) and our expectations based on prior knowledge
of ocean dynamics to assess if the regressors respond in the ways we expect.

3. Performance of the Regressor

First, we discuss the performance of the control model—the regressor which is trained using the full set of
previously discussed inputs. The predictions from the regression model closely resemble the true change
in daily mean temperature in both the training and validation datasets (Figure 2) although there is a
tendency to underpredict the magnitude of temperature changes.

The model captures the central part of the distribution well. While the majority of the temperature
change is dominated by small near-zero changes, capturing these is key to producing a good forecast
system. Although the complete development of a data-driven forecast system is not the focus of this work,
we are motivated by the potential for data-driven methods to replicate traditional forecast systems. As
such, the ability of themodel developed here to capture the full range of dynamic behavior, beginningwith
the most common dynamics, is key.

To a lesser extent, the regressor also captures the tails of the distribution, where temperature changes
are larger, although the underprediction is more significant here. However, it is noteworthy that the model
still shows some skill for these points, given that the model used is very simple and there are a relatively
limited number of training samples in the tails—of the over nearly 650,000 training samples, just over
500 of those samples have temperature changes in excess of�0.001°C. Despite the relatively rare nature
of these larger temperature changes, we feel that capturing these alongside the smaller changes is
important in building a robust model. The underlying dynamics of the system, which we hope the
regression model is able to learn, drives the full range of temperature changes seen. As such, if we build a
regressor which is unable to capture the extreme levels of change, this would indicate that the model is not
fully learning the physical dynamics aswas intended. Capturing these extremes is also critical to obtaining
a model which could (with further development) lead to a feasible alternative forecast system. Given the
simplicity of the regressor used here, it is promising that it captures the extremes to the limited extent
shown. However, the results also identify the need for more sophisticated methods that can better capture
both the dominant dynamics and the extreme cases.

Table 2 reports root-mean-square (RMS) errors for this run (top row) in comparison with a persistence
forecast (bottom row). A persistence forecasting is a forecast of no change—in this case, to forecast zero
temperature difference. It is important to consider RMS errors in relation to a benchmark forecast, to
distinguish between the difficulty of the problem being studied and the skill of the model being used.
Persistence forecasts are commonly used as a benchmark in forecasting and provide a statistically good
predictor for this problem due to the limited temperature change across most of the simulator domain.
However, we can see that the regressor performs significantly better than persistence. As expected, we can
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Figure 2. Scatter plot of predictions against truth for both training (a) and validation (b) datasets for the
control regressor. Over the training set, the regressor does a good job of predicting for both the dominant
near-zero behavior, and the very rare temperature changes of more than �0.002°. Over the validation
dataset, the regressor drops in accuracy, with a tendency to underpredict, particularly for large changes,
but still shows some skill.

Table 2. Table showing RMS errors and RMS errors normalised by the control for a series of withholding experiments. Results are
also included from a persistence model (bottom row) for comparison. The two withholding experiments which make the largest
difference to each error metric are shown in italic. These are ordered in terms of RMS error over the training dataset, with variables
which are most necessary for predictive skill appearing nearest the bottom. It is critical to include polynomial interactions.
Information on the vertical structure, and on the currents is also necessary for good predictive skill.

RMS error (°C) RMS error normalized by control

Experiment Training Validation Training Validation

Control (full inputs set) 5.61e-05 9.89e-05 — —

Withholding longitude 5.65e-05 9.92e-05 1.01 1.00

Withholding depth 5.66e-05 9.91e-05 1.01 1.00

Withholding latitude 5.66e-05 9.94e-05 1.01 1.01

Withholding salinity 5.82e-05 1.01e-04 1.04 1.02

Withholding density 5.82e-05 1.02e-04 1.04 1.03

Withholding SSH 5.89e-05 1.01e-04 1.05 1.02

Withholding bolus velocities 7.32e-05 9.65e-05 1.30 0.98

Withholding currents 8.16e-05 1.07e-04 1.45 1.08

Using a 2D (3 � 3) input stencil 8.52e-05 1.06e-04 1.52 1.07

Without polynomial interactions 1.02e-04 1.14e-04 0.12 0.11

Persistence model (for comparison) 1.02e-04 1.15e-04 1.82 1.16

Abbreviation: SSH, sea surface height.

Rachel Furner et al. e11-11

https://doi.org/10.1017/eds.2022.10 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2022.10


see from Table 2 and Figure 2 the regressor performs less well over the validation dataset; however, it
consistently outperforms the persistence forecast.

Anomaly correlation coefficients on the predicted field (i.e., over the predicted temperature, T , rather
than the predicted temperature increment, δT ) were also calculated, giving values of 0.9999987 and
0.9999916 over the training and validation datasets, respectively. Anomaly correlation coefficients values
are frequently reported in papers that develop data-driven models (i.e., Scher and Messori, 2019b; Rasp
et al., 2020), hence their inclusion here. However, it should be noted that it is not trivial to compare these
statistics across differing applications, as the results are heavily influenced by the difficulty of the problem
being addressed, rather than purely indicating model skill. For this work, we do not feel correlation
coefficients to be a useful metric and focus instead on RMS errors.

3.1. Spatial patterns of errors

We calculate temporally averaged absolute errors to give us an indication of how the regression model
performs spatially. These averages were created by taking the MITgcm state at 500 different times
from the 20-year dataset and using these fields as inputs to the regressor to forecast a single time step
ahead. The set of forecasts created from these 500 input states is compared to the truth from the GCM
run, and the absolute errors between the truth and the predictions are then temporally averaged. To
emphasize, this is an average of 500 single time-step predictions, and not an average from an
iterative run.

The set of input states spans the full 20-year MITgcm dataset, but with subsampling to take every 14th
day (as opposed to every 200th day as was used in creating the training and validation sets). This results in
a far larger set of input states than present in the training and validation data. The results here are therefore
not specific to either the training or validation set, but instead show performance over a larger dataset
which shares occasional samples with both.

These averaged errors are shown in Figure 3. Note that the regressor is only applied away from
boundary and land points (in its current form, it cannot deal with spatial locations that are not surrounded
on all sides by ocean points); hence, points close to land are not included in these plots.

Figure 3 shows the largest errors are located in the north of the domain and in the Southern Ocean.
These are regions where the temperature change itself is largest (compared with Figure 1, which shows
snapshots of daily temperature change) as would be expected. In particular, the large errors throughout the
Southern Ocean section of the domain persist through depth, although the largest errors are associated
with points above 1,000 m, or at the very southern extent of the domain.

Comparing Figure 3b with Figures A1 and A2, we see that the errors in the north of the domain are co-
located with regions of high vertical advective temperature fluxes, and regions of high convective fluxes.
These results imply the regression model struggles to fully capture the vertical processes, and the
associated heat flux, in the north of the domain. The high errors in the Southern Ocean are again co-
located with regions of high vertical diffusive fluxes, this time both explicit and implicit, and vertical
advection. However, the pattern is less clear here, as the location of these errors is also a region of high
meridional diffusive fluxes and high zonal advective fluxes. Throughout the ocean interior where
temperature changes and the fluxes associated with these are small, errors are also small as would be
expected.

The results are promising given the limitations of this model. Although we allow second-order
polynomial interactions, we are still working with a very simple regression model, and the order of
complexity is nowhere near that considered to be present in the simulator, or the physical ocean. To
truly capture the dynamics of the ocean, far higher levels of interaction and complexity would be
required. That a simple regressor achieves this level of skill is promising when considering the
potential for applications of more complex data-driven methods, such as the neural networks
described in Dueben and Bauer (2018), Scher (2018), Weyn et al. (2019), Arcomano et al.
(2020), and so forth.
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4. Sensitivity of the Regressor

4.1. Coefficient analysis

First, we assess the sensitivity of the trained regressor by direct coefficient analysis. Figure 4 plots the
magnitude of the coefficients in equation (1). Figure 4a shows coefficients averaged over all input
locations for each variable type (i.e., for most variables, there are 27 inputs, corresponding to the
27 neighboring cells; we average over these to give a single value for each variable (temperature, salinity,
etc.) and for each polynomial combination of variables). Figure 4b shows the coefficients related to
polynomial interactions of temperature with temperature—these are the raw coefficients, without any

Figure 3. Mean Abs Error of predictions (°C) at �25 m depth (a) and 13° E (b).The errors are largest
in the very north of the domain, and in the southern region, in locations where the temperature change
itself is largest. Comparingwith Figures A1 andA2, we see that errors are largest in the areas of increased
vertical fluxes and locations with high meridional diffusion, and high zonal advection.
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Figure 4. (a) Coefficients of the control regressor. Coefficients averaged over all input locations for each
variable type, and each set of nonlinear combinations of variables. (b) Coefficients for polynomial terms
representing temperature–temperature interactions across all pairs of input locations. We see that density
is very heavily weighted, and therefore providing a large part of the predictive skill of this model, this is in
line with our physical understanding that density changes are driving convective temperature change.
The interactions between the temperature at the point we are predicting and the temperature at
surrounding points are also very highly weighted. This is in line with our physical knowledge of advection
and diffusion driving temperature change.
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averaging applied. Supplementary Fig. B1 shows the full set of coefficients without any averaging
applied. High-weighted inputs (those with a large magnitude coefficient) are variables which are heavily
used in the predictions and therefore considered important for the predictive skill, whereas inputs with low
magnitude coefficients can be considered less important. Again, we emphasize that the coefficients
highlight which features are being predominantly used in this model, but this is not necessarily what is
needed to create a skillful model—for that, we need to look at the withholding experiments.

From Figure 4a, we see that density (as a linear term, not in combination with other variables) is by far
the most highly weighted variable in this model. The regressor is using density information as a very large
component of its predictions. This is promising, as from our physical understanding of the system, we
know that density is key to ocean dynamics. Unstable density profiles contribute to the large temperature
changes seen in the south and very north of the domain, and for geostrophic currents, the flow follows the
density stratification.

More generally, we see that the location information is low weighted, particularly when interacting
with other variables. This indicates that the regressor is not basing its predictions predominantly on the
location of points, but on the physical variables themselves.

From Figure 4b, we see that the multiplicative interaction between temperatures at different input
locations is very highly weighted for certain combinations of locations. Specifically, it is the interaction
between the temperature at the grid point we are predicting for and the temperature at all surrounding
points, which gives the bright banding. This fits well with our physical expectation of the system—as
diffusive and advective fluxes of temperature are dominated by local gradients in temperature.

4.2. Withholding experiments

RMS errors from a series of withholding experiments are shown in Table 1, along with results from the
control and a persistence forecast. Withholding experiments quantify the relative necessity of each input
variable. The larger the increase in error between the control and a withholding experiment, the more
necessary thewithheld feature is for making accurate predictions. All withholding experiments perform at
least as well as the persistence model (which is used as a benchmark in weather and climate models) over
the training and validation datasets, indicating that even with incomplete input sets the regression models
developed here show significant skill.

4.2.1. Withholding location information
The inputs that have the smallest impact on training error are those giving location information about the
grid point being predicted (the longitude, latitude, and depth of the grid cell). These variables have no
direct influence on the dynamical processes driving temperature changes in the simulator (note that while
latitude has physical relevance in ocean dynamics due to it being directly linked with the Coriolis effect,
this does not directly drive temperature change—its impacts appear through changes in velocities, which
are provided to the regressor already). That the regressor performs well even when the model has no
location information indicates that well-performing regressors are not heavily dependent on learning
patterns that are non-physically based on location, but may instead be learning patterns based on the
underlying dynamics.

4.2.2. Withholding physical variables
The physical ocean variables have higher impacts on errors than the location variables—indicating that
the regressor requires knowledge of the physical system in order to make its predictions. Of these,
withholding salinity, density, or SSH information hasminimal impact. Again, these variables have limited
direct influence on temperature—their effects are felt through the resulting changes in currents caused by
interactions of these variables. In a model able to capture more complexity, or looking at forecasting over
longer time periods, these variables may become more relevant; however, when looking at evolution of
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just temperature over a single day, they are of little direct importance, both physically and when
developing skillful regression models.

While density was a heavily weighted coefficient, when withholding density, the impact is small,
especially when compared with the impact of currents. This highlights the usefulness of interpreting
models through a variety of techniques, each of which gives insight into different aspects of the way the
model is working. The density of seawater depends on its temperature and salinity, and so is tightly
coupled to both of these. While the control model used density strongly in making its predictions, when
density is withheld, the model has the ability to adjust by using these tightly coupled variables more
heavily, enabling it to still provide accurate predictions. This tight coupling and interdependency of
density with other variables likely explains the small impact seen in the withholding experiments. The
combination of information from the two methods used to analyze feature importance indicates that
density information is very highly used by the model when available, but that its usefulness can be easily
compensated by other variables if it is not provided to the model, that is, it is sufficient but not necessary
for model skill.

The experiment withholding information about the currents performs the worst of all the experiments
concerning physical variables. That currents are one of the most important inputs required for regressor
performance implies that some understanding of advection in the regression model is critical for accurate
results, in line with our knowledge of the physical system being modeled. Errors from this experiment are
analyzed in more detail in Section 4.3.

4.2.3. Withholding vertical structure and multiplicative terms
The withholding experiments which have the highest impact on training error are those which train on
only a 2D stencil, or include only linear terms. Again, these experiments are analyzed in further detail in
Section 4.3.

Using a 2D stencil means the regressor has no information about the ocean vertically above and below
the location being predicted, and cannot use the vertical structure of the ocean in its prediction. We know
this information to be important in the dynamics of the simulator, particularly in the south of the domain
and the very north where vertical processes driven by the MOC affect temperature, and so it is reassuring
that withholding it has such a large impact on error.

By restricting the regressor to purely linear terms (withholding polynomial interactions), we see the
largest increase in error over the training set. That this purely linear version of the regressor performs
poorly is also expected given our physical understanding of the problem being modeled. The ocean is
known to be a complex, highly nonlinear system, and we would not expect a purely linear regressor to be
able to accurately replicate the detail and variability of these complex interactions.

4.2.4. Summary of withholding experiments
Thesewithholding experiments emphasize that in order to provide even a basic level of skill in forecasting
temperature change in the ocean, a regression model needs information on currents and vertical structure,
as well as enough complexity to capture some of the nonlinearity of the system. The feature importance
displayed here by the regressor is consistent with the importance of these inputs in the dynamic systemwe
are modeling, implying that the model is dependent on the variables we would expect. Therefore, we are
confident that the regressor is, to some extent, learning physical constraints rather than purely statistical
patterns that might lack causality.

4.3. Further analysis of withholding experiments

We further investigate the results of the three worst-performing models from the withholding experi-
ments; withholding information on the currents, providing only 2D inputs, and a purely linear model. We
look closely at the model predictions and errors, and compare these with the control run to infer how the
variables are impacting predictions.
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4.3.1. Impact of multiplicative terms
Figure 5 shows the performance of the purely linear model, that is, the model trained without any
multiplicative terms. We see that, without multiplicative terms, the model can capture the mean behavior
of the system (zero change in temperature) but is unable to capture any of the variability. This mean
behavior alone does not provide useful forecasts, as can be seen from the statistics for this experiment.
Comparing Figure 5 with Figure 2, we see the importance of the nonlinear terms in predicting temperature
change, especially for samples where temperature change is nonzero. Nonlinearity is shown to be critical
to modeling the variability of temperature change.

4.3.2. Impact of vertical structure
To assess how information about the vertical structure of the ocean impacts predictions, we look at
spatially averaged errors from the model trained with only a 2D neighborhood of inputs, along with the
difference in error between this and the control run (Figure 6). Figure 6a is created in the same way as
Figure 3b, with the absolute error from predictions across the grid at 500 different times averaged to give a
spatial pattern of errors. Figure 6b shows the difference between Figures 3b and 6a, with areas shaded in
red indicating where the error has increased as a consequence of withholding information about the
vertical structure, and blue indicating areas where the predictions are improved. By comparing Figure 6b
with Figures A1 and A2, we can see which processes are dominant in the regions of increased error, and
make inferences about the ways in which the additional inputs are being used in predictions.

Interestingly, this regressor shows some regions (the deep water in the south of the domain) where the
errors are notably improved in a regressor using only 2D information. In this work, we have developed a
regressor which learns one equation to be applied across all grid boxes in the domain.We optimize for best
performance averaged over all relevant grid cells, but this does not enforce the best possible performance
over each individual grid point/region, and so some of the resultant models will favor certain types of
dynamics more than others. Given this, it is not unexpected that the new equations discovered for the
withholding experiments (which again optimize for best performance averaged over the entire domain
interior) may outperform the control in some locations, despite being poorer overall. Here, we see that the
control model is able to perform well across the domain, and optimizes for good performance overall (see
Figure 3b), rather than the much more varied performance seen in the withholding experiments

Figure 5. Scatter plot of predictions against truth over the training dataset for the regressor trained with
no polynomial interaction terms. A purely linear regressor (trained without nonlinear interactions) is
unable to capture the behavior of the system. This is expected as we know the underlying system to be
highly nonlinear.
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(Figure 6b). It seems that as the model which withholds vertical information is not capable of performing
well in many regions of the domain, a solution is found which highly optimizes performance in other
regions to minimize error overall.

This highlights the limitations of our method, and the potential need for more complex data-driven
models that can better adjust to the wide variety of dynamics shown across the domain. It would be
possible to produce a plethora of simple regression models, each of which is optimized for different
locations within the domain, and combine these to produce a domainwide prediction. However, this
would be a far more computationally demanding challenge, and would bring with it large risks of
overfitting. With this sort of design, each regional model, seeing only a subset of dynamics, may be less
likely to “learn” the underlying dynamics of the ocean, and instead learn statistically accurate but
dynamically less-valid local patterns. However, other more sophisticated modeling methods could be
explored to find a singlemodel which has the complexity to better capture the detailed nonlinear dynamics
in the ocean.

More interestingly, we see that using a 2D stencil rather than a 3D stencil increases errors in the very
north of the domain, and in a region south of�40°. The area of increased error in the north coincides most
closely with a region of high convective fluxes. We note that it also corresponds to a lesser extent with a
region of high vertical advection; however, the shape and the location near the surface seem to far better
correspondwith the region of high convection. Convective activity is driven by densewater overlying less

Figure 6. (a) Cross section at 13° E of Mean Abs Error for the regressor trained using a 2D stencil.
(b) Difference between this and the control run (Figure 3b). When withholding information about the
vertical structure, errors in the regressors prediction are increased in a region north of 50° and south of
�30°. Comparing this with Figures A1 and A2, we can see how the areas of increased errors correspond
to particular processes.
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dense water leading to vertical mixing. For the regressor to “learn” the change in temperature associated
with this, it would require information about the vertical density profile. That errors are increased in this
regionwhen information about the vertical structure is withheld implies that themodel is dependent on the
vertical structure in the ways we would expect.

The increased errors seen in the upper waters of the Southern Ocean are more complicated. They are
roughly co-located with regions of high zonal advection and high meridional diffusivity. This is
unexpected, given that these are horizontal processes and should not depend on the regressor having
knowledge of what is happening above and below the point being predicted. However, we can see from
Figures A1 and A2 that the Southern Ocean is a region of very complex dynamics (considerably more so
than other regions in this GCM configuration), with many different processes occurring. Within this
complex dynamical region, there are clear signals of high vertical diffusive fluxes and convection, which
would be more in line with our physical expectations, although these appear far broader than the specific
regions of increased error which we see. It may be that the increase in errors in this region is driven by the
regressors reduced ability to capture the vertical diffusion and convection, as would be in line with our
physical expectations. However, these results more strongly indicate that the regressor is learning
spurious links between the inputs provided for a vertical neighborhood of points, and zonal advection
and meridional diffusion. It should be emphasized that the complex dynamics of the Southern Ocean may
test the limitations of such a simple regressor, causing the model to revert to less-physically relevant
patterns in this area. In particular, in this region, currents flow along non-horizontal isoneutral surfaces,
meaning that there is inherent interaction between the processes considered here. It may well be the case
that such a simple model is not able to capture this interaction, and a similar assessment performed on a
more complex data-driven model would be of interest here.

It is important to emphasize that this analysis only infers plausible explanations, but it is not able to
definitively attribute the increased errors to any specific process. We see here that there are very plausible
explanations for the errors seen in the north of the domain, which are in line with what we expect from a
regressor which has learned the underlying dynamics of the ocean. By contrast, while there are physically
consistent explanations available for the increased errors in the south of the domain, there are stronger
indications of less physically consistent behavior. This implies that in the complex Southern Ocean
region, the regressor struggles to fully capture the dynamics of the region, particularly with regard to the
way it uses information on the vertical structure of the ocean.

4.3.3. Impact of currents
We analyze the impact of the currents on the regressor by again looking at the locations where errors are
most changed between this experiment and the control run, and comparing these to the dominant
processes in those areas. Figure 7 shows the spatially averaged errors from this regressor along with
the difference between these and the errors from the controlmodel. Again, we see a small number of points
where errors are reduced with the simplified model. This is for the same reasons as described in
Section 4.3.2.

The horizontal (U and V) components of the currents directly drive horizontal advection of tempera-
ture. They are also indirectly related to horizontal diffusion, as this is increased in regions of high currents
and steep gradients. As such, we would expect that suppressing information about the horizontal currents
would cause increases in error in regions where horizontal advection and horizontal diffusion is high.
Comparing Figure 7b to Figures A1 and A2, we do indeed see a region of increased error south of�40°,
which coincideswith the regions of high zonal advection and highmeridional diffusivity. However, again,
we note that this region of increased error is one where many processes are present, and the increased
errors seen also coincide, to a lesser extent, with regions of high vertical processes (advection, diffusion,
and convection), which is less in line with our physical understanding. Here, errors appear more closely
matched to the horizontal processes, and so a reasonable interpretation is that the model here is behaving
as expected, although again we emphasize that it is not possible, based on the evidence here, to
definitively attribute the increased errors to any specific process, only to make plausible inferences.
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The largest increase in errors are in the very north of the domain—an area where the temperature flux
is dominated by vertical processes, both vertical advection (driven by vertical currents) and convective
activity (i.e., due to instabilities in the water column). The increased errors in this northern region seen
in Figure 7b seem to most closely correspond with the region of large vertical advection seen in
Figure A1c. While it may at first be counter-intuitive that errors are increased in a region dominated by
vertical advection when horizontal currents are withheld, this is in fact in line with our understanding of
the dynamics of the system. Vertical advection is indirectly linked to the horizontal currents, as vertical
currents are predominantly a consequence of convergence or divergence of the horizontal flow
(particularly as the vertical motion of the water resulting from unstable density profiles manifests in
the convective fluxes). The results here imply that as the regressor is not directly given information on
the vertical currents, it may be learning the link between the horizontal and vertical currents, and the
resultant vertical advection. Without information on the horizontal currents, the regressor struggles to
capture this vertical advection resulting in increased errors in this northern region, in line with our
understanding of the physical processes being modeled. It is noteworthy that the increase in errors here
are larger than those in Figure 6. However, if our hypothesis is correct, that the errors here are associated
with vertical advection and that the errors in Figure 6 are associated with convection, then the different
contributions to heat flux of these two processes (see the scales in Figures A1 and A2) explain the
smaller change in errors seen here.

Figure 7. (a) Cross section at 13° E of Mean Abs Error for the regressor trained with information on the
currents withheld. (b) Difference between this and the control run (Figure 3b). When withholding
currents, errors in the regressionmodel are increased north of 55°, and in a broader region south of�35°.
Comparing this with Figures A1 and A2, we can see how the areas of increased errors correspond to
particular processes.
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5. Conclusions

There is growing interest in the potential for ML to provide data-driven weather and climate forecasts, as
an alternative to traditional process-based GCMs. A number of recent examples show these models to
perform well in predicting the short-term evolution of the atmosphere (Dueben and Bauer, 2018; Scher,
2018; Scher and Messori, 2019b; Weyn et al., 2019; Arcomano et al., 2020; Rasp and Thuerey, 2021).
However, alongside more standard performance metrics (RMS error, correlation coefficients, etc.), an
understanding of the generalizability and trustworthiness is key to acceptance and use of any ML model.
There are many studies of the interpretability of data-driven models in the geosciences more broadly
(McGovern et al., 2019; Mcgovern et al., 2020; Barnes and Barnes, 2021). Specifically, focusing on data-
driven forecast models for weather and climate, Rasp and Thuerey (2021) present a data-driven forecast
model and interpret this using saliency maps. They show that in some cases, the model behaves in
unexpected ways, highlighting the need for a thorough assessment of how these models work before they
might be more widely accepted and used by the geoscience community. We continue to address this
question of generalizability and trustworthiness of data-driven forecasts by assessing the sensitivity of a
simple ocean model.

We have developed a simple regression model to predict the evolution of ocean temperature. Despite
being a simple statistical tool, the developed model is able to predict change in daily mean temperature
from an ocean simulator with notable skill when appropriate inputs are provided. That such a simple data-
driven method can make skillful predictions gives promise to the growing set of data-driven approaches
for weather and climate modeling. One concern around these methods is the lack of physical basis that
might limit the ability for these models to perform well “out of sample” (i.e., over datasets outside of the
training region). For the regressionmodel developed here, we have shown that the sensitivity of themodel
outputs to the model inputs is generally in line with our physical understanding of the system.

Specifically, we analyze the coefficients of our regression model and find that the predictions for a grid
cell are based heavily on the density at the surrounding points, and the interaction between the
temperatures at the grid cell and its neighboring points. The importance of temperature interaction with
surrounding points is representative of advective and diffusive processes that take place across the
domain. The importance of density is in line with the simulator representing, to some extent, density-
driven currents that are responsible for much of the changes in temperature in this GCM configuration.
While later withholding experiments show that density is not necessary for skillful predictions, this is
most likely due to the dependency of density on temperature and salinity, and the regressors ability to use
these variables in place of directly using density when density is not available as an input. Again, this
behavior makes sense when considering the physics of the ocean.

We conduct a number of withholding experiments. These show that withholding information about the
location of the grid cell being forecast has very little impact on accuracy. In contrast, withholding
information on the physical ocean variables has a larger impact. Of these, the velocities have the biggest
impact, in line with our knowledge of advection being a key process in the transfer of heat. We see that
inclusion of nonlinear interactions between inputs, and information about the vertical structure (rather
than solely the horizontal structure), are both needed for skillful predictions. Again, this is compatible
with our knowledge of the physical system. The ocean is highly nonlinear, and it would be expected that a
nonlinear model is needed to capture its behavior. Similarly, the ocean dynamics are inherently three-
dimensional, and so it is expected that inputs from a 3D neighborhood are necessary for predictive skill.

Further analysis of the three worst-performing withholding experiments give insight into how these
inputs impact predictions. We see that including some level of nonlinearity is critical to capturing the
complex nature of the system. Looking spatially at the errors from experiments that withhold currents, and
withhold information about the vertical structure, we see that errors are generally increased in the
locations that we would expect, and in ways which are in line with the known dynamics of the system.
The caveat to this is within the complex dynamics of the Southern Ocean. Here, although physically
consistent results can be inferred, the patterns seen are complex, making it difficult to reasonably infer one
particular scenario over another. It is not possible to definitively attribute increased errors to specific
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processes through this analysis, only to highlight plausible explanations, and in this complex region,
multiple explanations can be inferred. This is especially notable when looking at the impacts of vertical
structure in the SouthernOcean region. Here, the evidencemore strongly indicates physically inconsistent
inferences, indicating that the regressor has struggled to learn the full dynamics of this region. Never-
theless, it is reassuring that in most cases, and especially when looking at the north of the domain where
the dynamics are less complex, physically consistent interpretations can be seen.

Our results highlight the need to perform model interpretation through a variety of methods, assessing
both feature importance within models; which features are most heavily used or needed for predictive
skill, and feature sensitivity; how features impact predictions. In general, we see that the regressor
developed here both uses and depends on variables that are in linewith the known dynamics of the system,
and these variables impact predictions in ways which are consistent with our physical knowledge. These
results imply that the regression model developed here is, to a large extent, learning the underlying
dynamics of the system beingmodeled. This result is very promising in the context of further development
of data-driven models for weather and climate prediction, for both atmospheric and oceanic systems.

That we see this behavior in a simple model suggests that more complex models, capable of capturing
the full higher-order nonlinearity inherent in GCMs, are well placed to learn the underlying dynamics of
these systems. The model developed here has a number of limitations, and a similar assessment of a more
complex model, particularly one which can better capture the extreme behavior alongside the more
dominant dynamics would be of value to confirm this. The work carried out here uses a very idealized and
coarse resolution simulator to create the dataset used for training and validation. Further investigation into
how the complexity of the training data and the resolution of the GCM used to create this dataset impacts
the sensitivity of data-driven models would also be of further interest. Similarly, we assess model
performance and model sensitivity over a single predictive step, but in forecasting applications, data-
driven models would most likely be used iteratively. Assessment of howmodel skill varies when iterating
data-driven models has been carried out in the context of alternative data-driven models. Looking
alongside this to how the sensitivity of the model changes when using models iteratively would provide
further interesting insight into this area.

As data-driven models become competitive alternatives to physics-driven GCMs, it is imperative to
continue to investigate the sensitivity of thesemodels, ensuring that we have a good understanding of how
these models are working and when it is valid to rely on them.
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Appendix A: GCM Fluxes
We calculated temporally averaged advective and diffusive transports of temperature to identify which processes dominate
temperature change in different regions of the domain. Figures A1 and A2 show cross sections of these transports. These are
created using the same data as used in Figures 3, 6, and 7. They show an average of 500 daily transport tendencies, taken from the 20-
year model dataset described previously, subsampled to take the average of every 14th day.

From these, we see that themajority of temperature change from all processes is located in the Southern Ocean and the very north
of the domain. In particular, we see that the vertical advection is largest in the very north, and increased at the edge of the Southern
Ocean. There is notable zonal advection of temperature around 40°S, in keeping with the high wind stress and interaction with the
end of the land feature giving rise to a Southern Ocean jet—an ACC-like feature. Diffusive fluxes are generally lower (by one or two
orders of magnitude). These show a broader spatial spread, although vertical, zonal, and meridional diffusive fluxes are still highest
in the Southern Ocean and near the north of the domain. There is a large signal of convectively driven temperature change, due to the
surface cooling in this area (applied through surface restoring). Similarly, we see increased vertical diffusive fluxes, both implicit and
explicit, in the south of the domain; this is a region of high vertical activity, with both upwelling and downwelling ofwatermasses. In
the south, we also see a signal of strong meridional diffusion related to the ACC-like feature in the GCM.

Appendix B: Full Set of Coefficients
Section 4.1 and Figure 4a focused on coefficients averaged over each variable. Here, for completeness, we show the coefficients for
all 26,106 inputs (Figure B1). The top row shows coefficients for the linear features (the first term in equation (1)), and the triangular
lower section shows coefficients for the nonlinear terms (themultiplicative terms from the second term in equation (1)). Note that for
most variables, there are 27 pixels, once for each point in the 3D neighborhood stencil.

As in Figure 4, we see the importance of density (as a linear term), the relative unimportance of location information, and the
notable pattern in the multiplicative interaction between temperatures at different relative locations. Looking here at the full set of
coefficients without any averaging applied, we also note that the interaction of the U component of the current with temperature
shows one or two points which are highly weighted. We suspect that this is symptomatic of regression models trained by least-
squared error methods being highly sensitive to a few extreme training samples. When developing the regressor, we saw that
different versions of the model all had a tendency to weight one or two coefficients very highly, with each iteration of the model
favoring different coefficients. The more general patterns, particularly those seen when averaging over variables, and the sharp
stripes in the temperature–temperature interactions, were consistent through all versions of the regressor, just the occasional very
small number of highly weighted inputs changed. This indicates a lack of robustness in the model, meaning that small changes to the
training dataset can erroneously cause a few terms in the equation to become very highly weighted. This highlights the need to
consider the robustness of data-drivenmodels, and their sensitivity to the training samples used, and also emphasizes the importance
of using more than one technique to assess feature importance.

Appendix C: Predicting over Longer Timescales
We ran three additional versions of the regression model predicting 5, 10, and 20 days ahead, and compared the results with the
regressor predicting a single forecast day ahead. To clarify, this was not based on using the regressor iteratively, as the regressor is not
designed to be used in this way. Instead, the regressor makes a single forecast step of 5, 10, or 20 days, in place of the 1-day forecast
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step used in the control and throughout the paper. We consider the effect this has on the predictions. Table C1 shows the root-mean-
square (RMS) error and skill score for the regressors trained to predict 1, 5, 10, and 20 days ahead, along with the RMS errors for
persistence forecasts over the same forecast length.

We can see that the RMS errors grow larger with longer forecast lengths, over both the training and validation sets, meaning that
predictions have greater error over longer forecast lengths. This is to be expected, as predicting further ahead is a more challenging
task. Temperature changes are larger over longer time periods, and the dynamics of the underlying simulator (and the real ocean)
mean that the temperature change at a particular point over a longer time period is driven by points increasingly further away, and in
increasingly nonlinear ways. As we only provide the regressor with information from directly neighboring points as inputs, when

Figure A1. Average absolute zonal (a), meridional (b), and vertical (c) advective fluxes of temperature at
13° E. Horizontal advective fluxes are largest in the southern region of the domain, associated with the
ACC-like current. There is a large amount of vertical advection in the north of 55°, and at�30 to�40°,
associated with regions of upwelling and downwelling.
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Figure A2. Average absolute zonal (a), meridional (b), and (explicit) vertical (c) diffusive temperature
fluxes, and convective (implicit vertical diffusive) temperature fluxes (d) at 13° E. There are large amounts
of meridional diffusion associated with the ACC-like jet in the south. Zonal diffusion occurs in mid depth
in the north of the domain, and just north of �40°. Vertical diffusion occurs through the south of the
domain, and a small region just south of 50°. Convection occurs throughout the domain, and is
particularly noteworthy in the upper waters of the ocean north of 50°, and south of �35°.
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Figure B1. Coefficients of the control regressor for each input location and for each variable type. For
linear inputs (top row) and for each set of nonlinear combinations of variables.

Table C1. Table showing RMS errors and skill scores for four models trained to predict temperature change over an increasing
forecast period. RMS errors increase with forecast period, but skill scores are largely unaffected.

RMS error (°C) Skill score

�
1� modelRMS

PersistenceRMS

�

Training Validation Training Validation

Control (1-day forecast step) 5.61e-5 9.89e-5 0.45 0.14

Persistence over 1-day forecast step 1.02e-4 1.15e-4 — —

5-day forecast step 2.79e-4 4.72e-4 0.45 0.14

Persistence over 5-day forecast step 5.07e-4 5.49e-4 — —

10-day forecast step 5.56e-4 9.27e-4 0.45 0.14

Persistence over 10-day forecast step 1.00e-3 1.08e-3 — —

20-day forecast step 1.07e-3 1.83e-3 0.45 0.14

Persistence over 20-day forecast step 1.95e-3 2.13e-3 — —

Abbreviation: RMS, root mean square.
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looking at temperature changes over longer time periods, when points further away influence temperature change, the regressor is
increasingly limited by the lack of input information. Similarly, as the regressor is only able to represent a small amount of
nonlinearity, we would expect predicting further ahead to become more challenging.

We consider how much of this increased error is related to the problem becoming harder with longer forecast step, or if there is
any indication that the regressionmodel is inherently unsuitable for forecasting over these longer forecast steps. By incorporating the
baseline persistence RMS error, which also increases as the problem becomes harder, the skill score gives an indication of this
differentiation. We see that the skill scores remain constant (to two significant figures) regardless of the length of forecast step. This
shows that while the model RMS error increases, this is likely to be due to the increasing difficulty of the prediction problem, and not
a sign that the model itself is unsuited to predicting across these longer timescales.

This is a particularly interesting result in the context of data-driven forecasting. Traditional GCMs, such as the MITgcm simulator
used to create the training and validation datasets, are limited in the length of forecast step that can be taken due to numerical constraints.
At somepoint, a GCMwould show large numerical errors due to numerical instabilities, alongside the expected growth in errors related
to the increased difficulty of the prediction problem. For the configuration shown here, however, we obtain similar skill scores with a
data-drivenmodelwhen forecasting over far larger steps thanwould be possible in the simulator. This indicates that data-drivenmodels
are more stable when predicting over long time periods, meaning that if suitable inputs were provided to enable accurate results over
long time periods, this type of model could be far more efficient than traditional GCMs, particularly for climate runs. These results
warrant further investigation, in particular to see if similar patterns are shown with more complex configurations. It would also be of
interest to investigate whether the sensitivity of the regressor changes with increasing forecast length.

Cite this article: Furner R. Haynes P. Munday D. Paige B. Jones DC and Shuckburgh E. (2022). A sensitivity analysis of a
regression model of ocean temperature. Environmental Data Science, 1: e11. doi:10.1017/eds.2022.10
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