The Alperin weight conjecture and Uno's conjecture for the Monster \mathbb{M} , p odd

Jianbei An and R. A. Wilson

Abstract

Suppose that p is 3, 5, 7, 11 or 13. We classify the radical p-chains of the Monster \mathbb{M} and verify the Alperin weight conjecture and Uno's reductive conjecture for \mathbb{M} , the latter being a refinement of Dade's reductive conjecture and the Isaacs–Navarro conjecture.

1. Introduction

Recently, Isaacs and Navarro [20] proposed a new conjecture which is a refinement of the Alperin–McKay conjecture, and Uno [23] raised an alternating sum version of the conjecture which is a refinement of the Dade conjecture [17].

Dade's reductive conjecture [17] has been verified for all of the sporadic simple groups except \mathbb{B} with p = 2 and \mathbb{M} . The use of computer algebra systems, namely MAGMA [12] and GAP [18], to study permutation (or, in some cases, matrix) representations of the groups has been a central step in the program. Since the smallest faithful permutation representation of \mathbb{M} has degree 97 239 461 142 009 186 000, it is difficult to verify the conjecture directly. However, from the classification in [24] of maximal *p*-local subgroups of \mathbb{M} , we know that when p = 3, 5, 7, 11 or 13, the normalizer of each radical *p*-subgroup of \mathbb{M} is a subgroup of one of precisely 23 maximal *p*-local subgroups. Thus we can classify radical chains in these maximal subgroups without performing any calculation in \mathbb{M} .

In this paper, we classify radical subgroups and radical chains of M, and hence verify the Alperin weight conjecture and Uno's refinement of Dade's reductive conjecture for M.

Note that the radical *p*-subgroups of the Monster \mathbb{M} were given in [26], but one radical 3-subgroup of \mathbb{M} is missing and the normalizers of six radical 3-subgroups are incorrect (see Remark 4.2).

The paper is organized as follows. In Section 2, we fix notation, state the conjectures in detail and state three lemmas. In Section 3, we recall the modified local strategy [8, 9]; we also explain how we applied it to determine the radical subgroups of each maximal subgroup, as well as how to determine the fusion of the radical subgroups in M. Using the explicit representations of the maximal subgroups of M given by Bray and Wilson [13], in Section 4 we classify radical *p*-subgroups of M and verify the Alperin weight conjecture. In Section 5, we do some cancellations in the alternating sum of Uno's conjecture, and then determine radical chains (up to conjugacy) and their local structures. In the final section, we verify Uno's ordinary conjecture for M. Details on the degrees of irreducible characters of the normalizers of radical chains are summarized in tabular form in the Appendix.

2. Conjectures and lemmas

Let p be a prime and let R be a p-subgroup of a finite group G. Then R is radical if $O_p(N(R)) = R$, where $O_p(N(R))$ is the largest normal p-subgroup of the normalizer $N(R) = N_G(R)$.

Received 25 February 2009; revised 12 March 2010.

²⁰⁰⁰ Mathematics Subject Classification 20C20, 20C34, 20D08 (primary).

The first author was supported by the Marsden Fund of New Zealand via grant #9144/3608549.

Denote by $\operatorname{Irr}(G)$ the set of all irreducible ordinary characters of G, and let $\operatorname{Blk}(G)$ be the set of p-blocks. Let $B \in \operatorname{Blk}(G)$ and $\varphi \in \operatorname{Irr}(N(R)/R)$. The pair (R, φ) is called a B-weight if $\operatorname{d}(\varphi) = 0$ and $B(\varphi)^G = B$ (in the sense of Brauer), where $\operatorname{d}(\varphi) = \log_p(|N(R)/R|_p) - \log_p(\varphi(1)_p)$ is the p-defect of φ and $B(\varphi)$ is the block of N(R) containing φ . A weight is always identified with its G-conjugates. Let $\mathcal{W}(B)$ be the number of B-weights and $\ell(B)$ the number of irreducible Brauer characters of B. Alperin [1] conjectured that $\mathcal{W}(B) = \ell(B)$ for each $B \in \operatorname{Blk}(G)$.

Given a p-subgroup chain

$$C: P_0 < P_1 < \ldots < P_n \tag{2.1}$$

of G, define |C| = n, $C_k : P_0 < P_1 < \ldots < P_k$ and

$$N(C) = N_G(C) = N(P_0) \cap N(P_1) \cap \ldots \cap N(P_n).$$
(2.2)

The chain C is said to be radical if it satisfies the following two conditions:

(a) $P_0 = O_p(G)$; and

(b) $P_k = O_p(N(C_k))$ for $1 \le k \le n$.

Denote by $\mathcal{R} = \mathcal{R}(G)$ the set of all radical *p*-chains of *G*. Let $B \in Blk(G)$ and let D(B) be a defect group of *B*. The *p*-local rank (see [6]) of *B* is the number

$$plr(B) = max\{|C|: C \in \mathcal{R}, C: P_0 < P_1 < \ldots < P_n \leq D(B)\}.$$

Let *E* be an extension of *G*, and let F = E/G. For $C \in \mathcal{R}(G)$ and $\psi \in \operatorname{Irr}(N_G(C))$, let $N_E(C, \psi)$ be the stabilizer of (C, ψ) in *E*. Then $N_F(C, \psi) = N_E(C, \psi)/N_G(C)$ is a subgroup of *F*. For a subgroup $U \leq F$, denote by $\operatorname{Irr}(N_G(C), B, d, U)$ the set of characters ψ in $\operatorname{Irr}(N_G(C))$ such that $d(\psi) = d$, $B(\psi)^G = B$ and $N_F(C, \psi) = U$. Set $k(N_G(C), B, d, U) = |\operatorname{Irr}(N_G(C), B, d, U)|$. In the notation above, the Dade invariant conjecture is stated as follows.

DADE'S INVARIANT CONJECTURE [17]. If $O_p(G) = 1$ and B is a p-block of G with defect group $D(B) \neq 1$, then for any integer $d \ge 0$,

$$\sum_{C \in \mathcal{R}/G} (-1)^{|C|} \mathbf{k}(N_G(C), B, d, U) = 0$$

where \mathcal{R}/G is a set of representatives for the *G*-orbits of \mathcal{R} .

If E = G, then F = U = 1 and we set $k(N_G(C), B, d) = k(N_G(C), B, d, U)$. The invariant conjecture is then called the ordinary conjecture.

DADE'S ORDINARY CONJECTURE [16]. If $O_p(G) = 1$ and B is a p-block of G with defect group $D(B) \neq 1$, then for any integer $d \ge 0$,

$$\sum_{C \in \mathcal{R}/G} (-1)^{|C|} \mathbf{k}(N(C), B, d) = 0.$$

Let *H* be a subgroup of a finite group *G* and let $\varphi \in \operatorname{Irr}(H)$. The *p*-remainder $r(\varphi) = r_p(\varphi)$ of φ is the integer $0 < r(\varphi) \leq p-1$ such that the *p'*-part $(|H|/\varphi(1))_{p'}$ of $|H|/\varphi(1)$ satisfies

$$\left(\frac{|H|}{\varphi(1)}\right)_{p'} \equiv r(\varphi) \pmod{p}.$$

Given an integer r with $1 \leq r < (p+1)/2$, let $\operatorname{Irr}(H, [r])$ be the subset of $\operatorname{Irr}(H)$ consisting of characters φ such that $r(\varphi) \equiv \pm r \pmod{p}$, and let $\operatorname{Irr}(H, B, d, U, [r]) = \operatorname{Irr}(H, B, d, U) \cap \operatorname{Irr}(H, [r])$ and $k(H, B, d, U, [r]) = |\operatorname{Irr}(H, B, d, U, [r])|$.

Let $B \in Blk(G)$ with a defect group D = D(B) and the Brauer correspondent $b \in Blk(N_G(D))$. Then

$$\mathbf{k}(N_G(D), B, \mathbf{d}(B), [r]) = \sum_{U \leqslant F} \mathbf{k}(N_G(D), B, \mathbf{d}(B), U, [r])$$

is the number of characters $\varphi \in \operatorname{Irr}(b)$ such that φ has height 0 and $r(\varphi) \equiv \pm r \pmod{p}$, where d(B) is the defect of B.

ISAACS-NAVARRO CONJECTURE [20, Conjecture B]. In the notation above,

$$k(G, B, d(B), [r]) = k(N_G(D), B, d(B), [r]).$$

The following refinement of Dade's conjecture is due to Uno.

UNO'S INVARIANT CONJECTURE [23, Conjecture 3.2]. If $O_p(G) = 1$ and D(B) > 1, then for any integers $d \ge 0$ and $1 \le r < (p+1)/2$,

$$\sum_{C \in \mathcal{R}/G} (-1)^{|C|} \mathbf{k}(N_G(C), B, d, U, [r]) = 0.$$
(2.3)

If E = G, then F = U = 1 and we set $k(N_G(C), B, d, [r]) = k(N_G(C), B, d, U, [r])$. The invariant conjecture is then called the ordinary conjecture.

Note that if p = 2 or 3, then Uno's conjectures are equivalent to Dade's conjectures.

Let G be the Monster \mathbb{M} ; then its Schur multiplier and outer automorphism group are trivial, so Dade's ordinary conjecture is equivalent to his reductive conjecture (and Uno's ordinary conjecture is also equivalent to his reductive conjecture). Thus it suffices to verify Uno's ordinary conjecture for \mathbb{M} .

The proofs of the following two lemmas are straightforward.

LEMMA 2.1. Let

$$\sigma: O_p(G) < P_1 < \ldots < P_{m-1} < Q = P_m < P_{m+1} < \ldots < P_\ell$$

be a fixed radical p-chain of a finite group G, where $1 \leq m < \ell$. Suppose that

$$\sigma': O_p(G) < P_1 < \ldots < P_{m-1} < P_{m+1} < \ldots < P_{\ell}$$

is also a radical p-chain such that $N_G(\sigma) = N_G(\sigma')$. Let $\mathcal{R}^-(\sigma, Q)$ be the subfamily of $\mathcal{R}(G)$ consisting of chains C whose $(\ell - 1)$ th subchain $C_{\ell-1}$ is conjugate to σ' in G, and let $\mathcal{R}^0(\sigma, Q)$ be the subfamily of $\mathcal{R}(G)$ consisting of chains C whose ℓ th subchain C_ℓ is conjugate to σ in G. Then the map g sending any

$$O_p(G) < P_1 < \ldots < P_{m-1} < P_{m+1} < \ldots < P_{\ell} < \ldots$$

in $\mathcal{R}^{-}(\sigma, Q)$ to

$$O_p(G) < P_1 < \ldots < P_{m-1} < Q < P_{m+1} < \ldots < P_{\ell} < \ldots$$

induces a bijection, denoted again by g, from $\mathcal{R}^{-}(\sigma, Q)$ onto $\mathcal{R}^{0}(\sigma, Q)$. Moreover, for any C in $\mathcal{R}^{-}(\sigma, Q)$, we have |C| = |g(C)| - 1 and $N_{G}(C) = N_{G}(g(C))$.

LEMMA 2.2. Suppose that Q is a *p*-subgroup of G. Then Q is radical in G if and only if $N_G(Q) \leq M$ and Q is radical in M for some maximal *p*-local subgroup M of G. In particular, if $N_G(Q) \leq M$, then Q is radical in G if and only if Q is radical in M.

The next lemma follows from [11, Lemma 7.1].

LEMMA 2.3. Let G be a finite group, and take $B \in Blk(G)$ with plr(B) = 2 and abelian defect group D = D(B). Let $O_p(G) \neq R < D$ be radical, and let $b \in Blk(N_G(R))$ with $b^G = B$. Then

$$k(N_G(R) \cap N_G(D), b, d, [r]) = k(N_G(R), b, d, [r]).$$

LEMMA 2.4. If Q is a p-subgroup of a finite group G, then there is a radical p-subgroup R such that

$$Q \leq R$$
 and $N_G(Q) \leq N_G(R)$.

Proof. This follows from [6, Lemma 2.1].

3. A local subgroup strategy and fusions

From [24], we know that each radical *p*-subgroup R of \mathbb{M} is radical in one of the conjugates M of maximal *p*-local subgroups constructed in [13] and that, further, $N_{\mathbb{M}}(R) = N_M(R)$.

In [8] and [9], a (modified) local strategy was developed to classify the radical *p*-subgroups R. We review this method here. Suppose that M is a subgroup of a finite group G satisfying $N_G(R) = N_M(R)$.

Step 1. We first consider the case where M is p-local. Let $Q = O_p(M)$, so that $Q \leq R$. Choose a subgroup X of M. We explicitly compute the coset action of M on the cosets of X in M; we obtain a group W representing this action, a group homomorphism f from M to W, and the kernel K of f. For a suitable X we have K = Q, and the degree of the action of W on the cosets is much smaller than that of M. We can now directly classify the radical p-subgroup classes of W (or apply Step 2 below to W), and the preimages in M of the radical subgroup classes of W are the radical subgroup classes of M.

Step 2. Now consider the case where M is not p-local. We may be able to find its radical p-subgroup classes directly. Alternatively, we find a (maximal) subgroup K of M such that $N_K(R) = N_M(R)$ for each radical subgroup R of M. If K is p-local, then we apply Step 1 to K. If K is not p-local, we can replace M by K and repeat Step 2.

Steps 1 and 2 constitute the modified local strategy. After applying the strategy, we list the radical subgroups of each M and do the fusions as follows.

Suppose that R is a radical p-subgroup of M. Using the local structure, we can determine whether or not $N_M(R)$ is a subgroup of another maximal subgroup Y. Suppose that $N_M(R)$ is a subgroup of Y. By Lemma 2.4, there is a radical subgroup P of Y such that $R \leq P$ and $N_M(R) \leq N_Y(P)$. Using local structure, we can determine whether or not R is radical in Y, and if so, we can identify R with a radical subgroup P of Y. Some details are given in the proof of Proposition 4.1.

The computations reported in this paper were carried out using MAGMA V2.11-1 on a Sun UltraSPARC Enterprise 4000 server.

4. Radical subgroups and weights

Let $\mathcal{R}_0(G, p)$ be a set of representatives for conjugacy classes of radical *p*-subgroups of *G*. For $H, K \leq G$, we write $H \leq_G K$ if $x^{-1}Hx \leq K$ and $H \in_G \mathcal{R}_0(G, p)$ if $x^{-1}Hx \in \mathcal{R}_0(G, p)$ for some $x \in G$.

Let G be the Monster $\mathbbm{M}.$ Then

 $|G| = 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$

and we may suppose $p \in \{2, 3, 5, 7, 11, 13\}$, since both conjectures hold for a block with a cyclic defect group by [16, Theorem 9.1] and [7, Theorem 5.2]. Suppose that p is odd, so that p = 3, 5, 7, 11 or 13.

Denote by $\operatorname{Irr}^{0}(H)$ the set of ordinary irreducible characters of *p*-defect 0 of a finite group *H* and by d(H) the number $\log_{p}(|H|_{p})$. Given $R \in \mathcal{R}_{0}(G, p)$, let $C(R) = C_{G}(R)$ and $N = N_{G}(R)$.

If $B_0 = B_0(G)$ is the principal *p*-block of *G*, then (cf. [8, (4.1)])

$$\mathcal{W}(B_0) = \sum_R |\operatorname{Irr}^0(N/C(R)R)|, \qquad (4.1)$$

where R runs over the set $\mathcal{R}_0(G, p)$ such that d(C(R)R/R) = 0. The character table of N/C(R)R can be calculated by MAGMA, and so we find $|\mathrm{Irr}^0(N/C(R)R)|$.

PROPOSITION 4.1. The non-trivial radical p-subgroups R of $G = \mathbb{M}$ (up to conjugacy) and their local structures are given in Tables 1 and 2 according to whether $p \ge 5$ or p = 3, where $S \in \text{Syl}_3(G)$ is a Sylow 3-subgroup of G. Here H^* denotes a subgroup of G such that $H^* \cong H$ but $H^* \neq_G H$.

Proof. The maximal p-local subgroups of G were constructed by Bray and Wilson [13].

Case 1. Suppose p = 11 or 13. Then the radical *p*-subgroups of *G* are given in [24, Section 11].

Suppose p = 7. By [24, Theorem 7], G has the following five maximal 7-local subgroups:

$$M_1 = N(7A) \cong (7:3 \times \text{He}):2,$$

$$M_2 = N(7A^2) \cong (7^2:(3 \times 2A_4) \times L_2(7)):2,$$

$$M_3 = N(7B) \cong 7^{1+4}_+:(3 \times 2S_7),$$

$$M_4 = N(7B^2) \cong 7^{2+1+2}: \text{GL}_2(7)$$

TABLE 1. Non-trivial radical p-subgroups of \mathbb{M} with $p \ge 5$.

R	C(R)	N	$ \mathrm{Irr}^0(N/C(R)R) $
13	$13 \times L_3(3)$	$(13:6 \times L_3(3)).2$	
13^{2}	13^{2}	$13^2:4.L_2(13).2$	4
13^{1+2}_+	13	$13^{1+2}_+:(3 \times 4.S_4)$	48
11	$11 \times M_{12}$	$(11:5 \times M_{12}):2$	
11^{2}	11^{2}	$11^2:(5 \times 2A_5)$	45
7	$7 \times \mathrm{He}$	$(7:3 \times \text{He}):2$	
7^{2}	$7^2 \times L_2(7)$	$(7^2:(3 \times 2A_4) \times L_2(7)):2$	
$(7^2)^*$	7^{2}	$7^2:SL_2(7)$	1
7^{1+4}_{+}	7	$7^{1+4}_+:(3 \times 2S_7)$	27
7^{2+1+2}	7^{2}	7^{2+1+2} :GL ₂ (7)	6
$7^{1+4}_{+}.7$	7	$7^{1+4}_{+}.7.6^{2}_{-}$	36
5	$5 \times HN$	$(D_{10} \times \text{HN}).2$	
5^{2}	$5^2 \times U_3(5)$	$(5^2:4.2^2 \times U_3(5)):S_3$	
5^{4}	5^{4}	$5^4:(3 \times 2.L_2(25)):2$	3
5^{3+3}	5^{3}	$5^{3+3}.(2 \times L_3(5))$	2
5^{1+6}_{+}	5	$5^{1+6}_{+}.2J_{2}:4$	18
$5^{1+6}_{+}.5$	5	$5^{1+6}_{+}.5.(4 \times 2S_5)$	8
5^{2+2+4}	5^{2}	$5^{2+2+4} (S_3 \times GL_2(5))$	12
$5^{1+6}_{+}.5^{2}_{-}$	5	$5^{1+6}_{+}.5^{2}.(S_3 \times 4^2)$	48

and

$$M_5 = N(7B^2) = 7^2$$
: SL₂(7)

The radical 7-subgroups of He are given by [2, Proposition (2A)], so that

$$\mathcal{R}_0(M_1,7) = \{7,7^2,7^3,7\times7^{1+2}_+\}.$$

In addition, $C_G(7^2) \cong 7^2 \times L_3(2)$, $C_G(7^3) \cong 7^3$, $C_G(7 \times 7^{1+2}_+) = 7^2$ and

$$N_{M_1}(R) = \begin{cases} 7^2 \cdot (6 \times 3) \times L_3(2) & \text{if } R = 7^2, \\ 7^3 \cdot (3 \times 2.L_2(7).2) & \text{if } R = 7^3, \\ (7 \times 7^{1+2}_+) \cdot (6 \times 3 \times S_3) & \text{if } R = 7 \times 7^{1+2}_+. \end{cases}$$
(4.2)

By [24, p. 14], 7² is 7*A*-pure, so that $N_{M_1}(7^2) \leq_G M_2$ and $N_{M_1}(7^2) \neq N_G(7^2)$. As shown in the proof of [24, Theorem 7, p. 14], 7³ contains a 7*B*-element, and $N_G(7^3) \leq_G M_3$. But then $O_7(M_3) \leq O_7(N_G(7^3))$, so 7³ is non-radical in *G*. Since $(7 \times 7^{1+2}_+) \in \text{Syl}_7(M_1)$ but $(7 \times 7^{1+2}_+) \notin \text{Syl}_7(G)$, it follows that $N_G(7 \times 7^{1+2}_+) \notin_G M_1$. If $M = M_i$ with i > 1, then $|M/O_7(M)|_7 = 7$, so that a Sylow subgroup of *M* is its only

radical 7-subgroup other than $O_7(M)$. Thus

$$\mathcal{R}_{0}(M_{i},7) = \begin{cases} \{7^{2},7^{3}\} & \text{if } i = 2, \\ \{7^{1+4}_{+},7^{1+4}_{+},7\} & \text{if } i = 3, \\ \{7^{2+1+2}_{+},7^{1+4}_{+},7\} & \text{if } i = 4, \\ \{7^{2},7^{1+2}_{+}\} & \text{if } i = 5. \end{cases}$$

$$(4.3)$$

In addition, $C(7^{1+2}_+) = C_{M_5}(7^{1+2}_+) = 7$ and

$$N_{M_i}(R) = \begin{cases} 7^3: (3^2 \times 2A_4):2 & \text{if } i = 2 \text{ and } R = 7^3, \\ 7^{1+4}_+.7.6^2 & \text{if } i = 3 \text{ or } 4 \text{ and } R = 7^{1+4}_+.7, \\ 7^{1+2}_+.6 & \text{if } i = 5 \text{ and } R = 7^{1+2}_+. \end{cases}$$
(4.4)

TABLE 2. Non-trivial radical 3-subgroups of M.

R	C(R)	N(R)	$ \mathrm{Irr}^0(N/C(R)R) $
3	$3 \mathrm{Fi}_{24}'$	$3 \mathrm{Fi}_{24}$	
3*	$3 \times Th$	$S_3 \times Th$	
3^{2}	$3^2 \times O_8^+(3)$	$(3^2:2 \times O_8^+(3)).S_4$	
3^{1+2}_{+}	$3 \times G_2(3)$	$(3^{1+2}_+:2^2 \times G_2(3)):2$	
3^{8}	3^{8}	$3^8.O_8^-(3).2$	2
3^{1+12}_{+}	3	$3^{1+12}_{\pm}.2$ Suz.2	1
$3^{1+12}_{+}.3$	3	$3^{1+12}_{+}.3.2U_4(3).2^2$	4
$3^{1+12}_{+}.3^{2}_{-}$	3	$3^{1+12}_{+}.3^{2}.2.(A_6 \times 8).2$	7
3^{2+5+10}	3^{2}	$3^{2+5+10}.(M_{11} \times 2S_4)$	2
$3^{3+2+6+6}$	3^{3}	$3^{3+2+6+6} (L_3(3) \times SD_{16})$	7
$3^{1+12}_{+}.3^{5}_{-}$	3	$3^{1+12}_{\pm}.3^5(2^2 \times M_{11})$	4
$3^{1+12}_{+}.3^{2+4}_{-}$	3	$3^{1+12}_{+}.3^{2+4}.(SD_{16} \times 2S_4)$	14
$3^{2+5+10}.3^{2}$	3^{2}	$3^{2+5+10}.3^2.(2S_4 \times SD_{16})$	14
S	3	$S.(SD_{16} \times 2^2)$	28

Case 2. Suppose p = 5. By [24, Theorem 5], M has six maximal 5-local subgroups as follows:

$$M_1 = N(5A) \cong (D_{10} \times \text{HN}).2,$$

$$M_2 = N(5A^2) \cong (5^2:4.2^2 \times U_3(5)):S_3,$$

$$M_3 = N(5B) \cong 5^{1+6}_+.2.J_2:4,$$

$$M_4 = N(5B^2) = 5^2.5^2.5^4:(S_3 \times \text{GL}_2(5)),$$

$$M_5 = N(5B^3) = 5^{3+3}.(2 \times L_3(5))$$

and

$$M_6 = N(5A^4) = 5^4 : (3 \times 2.L_2(25)):2$$

Let $L = U_3(5)$, $GL_2(5)$ or $L_2(25)$. Then Sylow 5-subgroups of L are the only radical subgroups, so

$$\mathcal{R}_{0}(M_{i}, 5) = \begin{cases} \{5^{2}, 5^{2} \times 5^{1+2}_{+}\} & \text{if } i = 2, \\ \{5^{2+2+4}, 5^{1+6}_{+}.5^{2}\} & \text{if } i = 4, \\ \{5^{4}, 5^{4}.5^{2}\} & \text{if } i = 6. \end{cases}$$

$$(4.5)$$

In addition, $C(5^2 \times 5^{1+2}_+) = 5^3$, $C(5^4.5^2) = 5^2$ and

$$N_{M_i}(R) = \begin{cases} (5^2 \times 5^{1+2}_+).(4.2^2 \times 8):S_3 & \text{if } i = 2 \text{ and } R = 5^2 \times 5^{1+2}_+, \\ 5^{1+6}_+.5^2.(S_3 \times 4^2) & \text{if } i = 4 \text{ and } R = 5^{1+6}.5^2, \\ 5^4.5^2.4.3^2.2^2 & \text{if } i = 6 \text{ and } R = 5^4.5^2. \end{cases}$$

We may take

$$\mathcal{R}_0(M_3, 5) = \{5^{1+6}_+, 5^{1+6}_+.5, 5^{1+6}_+.5^2\},$$
(4.6)

and so C(R) = Z(R) = 5 = 5B, $N_G(R) \leq M_3$ and $R \in_G \mathcal{R}_0(G, 5)$ for each $R \in \mathcal{R}_0(M_3, 5)$. The radical subgroups of HN are given by [10, Proposition 4.1], so that

$$\mathcal{R}_0(M_1, 5) = \{5, 5^2, 5 \times 5^2 \cdot 5^{1+2}_+, 5 \times 5^{1+4}_+, 5 \times 5^{1+4}_+, 5 \times 5^{1+4}_+ \cdot 5\}.$$
(4.7)

In addition,

$$C(5^2) = 5^2 \times U_3(5), \quad C(5 \times 5^2 \cdot 5^{1+2}_+) = 5^3, \quad C(5 \times 5^{1+4}_+) = 5^2 = C(5 \times 5^{1+4}_+ \cdot 5)$$

and

$$N_{M_1}(R) = \begin{cases} (D_{10} \times (D_{10} \times U_3(5).2).2 & \text{if } R = 5^2, \\ (D_{10} \times 5^2.5^{1+2}_+.4A_5).2 & \text{if } R = 5 \times 5^2.5^{1+2}_+, \\ (D_{10} \times 5^{1+4}_+.2^{1+4}_-.5.4).2 & \text{if } R = 5 \times 5^{1+4}_+, \\ (D_{10} \times 5^{1+4}_+.5.(2 \times 4)).2 & \text{if } R = 5 \times 5^{1+4}_+.5. \end{cases}$$

The fusions of elements of order 5 in HN are given in [24, p. 12]. Thus 5^2 is 5A-pure, so that

we may suppose $N_{M_1}(5^2) \leq M_2 = N(5A^2)$ and $N_{M_1}(5^2) \neq N(5^2)$. If $R = 5 \times 5^{1+4}_+$ or $5 \times 5^{1+4}_+$.5, then the commutator subgroup R' = [R, R] = 5 is 5*B*-pure, and so we may suppose $N_G(R) \leq M_3 = N(5B)$. By Lemma 2.2 and (4.6), $R \notin_G \mathcal{R}_0(G, 5)$.

If $R = 5 \times 5^2 \cdot 5^{1+2}_+$, then $[R, R'] = 5^2$ is 5*B*-pure, so we may suppose $N_G(R) \leq M_4 = N(5B^2)$, and by Lemma 2.2 and (4.5) we have $R \notin_G \mathcal{R}_0(G, 5)$. It follows that each $R \in \mathcal{R}_0(M_1, 5) \setminus \{5, 5^2\}$ is non-radical in G and that $N_{M_1}(5^2) \neq N(5^2)$.

We may take

$$\mathcal{R}_0(M_5,5) = \{5^{3+3}, 5^2.5^2.5^4, 5^{3+3}.5^2, 5^{3+3}.5^{1+2}_+\}$$
(4.8)

and $C(5^2.5^2.5^4) = 5^2$, $C(5^{3+3}.5^2) = C(5^{3+3}.5^{1+2}) = 5$ and

$$N_{M_5}(R) = \begin{cases} 5^2 \cdot 5^2 \cdot 5^4 \cdot (2 \times \operatorname{GL}_2(5)) & \text{if } R = 5^2 \cdot 5^2 \cdot 5^4, \\ 5^{3+3} \cdot 5^2 \cdot (2 \times \operatorname{GL}_2(5)) & \text{if } R = 5^{3+3} \cdot 5^2, \\ 5^{3+3} \cdot 5^{1+2}_+ \cdot (2 \times 4^2) & \text{if } R = 5^{3+3} \cdot 5^{1+2}_+ \end{cases}$$

Since C(R) is 5B-pure, it follows from (4.5) and (4.6) that

$$N_{M_5}(R) \neq N_G(R) \text{ for } R \in \mathcal{R}_0(M_5, 5) \setminus \{5^{3+3}\},$$

and this classifies the radical 5-subgroups of G.

Suppose p = 3. By [24, Theorem 3], M has seven maximal 3-local subgroups, Case 3. namely

$$M_{1} = N(3A) \cong 3.Fi_{24},$$

$$M_{2} = N(3A^{2}) \cong (3^{2}:2 \times O_{8}^{+}(3)).S_{4},$$

$$M_{3} = N(3B) = 3^{1+12}_{+}.2.Suz:2,$$

$$M_{4} = N(3B^{2}) = 3^{2+5+10}:(M_{11} \times 2S_{4}),$$

$$M_{5} = N(3B^{3}) = 3^{3+2+6+6}.(SD_{16} \times L_{3}(2)),$$

$$M_{6} = N(3^{8}) = 3^{8}.O_{8}^{-}(3).2$$

and

$$M_7 = N(3C) = S_3 \times \mathrm{Th},$$

where SD_{16} is a semidihedral group of order 16. We first classify radical subgroups of each M_i with $i \neq 7$ by applying modified local strategy, and then do the fusions in M using Lemmas 2.4 and 2.2.

Case 3.1. Let $M = M_3 = 3^{1+12}_+$.2.Suz.2 and $R \in \mathcal{R}_0(M_3, 3)$. Then $O_3(M) = 3^{1+12}_+ \leqslant R$ and $R/O_3(M)$ is a radical subgroup of 2.Suz. The group 2.Suz has a faithful permutation representation of degree 65 520. We may take

$$\mathcal{R}_0(2.\mathrm{Suz},3) = \{1, 3, 3^2, 3^5, 3^{2+4}, 3^{2+4}.3\},\$$

and so

$$\mathcal{R}_0(M_3,3) = \{3^{1+12}, 3^{1+12}, 3, 3^{1+12}, 3^2, 3^{1+12}, 3^5, 3^{1+12}, 3^{2+4}, S\}.$$
(4.9)

Since $C_{M_3}(R) = 3 = Z(R)$ for each $R \in \mathcal{R}_0(M_3, 3)$, it follows that $N_G(R) \leq_G M_3$, and so R is radical in G with $N_{M_3}(R) = N_G(R)$ for each $R \in \mathcal{R}_0(M_3, 3)$. Thus we may suppose $\mathcal{R}_0(M_3, 3) \subseteq$ $\mathcal{R}_0(G,3).$

Case 3.2. Applying local strategy, we get four classes of radical subgroups of M_4 ; one of them, R, has order 3^{18} and satisfies $C_{M_4}(R) = Z(R) = 3$ and $N_{M_4}(R) = R.(2^2 \times M_{11})$. Thus a generator of Z(R) is a 3*B*-element as $Z(O_3(M_4))$ is 3*B*-pure, and we may suppose $N_G(R) \leq M_3$. By Lemma 2.4 and (4.9), R is radical in G and, by the local structures, $R =_G 3^{1+12} \cdot 3^5$. Another radical subgroup Q of M_4 has order 3^{19} and satisfies $C_{M_4}(Q) = 3^2$. So $N_G(Q) \leq_G M_4$

and Q is radical in G. We may take

$$\mathcal{R}_0(M_4,3) = \{3^{2+5+10}, 3^{1+12} \cdot 3^5, 3^{2+5+10} \cdot 3^2, S\},\tag{4.10}$$

and then $N_G(R) = N_{M_4}(R)$ for each $R \in \mathcal{R}_0(M_4, 3)$, so we may suppose $\mathcal{R}_0(M_4, 3) \subseteq \mathcal{R}_0(G, 3)$.

Case 3.3. There are four classes of radical subgroups of M_5 ; one of them, R, has order 3^{19} with $C_{M_5}(R) = Z(R) = 3$ and $N_{M_5}(R) = R.(2S_4 \times SD_{16})$. Thus Z(R) is 3B-pure and we may suppose $N_{M_5}(R) \leq M_3$. By (4.9) and Lemma 2.2, R is radical in G such that $R =_G 3^{1+12}.3^{2+4}$.

Another radical subgroup Q of M_5 also has order 3^{19} and satisfies $C_{M_3}(Q) = Z(Q) = 3^2$, so that Z(Q) is 3B-pure. Since $|C_G(Z(Q))|_3 \ge 3^{19}$, it follows from [24, Proposition 5.1] that $N_G(Z(Q)) \le_G M_4$. By Lemma 2.4 and (4.10), R is radical in G and $R =_G 3^{2+5+10}.3^2$.

We may take

$$\mathcal{R}_0(M_5,3) = \{3^{3+2+6+6}, 3^{1+12} \cdot 3^{2+4}, 3^{2+5+10} \cdot 3^2, S\},\tag{4.11}$$

and then $N_G(R) = N_{M_5}(R)$ for $R \in \mathcal{R}_0(M_5, 3)$. Thus we may suppose $\mathcal{R}_0(M_5, 3) \subseteq \mathcal{R}_0(G, 3)$.

Case 3.4. The radical subgroups of Fi'_{24} are given by [5, Proposition 4.1], so that the radical subgroups of M_1 and their local structures are as listed in Table 3.

The fusions in G of elements of order 3 of Fi'_{24} are given in [24, p. 3]. Thus 3^2 is 3A-pure and $N_G(3^2) =_G M_2 = N(3A^2)$, so that $N_{M_1}(3^2) \neq N_G(3^2)$.

Since $Z(3^{1+2}_+) = 3$ is generated by a 3A-element, we have $N_G(3^{1+2}_+) \leq M_1$ and so 3^{1+2}_+ is radical in G with $N_G(3^{1+2}_+) = N_{M_1}(3^{1+2}_+)$. By [24, Proposition 2.2], 3^8 contains a 3B-element, so we may suppose $3^8 \leq M_3$. As shown

By [24, Proposition 2.2], 3^8 contains a 3B-element, so we may suppose $3^8 \leq M_3$. As shown in the proof on [24, p. 6], 3^8 contains a subgroup of type $3A_2B_2$, so that $N_{M_1}(3^8) \leq M_6$ and $N_{M_1}(3^8) \neq N_G(3^8)$.

If $R = 3^{2+10}$, then R' = 3 is 3*B*-pure, so that $N_G(R) \leq_G M_3$ and, by Lemma 2.2 and (4.9), R is non-radical in G.

Similarly, if $R \in \{3^{2+5+5}, 3 \times 3^{1+10}_+, 3^4, 3 \times 3^{1+10}_+, (3 \times 3^{1+2}_+), 3.3^2.3^4.3^8.3^2\}$, then $Z(R) = Z(3^{2+10}) = 3^2$ and we may suppose $N_G(R) \leq N_G(3^{2+10}) \leq M_3$. By Lemma 2.2 and (4.9), R is non-radical in G.

If $R = 3^{4+4+3+3} = 3.3^3 \cdot [3^{10}]$, then $Q = [R, [R, R']] = 3^3$ is 3*B*-pure and $Q \leq Z(R)$. Since $|C_G(3B_4(ii))|_3 = |C_G(3B_4(ii))|_3 = 3^{13}$, it follows from $|R| = 3^{14}$ that each subgroup of order 9 in [R, [R, R']] is of type $3B_4(i)$, where the types $3B_4(i)$, $3B_4(ii)$ and $3B_4(iii)$ of elementary subgroups of order 9 are as defined in [24, Proposition 5.1]. As shown in the proof of [24, Theorem 6.5], we may suppose $N_G(Q) = N_G(3B^3) = M_5$, so that $N_G(R) \leq M_5$ and, by (4.11), $N_G(R) \neq N_{M_1}(R)$.

TABLE 3. Radical 3-subgroups of 3.Fi₂₄.

R	C(R)	$N_{M_1}(R)$
3	$3.\mathrm{Fi}_{24}'$	$3.\mathrm{Fi}_{24}$
3^{2}	$3^2 \times O_8^+(3)$	$(3^2:2 \times O_8^+(3)):S_3$
3^{1+2}_{+}	$3 \times G_2(3)$	$(3^{1+2}_+:2^2 \times G_2(3)):2$
3^{8}	3^{8}	$3^8.O_7(3):2$
3^{2+10}	3^{2}	$3^{2+10}.(2 \times U_5(2):2)$
3^{2+5+5}	3^{2}	$3^{2+5+5}.(2 \times U_4(2)):2$
$3^{4+4+3+3}$	3^{4}	$3^{4+4+3+3} . (2^2 \times L_3(3))$
$3.3^2.2^4.3^8$	3^{3}	$3.3^2.2^4.3^8.(S_5 \times 2S_4)$
$3 \times 3^{1+10}_{+}.3^{4}_{-}$	3^{2}	$3 \times 3^{1+10}_+.3^4.(2^2 \times S_5)$
$3 \times 3^{1+10}_{+}.(3 \times 3^{1+2}_{+})$	3^{2}	$3 \times 3^{1+10}_+ . (3 \times 3^{1+2}_+) . (2^2 \times 2S_4)$
$3.3^2.3^4.3^8.3$	3^{3}	$3.3^2.3^4.3^8.3.(2^2 \times 2S_4)$
$3.3^2.3^4.3^8.3^2$	3^2	$3.3^2.3^4.3^8.3^2.2^4$

If $R = 3.3^2 \cdot 3^4 \cdot 3^8$, then $[R, R'] = 3^2$ is 3*B*-pure. Since $|C_{M_1}([R, R'])|_3 = 3^{16}$, it follows that [R, R'] is of type $3B_4(i)$ and so $N_G(R) \leq_G M_4$. By (4.10), R is non-radical in G.

If $R = 3.3^2 \cdot 3^4 \cdot 3^8 \cdot 3$, then $Z(R) =_G Z(3.3^2 \cdot 3^4 \cdot 3^8)$ and we may suppose $N_G(R) \leq M_4$. By (4.10), R is non-radical in G.

Case 3.5. Suppose R is a radical subgroup of $M_2 = (3^2: 2 \times O_8^+(3)).S_4$ with $R \neq O_3(M_2)$. If $H = 3^2: 2 \times O_8^+(3)$, then $Q = R \cap H$ is a radical subgroup of H, so that $Q = 3^2 \times Q_1$ for some radical subgroup Q_1 of $O_8^+(3)$. If $Q_1 \neq 1$, then $N_{O_8^+(3)}(Q_1)$ is a parabolic subgroup of $O_8^+(3)$. If $Q_1 = 1$, then $R/3^2 \cong 3$. Since $HR/H \cong R/Q \leq M_2/H$, it follows that |R/Q| = 1 or 3. So we can first classify radical subgroups of H and then, for each such subgroup Q, find $R \leq N_{M_2}(Q)$ such that $R \cap H = Q$ and $R = O_3(N_{M_2}(R))$.

Let $L_1 = 3^8.4.L_4(3).2^2$, $L_2 = (3^2:2 \times 3^{1+8'}_+.2(A_4 \times A_4 \times A_4).2).S_4$ and $L_3 = 3^{1+2}_+.(2^2 \times G_2(3)).$ By [15, p. 140], $N_H(Q) \leq L_i \cap H$ for some *i*.

We may take

$$\mathcal{R}_0(L_1,3) = \{3^8, 3^5.3^6, 3^8.3^4, 3^8.3^3.3^2, 3^4.3^3.3^6, (3^2 \times 3^{1+8}_+).3^3\}$$

hence

$$C(3^8) = 3^8, \quad C(3^5.3^6) = 3^5,$$

$$C(3^8.3^4) = 3^3 = C(3^8.3^3.3^2) = C(3^8.3^3.3^{1+2}_+), \quad C(3^4.3^3.3^6) = 3^4$$

and

$$N_{L_1}(Q) = \begin{cases} 3^5.3^6.(Q_8 \times L_3(3)) & \text{if } Q = 3^5.3^6, \\ 3^8.3^4.(4 \times 2)2^3.3^2.D_8 & \text{if } Q = 3^8.3^4, \\ 3^8.3^3.3^2.(Q_8 \times 2S_4) & \text{if } Q = 3^8.3^3.3^2, \\ 3^4.3^3.3^6.(SD_{16} \times 2S_4) & \text{if } Q = 3^4.3^3.3^6, \\ (3^2 \times 3^{1+8}_+).3^3.(SD_{16} \times 2^2) & \text{if } Q = (3^2 \times 3^{1+8}_+).3^3. \end{cases}$$

Also, $N_{M_2}(Q) = N_{L_1}(Q)$ for $Q \in \{3^8, 3^8, 3^4\}$, and if $Q \in \mathcal{R}_0(L_1, 3) \setminus \{3^8, 3^8, 3^4\}$, then

$$N_{M_2}(R) = \begin{cases} 3^5.3^6.(SD_{16} \times L_3(3)) & \text{if } R = Q = 3^5.3^6, \\ 3^8.3^3.3^2.(SD_{16} \times 2S_4) & \text{if } R = Q = 3^8.3^3.3^2, \\ 3^4.3^3.3^6.2^2.2^4.3^2.2^2 & \text{if } R = Q = 3^4.3^3.3^6, \\ 3^4.3^3.3^6.3.2^3.S_4 & \text{if } Q = 3^4.3^3.3^6 \text{ and } R = 3^4.3^3.3^6.3, \\ (3^2 \times 3^{1+8}_+).3^3.2^3.S_4 & \text{if } R = Q = (3^2 \times 3^{1+8}_+).3^3. \end{cases}$$

We may take

$$\mathcal{R}_0(L_2,3) = \{3^2 \times 3^{1+8}_+, 3^8.3^4, (3^2 \times 3^{1+8}_+).3, 3^8.3^3.3^2, (3^2 \times 3^{1+8}_+).3^3, (3^2 \times 3^{1+8}_+).3^3.3\};$$

then

$$\begin{split} C(3^2\times 3^{1+8}_+) &= 3^3 = C(3^8.3^3.3^2) = C((3^2\times 3^{1+8}_+).3^3), \\ C((3^2\times 3^{1+8}_+).3) &= 3^2 = C((3^2\times 3^{1+8}_+).3^3.3) \end{split}$$

and

$$N_{L_2}(R) = \begin{cases} (3^2 \times 3^{1+8}_+) \cdot 3 \cdot 2^3 \cdot 2^2 \cdot S_3 & \text{if } R = (3^2 \times 3^{1+8}_+) \cdot 3, \\ 3^8 \cdot 3^3 \cdot 3^2 \cdot (SD_{16} \times 2S_4) & \text{if } R = 3^8 \cdot 3^3 \cdot 3^2, \\ (3^2 \times 3^{1+8}_+) \cdot 3^3 \cdot 2^3 \cdot S_4 & \text{if } R = (3^2 \times 3^{1+8}_+) \cdot 3^3, \\ (3^2 \times 3^{1+8}_+) \cdot 3^3 \cdot 3 \cdot 2^4 & \text{if } R = (3^2 \times 3^{1+8}_+) \cdot 3^3 \cdot 3 \cdot 3^4 \end{cases}$$

In addition, $N_{M_2}(R) = N_{L_2}(R)$ for all $R \in \mathcal{R}_0(L_2, 3)$.

We may take

$$\mathcal{R}_0(L_3,3) = \{3^{1+2}_+, 3^4.3^4, 3^{1+2}_+.(3^{1+2}_+ \times 3^2), 3^3.3^4.3^2\};$$

hence

$$C(3^{1+2}_{+}) = 3 \times G_2(3), \quad C(3^4.3^4) = 3^4 = C(3^{1+2}_{+}.(3^{1+2}_{+} \times 3^2)), \quad C(3^3.3^4.3^2) = 3^3$$

and

$$N_{L_3}(R) = \begin{cases} 3^4.3^4.(2^2 \times 2S_4) & \text{if } R = 3^4.3^4, \\ 3^{1+2}_+.(3^{1+2}_+ \times 3^2)(2^2 \times 2S_4) & \text{if } R = 3^{1+2}_+.(3^{1+2}_+ \times 3^2) \\ 3^3.3^4.3^2.2^4 & \text{if } R = 3^3.3^4.3^2. \end{cases}$$

In addition, $N_{M_2}(R) \neq N_{L_3}(R)$ for all $R \in \mathcal{R}_0(L_3, 3) \setminus \{3^{1+2}_+\}$. It follows that

. . .

$$\mathcal{R}_{0}(M_{2},3) = \{3^{2}, 3^{1+2}_{+}, 3^{8}, 3^{5}.3^{6}, 3^{2} \times 3^{1+8}_{+}, 3^{8}.3^{4}, (3^{2} \times 3^{1+8}_{+}).3, 3^{4}.3^{3}.3^{6}, 3^{8}.3^{3}.3^{2}, 3^{4}.3^{3}.3^{6}.3, (3^{2} \times 3^{1+8}_{+}).3^{3}, (3^{2} \times 3^{1+8}_{+}).3^{3}.3\}.$$

If $R = 3^8$, then $L_1 = N_{M_2}(R) < N_G(R) =_G M_6$. If $R = 3^{1+2}_+$, then Z(R) is 3A-pure and

$$L_3 = N_{M_2}(R) \leqslant N_G(R) \leqslant N_G(Z(R)) =_G M_1$$

so that $L_3 \neq N_G(R)$. If $R = 3^2 \times 3^{1+8}_+$, then R' = 3 is generated by a 3A-element of $O_8^+(3)$, which is a 3B-element of Fi₂₄ and of G. Thus $L_2 = N_{M_2}(R) \leq N_G(R) \leq_G M_3$ and, by Lemma 2.2 and (4.9), R is non-radical in G. For each $R \in \mathcal{R}_0(M_2, 3) \setminus \{3^5.3^6, 3^4.3^3.3^6, 3^4.3^3.3^6.3\}$ with $R \neq O_3(L_i)$, we may suppose $R \in \mathcal{R}_0(L_2, 3)$ and $N_{M_2}(R) = N_{L_2}(R) \leq L_2 \leq_G M_3$. If R is radical in G with $N_G(R) \leq M_2$, then $N_{M_2}(R) = N_G(R)$ and $R \in_G \mathcal{R}_0(M_3, 3)$, which is impossible.

If $R = 3^5.3^6 \in \mathcal{R}_0(M_2, 3)$, then $R' = 3B^3 \leq O_8^+(3) \leq M_2$, $N_{M_2}(R) \leq_G N(3B^3) = M_5$ and, by Lemma 2.2 and (4.11), R is non-radical in G. If $R = 3^4.3^3.3^6 \in \mathcal{R}_0(M_2, 3)$, then $Q = [R, R'] = 3B^2$, $N_{M_2}(R) \leq_G N(3B^2) = M_4$ and, by Lemma 2.2 and (4.10), R is non-radical in G. If $R = 3^4.3^3.3^6.3$, then the last non-trivial term in its lower central series is conjugate in M_2 to Q, so $N_{M_2}(R) \leq_G N(3B^2) = M_4$ and, by Lemma 2.2 and (4.10), R is non-radical in G. It follows that for each $R \in \mathcal{R}_0(M_2, 3) \setminus \{3^2\}$, $N_G(R) \neq N_{M_2}(R)$.

Case 3.6. There are eight classes of radical subgroups of M_6 ; one of them, R, has order 3^{14} with $C_{M_6}(R) = Z(R) = 3$ and $N_{M_6}(R) = R.2.U_4(3).2^2$. Since $|C(3A)|_3 = 3^{17}$ and $|C(3C)|_3 = 3^{11}$, it follows that Z(R) is 3*B*-pure and $N_{M_6}(R) \leq N_G(R) \leq N_G(Z(R)) =_G M_3$. By Lemma 2.2 and (4.9), $R =_G 3^{1+12}_+$.3.

A radical subgroup Q of M_6 has order 3^{17} and is such that $C_{M_6}(Q) = Z(Q) = 3^2$ and $N_{M_6}(Q) = Q.(2S_4 \times A_6).2$. As shown above, Z(Q) is 3*B*-pure. Since $|C(3B_4(\text{ii}))|_3 = |C(3B_4(\text{iii}))|_3 = 3^{13}$, it follows that $Z(Q) = 3B_4(\text{i})$ and $N_G(Q) \leq N_G(Z(Q)) =_G M_4$. In particular, $Q =_G 3^{2+5+10}$ and $N_G(Q) \neq N_{M_6}(Q)$.

Another radical subgroup W of M_6 has order 3^{17} and is such that $C_{M_6}(W) = Z(W) = 3^3$ and $N_{M_6}(W) = W.(L_3(3) \times Q_8)$. A similar proof to that above shows that $Z(W) = 3B^3$, $N_G(W) \leq N_G(Z(W)) =_G M_5$ and $W =_G 3^{3+2+6+6}$, so $[N_G(W):N_{M_6}(W)] = 2$.

For other radical subgroups U, we have Z(U) = Z(R) or Z(Q), and so $N_{M_6}(U) \leq N_G(Z(U)) \leq_G M_4$ or M_5 . By Lemma 2.4, (4.10) and (4.11), U is radical in G but $N_G(U) \neq N_{M_6}(U)$.

The radical subgroups of M_6 and their local structures are given in Table 4.

Case 3.7. Suppose that $R \in \mathcal{R}_0(G, 3)$ with $N_G(R) \leq M_7 = S_3 \times \text{Th. If } R \neq 3^* = O_3(M_7)$, then by [24, Proposition 2.1] we may suppose $N_G(R) \leq M_i$, and so $R \in \mathcal{R}_0(M_i, 3)$ for $1 \leq i \leq 6$. Thus the radical 3-subgroups of G are as listed in Table 2, and the centralizers and normalizers are given by MAGMA.

REMARK 4.2. The radical 3-subgroups of $G = \mathbb{M}$ were given in [26, Theorem 4]. However, the radical 3-subgroup 3^{1+2}_+ was missing and the normalizers of the radical subgroups 3^{1+12}_+ .3, 3^{1+12}_+ .3², 3^{1+12}_+ .3⁵, 3^{1+12}_+ .3²⁺⁴, 3^{2+5+10} .3² and S, which are denoted in [26, Theorem 4] by $V_3^{(1)}$, $V_3^{(3)}$, $V_3^{(2)}$, $V_4^{(1,0)}$ and $V_3^{(5)}$, respectively, are incorrect. Some of the structures of radical 3-subgroups of the Baby Monster given in [26, Theorem 2] are also not correct. See [11, Proposition 5.1] for the classifications of the radical 3-subgroups of the Baby Monster.

LEMMA 4.3. Let $G = \mathbb{M}$ and $B_0 = B_0(G)$, and let $\text{Blk}^+(G, p)$ be the set of p-blocks with a non-trivial defect group and $\text{Irr}^+(G)$ the characters of Irr(G) with positive p-defect. If a defect group D(B) of B is cyclic, then Irr(B) is given by [19, p. 451].

(a) If p = 13, then Blk⁺(G, p) = { $B_i | 0 \le i \le 4$ } such that $D(B_i) \cong 13$ when $1 \le i \le 4$. In the notation of [15, p. 220],

$$\operatorname{Irr}(B_0) = \operatorname{Irr}^+(G) \setminus \left(\bigcup_{i=1}^4 \operatorname{Irr}(B_i)\right).$$

Moreover, $\ell(B_0) = 52$, $\ell(B_i) = 12$ for $1 \leq i \leq 3$ and $\ell(B_4) = 6$.

(b) If p = 11, then Blk⁺(G, p) = { $B_i | 0 \le i \le 6$ } such that $D(B_i) \cong 11$ when $1 \le i \le 6$. In the notation of [15, p. 220],

$$\operatorname{Irr}(B_0) = \operatorname{Irr}^+(G) \setminus \left(\bigcup_{i=1}^6 \operatorname{Irr}(B_i) \right)$$

Moreover, $\ell(B_0) = 45$, $\ell(B_i) = 10$ for $1 \le i \le 4$ and $\ell(B_j) = 5$ for j = 5, 6.

(c) If p = 7, then $\text{Blk}^+(G, p) = \{B_i \mid 0 \leq i \leq 5\}$ such that $D(B_1) \cong 7^2$ and $D(B_j) \cong 7$ for $2 \leq i \leq 5$. In the notation of [15, p. 220],

 $Irr(B_1) = \{\chi_{10}, \chi_{13}, \chi_{15}, \chi_{24}, \chi_{37}, \chi_{38}, \chi_{49}, \chi_{67}, \chi_{78}, \chi_{91}, \\\chi_{93}, \chi_{105}, \chi_{106}, \chi_{111}, \chi_{115}, \chi_{133}, \chi_{139}, \chi_{142}, \chi_{144}, \end{cases}$

 $\chi_{156}, \chi_{161}, \chi_{163}, \chi_{165}, \chi_{170}, \chi_{175}, \chi_{187}, \chi_{188}$

RC(R) $N_{M_6}(R)$ 3^{8} 3^{8} $3^8.O_8^-(3).2$ $3^{1+12}_{\pm}.3$ $3^{1+12}_{\pm}.3.2U_4(3).2^2$ 3 $3^{3+2+6+6}$ 3^3 $3^{3+2+6+6} (L_3(3) \times Q_8)$ 3^2 3^{2+5+10} $3^{2+5+10}.(2S_4 \times A_6).2$ $3^{1+12}_{L}.3^{5}$ $3^{1+12}_{\perp}.3^5.(2^2 \times M_{10})$ 3 $3^{1+12}_{\perp}.3^{2+4}.(2S_4 \times Q_8)$ $3^{1+12}_{\pm}.3^{2+4}_{\pm}$ 3 3^{2+5+10} 3^{2} 3^2 $3^{2+5+10}.3^2.(2S_4 \times Q_8)$ $S.(Q_8 \times 2^2)$ S3

TABLE 4. Radical 3-subgroups of $3^8 O_8^-(3).2$.

and

$$\operatorname{Irr}(B_0) = \operatorname{Irr}^+(G) \setminus \left(\bigcup_{i=1}^5 \operatorname{Irr}(B_i)\right).$$

Moreover, $\ell(B_0) = 70$, $\ell(B_1) = 24$, $\ell(B_i) = 6$ for $2 \le i \le 4$ and $\ell(B_5) = 3$.

(d) If p = 5, then $\text{Blk}^+(G, p) = \{B_i \mid 0 \leq i \leq 4\}$ such that $D(B_1) \cong 5^2$ and $D(B_j) \cong 5$ for $2 \leq i \leq 4$. In the notation of [15, p. 220],

$$Irr(B_1) = \{\chi_{21}, \chi_{28}, \chi_{30}, \chi_{31}, \chi_{58}, \chi_{63}, \chi_{67}, \chi_{79}, \chi_{92}, \chi_{104}, \\\chi_{140}, \chi_{144}, \chi_{151}, \chi_{155}, \chi_{161}, \chi_{167}, \chi_{178}, \chi_{184}, \chi_{189}, \chi_{194}\}$$

and

$$\operatorname{Irr}(B_0) = \operatorname{Irr}^+(G) \setminus \left(\bigcup_{i=1}^4 \operatorname{Irr}(B_i)\right).$$

Moreover, $\ell(B_0) = 91$, $\ell(B_1) = 16$, $\ell(B_2) = 2$ and $\ell(B_i) = 4$ for i = 3, 4.

(e) If p = 3, then Blk⁺(G, p) = { $B_i | 0 \le i \le 6$ } such that $D(B_1) \cong 3^{1+2}_+$ and $D(B_j) \cong 3$ for $2 \le j \le 6$. In the notation of [15, p. 220],

$$Irr(B_1) = \{\chi_k \mid k \in \{66, 71, 72, 77, 78, 131, 141, 143, 161, 168, 178, 186, 189\}\}$$

and

$$\operatorname{Irr}(B_0) = \operatorname{Irr}^+(G) \setminus \left(\bigcup_{i=1}^6 \operatorname{Irr}(B_i)\right).$$

Moreover, $\ell(B_0) = 83$, $\ell(B_1) = 7$ and $\ell(B_j) = 2$ for $2 \leq j \leq 6$.

Proof. If $B \in \text{Blk}(G, p)$ is non-principal with D = D(B), then $\text{Irr}^0(C(D)D/D)$ has a non-trivial character θ and $N(\theta)/C(D)D$ is a p'-group, where $N(\theta)$ is the stabilizer of θ in N(D). By [19, p. 451], we may suppose that D is non-cyclic, so that by Proposition 4.1 we know $p \neq 13$ or 11, and $D = p^2$ or 3^{1+2}_+ .

If $D = p^2$ and $L = L_2(7)$, $U_3(5)$ or $O_8^+(3)$ depending on whether p = 7, 5 or 3, then $C(D) = p^2 \times L$ and $\theta = 1 \times \text{St}$, where $1 \in \text{Irr}(p^2)$ is the trivial character and $\text{St} \in \text{Irr}(L)$ is the Steinberg character. If $p \neq 3$, then G has a unique block B_1 with $D = p^2$, as N(D)/C(D) is a p'-group. If p = 3, then $D = 3^2$ and $N(D)/C(D) = 2.S_4$. By the uniqueness, an element of order 3 in N(D)/C(D) stabilizes θ , so that G has no block B with a defect group 3^2 .

If $D = 3^{1+2}_+$, then $C(D) = 3 \times G_2(3)$ and so $\theta = 1 \times \text{St.}$ Since $N(D)/C(D)D = D_8$ is a 3'-group, it follows that G has a unique block B with $D = 3^{1+2}_+$.

Using the method of central characters, Irr(B) is given as above. If D(B) is cyclic, then $\ell(B)$ is as given in [19, p. 451].

If p = 7 or 5 and $B = B_1$, then $D(B) = p^2$, the non-trivial elements of D(B) are conjugate in G and $C(x) = p \times H$ for any $1 \neq x \in D(B)$, where H = He or HN according to whether p = 7or 5. It follows that

$$\mathbf{k}(B) = \ell(B) + \sum_{b \in \mathrm{Blk}(C(x), B)} \ell(b), \tag{4.12}$$

where $\text{Blk}(C(x), B) = \{b \in \text{Blk}(C(x)) : b^G = B\}$. In particular, for $b \in \text{Blk}(C(x), B)$, we have $b = B_0(p) \times b'$ for some block $b' \in \text{Blk}(H)$ with cyclic defect group p. By [19, p. 139 or p. 248], H has a unique such block b' with $\ell(b') = 3$ or 4 depending on whether p = 7 or 5; so $\ell(B) = k(B) - \ell(b') = 24$ or 16.

If p=3 and $B=B_1$, then $D(B)=3^{1+2}_+$, $C_G(D(B))=3\times G_2(3)$ and Z(D(B))=3A. Since D(B) contains elements of type 3E of Fi₂₄, it follows that D(B) has a 3C-element of G. If D(B) contains a 3B-element of G, then $G_2(3)$ is conjugate to a subgroup

of $M_3 = 3^{1+12}_+ .2$ Suz.2. Since $G_2(3)$ is not a subgroup of Suz, it follows that D(B) contains no element of 3B. Thus

$$\mathbf{k}(B) = \ell(B) + \sum_{b_1 \in \text{Blk}(C(3A), B)} \ell(b_1) + \sum_{b_2 \in \text{Blk}(C(3C), B)} \ell(b_2).$$

Now, $C(3C) = 3 \times \text{Th}$ and Th has a unique block b'_2 with $D(b'_2) = 3$ and $\ell(b'_2) = 2$ (see [19, p. 273]); so Blk(C(3C), B) = { b_2 } with $\ell(b_2) = \ell(b'_2) = 2$. Similarly, C(3A) = 3.Fi₂₄ and Fi₂₄ has a unique block b'_1 with $D(b'_1) = 3^2$. Since $N_{\text{Fi}'_{24}}(D(b'_1)) = (3^2:2 \times G_2(3)):2$, it follows that $\ell(b'_1) = 4$ and so Blk(C(3A), B) = { b_1 } with $\ell(b_1) = 4$. Thus $\ell(B_1) = 13 - 4 - 2 = 7$.

If $\ell_p(G)$ is the number of *p*-regular *G*-conjugacy classes, then $\ell_{13}(G) = 179$, $\ell_{11}(G) = 181$, $\ell_7(G) = 164$, $\ell_5(G) = 148$ and $\ell_3(G) = 101$. Thus $\ell(B_0)$ can be calculated by the following equation due to Brauer:

$$\ell_p(G) = \sum_{B \in \operatorname{Blk}^+(G,p)} \ell(B) + |\operatorname{Irr}^0(G)|$$

where $|\operatorname{Irr}^{0}(G)| = 85, 86, 49, 31 \text{ or } 1$ when p = 13, 11, 7, 5 or 3, respectively.

THEOREM 4.4. Let $G = \mathbb{M}$ and let B be a p-block of G with a non-cyclic defect group. If $p \ge 3$, then the number of B-weights is the number of irreducible Brauer characters of B.

Proof. We may suppose p = 3, 5, 7, 11 or 13. If $B = B_0$, then Theorem 4.4 follows from Lemma 4.3, equation (4.1) and Tables 1 and 2.

Suppose $B \neq B_0$, so that p = 7, 5 or 3. Now suppose p = 7 or 5; then $B = B_1$ and $D(B) = p^2$ is abelian. Thus each *B*-weight has the form (p^2, φ) for some character $\varphi \in \operatorname{Irr}^0(N(p^2)/p^2)$. So φ covers a character $\theta \in \operatorname{Irr}^0(C(p^2)/p^2)$. Since $C(p^2)/p^2 = L_2(7)$ or $U_3(5)$ according to whether p = 7 or 5, θ is the Steinberg character St of $C(p^2)/p^2$ and θ has an extension to $N(p^2)/p^2$, so that the number of *B*-weights equals $|\operatorname{Irr}(N(p^2)/C(p^2))|$. Now $N(7^2)/C(7^2) = (3 \times 2A_4):2$ and $N(5^2)/C(5^2) = 4.2^2:S_3$ have 24 and 16 irreducible characters, respectively, so that by Lemma 4.3, $\mathcal{W}(B) = \ell(B)$.

Suppose p = 3, so that $B = B_1$ with $D = D(B) = 3^{1+2}_+$. If (R, φ) is a *B*-weight, then we may suppose $R \leq D$, so that $R = 3, 3^*, 3^2$ or D.

Now $C(D(B)) = 3 \times G_2(3)$ and $N(D)/C(D)D = D_8$ has five irreducible characters, so B has five weights of the form (D, φ) .

If R = 3 or 3^* , then R is a proper subgroup of $D \cap C(R)$ and so B has no B-weight of the form (R, φ) . If $R = 3^2$, then $C(R) = R \times O_8^+(3)$, $R = D \cap C(R)$ and $\operatorname{Irr}^0(C(R)/R) = \{\text{St}\}$. Since $N(R)/C(R) = 2.S_4$ has exactly two irreducible characters of degree 3, it follows that B has two B-weights of the form (R, φ) .

5. Radical chains

Let $G = \mathbb{M}$, $C \in \mathcal{R}(G)$ and $N(C) = N_G(C)$. We will do some cancellations in the alternating sum of Uno's conjecture. We first list some radical *p*-chains C(i) and their normalizers for certain integers *i*, and then reduce the proof of the conjecture to the subfamily $\mathcal{R}^0 = \mathcal{R}^0(G)$ of $\mathcal{R}(G)$, where $\mathcal{R}^0(G)$ is the union of *G*-orbits of all the C(i). The subgroups of the *p*-chains in Tables 5 and 6 are given either by Tables 1 and 2 or in the proofs of Proposition 4.1 and Lemma 5.1. The radical 13-chains are also given in Table 5.

LEMMA 5.1. Let $\mathcal{R}^0(G)$ be the G-invariant subfamily of $\mathcal{R}(G)$ such that

$$\mathcal{R}^{0}(G)/G = \begin{cases} \{C(i) : 1 \le i \le 8\} & \text{with } C(i) \text{ as given in Table 5 if } p = 7, \\ \{C(i) : 1 \le i \le 12\} & \text{with } C(i) \text{ as given in Table 5 if } p = 5, \\ \{C(i) : 1 \le i \le 32\} & \text{with } C(i) \text{ as given in Table 6 if } p = 3. \end{cases}$$

Then

$$\sum_{C \in \mathcal{R}(G)/G} (-1)^{|C|} \mathbf{k}(N(C), B, d, [r]) = \sum_{C \in \mathcal{R}^0(G)/G} (-1)^{|C|} \mathbf{k}(N(C), B, d, [r]),$$

where $B = B_0$ when p = 3. If p = 3 and $B = B_1$, then Dade's ordinary conjecture for B is equivalent to

$$k(G, B_1, d) + k(N(C(33)), B_1, d) = k(N(C(2)), B_1, d) + k(N(C(34)), B_1, d)$$

where the C(i) are as given in Table 6.

Proof. Let $C \in \mathcal{R}(G)$ be given by (2.1), so that we may suppose $P_1 \in \mathcal{R}_0(G, p)$.

Case 1. Suppose p = 7 and let $V = O_7(M_1)$, so that $N(V) = M_1 = (7:3 \times \text{He}):2$. Let $\mathcal{R}(G, V)$ be the subfamily of $\mathcal{R}(G)$ consisting of radical chains whose first non-trivial subgroup is V. If $C \in \mathcal{R}(G, V)$ is given by (2.1), then $P_1 = V$ and $P_i = V \times Q_i$ for some $Q_i \leq \text{He}$ when $i \geq 2$. In particular, $C_{\text{He}}: 1 < Q_2 < \ldots < Q_n$ is a radical chain of He.

C		N(C)
C(1)	1	\mathbb{M}
C(2)	$1 < 13^2$	$13^2:4L_2(3).2$
C(3)	$1 < 13^2 < 13^{1+2}$	$13^{1+2}.4^2.3$
C(4)	1 < 13	$(13:6 \times L_3(3)).2$
C(5)	$1 < 13 < 13^2$	$13^2.(12 \times 3)$
C(6)	$1 < 13^{1+2}$	$13^{1+2}.(3 \times 4S_4)$
C(1)	1	M
C(2)	$1 < 7^2$	$7^2:((3 \times 2A_4) \times L_2(7)):2$
C(3)	$1 < 7^2 < 7^3$	$7^3.(3^2 \times 2A_4):2$
C(4)	$1 < 7^{1+4}_+$	$7^{1+4}_{+}.(3 \times 2S_7)$
C(5)	$1 < 7^{2+1+2} < 7^{1+4}_+, 7$	$7^{1+4}_{+}.7.6^{2}_{-}$
C(6)	$1 < 7^{2+1+2}$	7^{2+1+2} :GL ₂ (7)
C(7)	$1 < (7^2)^* < 7^{1+2}_+$	$7^{1+2}_{+}.6$
C(8)	$1 < (7^2)^*$	$7^2:SL_2(7)$
C(1)	1	M
C(2)	$1 < 5^2$	$(5^2:4.2^2 \times U_3(5)):S_3$
C(3)	$1 < 5^2 < 5^2 \times 5^{1+2}_+$	$(5^2 \times 5^{1+2}_+).(4.2^2 \times 8):S_3$
C(4)	$1 < 5^{1+6}_{+}$	$5^{1+6}_{+}:2.J_2.4$
C(5)	$1 < 5^{2+2+4} < 5^{1+6}_+.5^2$	$5^{1+6}_{+}.5^2.(S_3 \times 4^2)$
C(6)	$1 < 5^{2+2+4}$	$5^{2+2+4}.(S_3 \times GL_2(5))$
C(7)	$1 < 5^{3+3} < 5^2.5^2.5^4$	$5^2.5^2.5^4.(2 \times \text{GL}_2(5))$
C(8)	$1 < 5^{3+3}$	$5^{3+3}.(2 \times L_3(5))$
C(9)	$1 < 5^{3+3} < 5^{3+3}.5^2$	$5^{3+3}.5^2.(2 \times \text{GL}_2(5))$
C(10)	$1 < 5^{3+3} < 5^{3+3}.5^2 < 5^{3+3}.5^{1+2}_+$	$5^{3+3}.5^{1+2}_+.(2 \times 4^2)$
C(11)	$1 < 5^4 < 5^4.5^2$	$5^4.5^2.(6 \times 3).(4 \times 2)$
C(12)	$1 < 5^4$	$(5^4.(3 \times 2L_2(25))):2$

TABLE 5. Some radical *p*-chains of \mathbb{M} with p = 13, 11, 7 or 5.

Conversely, if $C_{\text{He}}: 1 < Q_2 < \ldots < Q_n$ is a chain of $\mathcal{R}(\text{He})$, then $C: 1 < V < V \times Q_2 < \ldots < V \times Q_n$ is a chain of $\mathcal{R}(G, V)$. The map $\varphi: \mathcal{R}(G, V) \to \mathcal{R}(\text{He})$ given by $\varphi(C) = C_{\text{He}}$ is a bijection.

Let $H = 7:3 \times \text{He}$ and let $\tau \in N(V) \setminus H$ be an involution. Then He = [H, H'] and 7:3 is the largest normal solvable subgroup of N(V), so that τ stabilizes He and 7:3, respectively. In addition, for $C \in \mathcal{R}(G, V)$,

$$N_H(C) = 7:3 \times N_{\mathrm{He}}(C_{\mathrm{He}}).$$

TABLE 6. Some radical 3-chains of \mathbb{M} .

C		N(C)
C(1)	1	M
C(2)	$1 < 3^2$	$(3^2:2 \times O_8^+(3)).S_4$
C(3)	$1 < 3^2 < 3^2 \times 3^{1+8}_+$	$(3^2 \times 3^{1+8}_+).2^2.2^6.3^3.2^3.S_3$
C(4)	$1 < 3^2 < 3^8 < 3^5.3^6$	$3^5.3^6.(Q_8 \times L_3(3))$
C(5)	$1 < 3^2 < 3^8$	$3^{8}4L_{4}(3).2^{2}$
C(6)	$1 < 3^2 < 3^8 < 3^8.3^4$	$3^8.3^4(4 \times 2).2^3.3^2.D_8$
C(7)	$1 < 3^2 < 3^8 < 3^5.3^6 < 3^4.3^3.3^6$	$3^4.3^3.3^6.(Q_8 \times 2S_4)$
C(8)	$1 < 3^2 < 3^8 < 3^4.3^3.3^6$	$3^4.3^3.3^6.(SD_{16} \times 2S_4)$
C(9)	$1 < 3^2 < 3^8 < 3^8.3^4 < 3^8.3^3.3^2$	$3^8.3^3.3^2.(Q_8 \times 2S_4)$
C(10)	$1 < 3^2 < 3^8 < 3^8.3^4 < 3^8.3^3.3^2 < (3^2 \times 3^{1+8}_+).3^3$	$(3^2 \times 3^{1+8}_+).3^3.(Q_8 \times 2^2)$
C(11)	$1 < 3^2 < 3^8 < 3^4.3^3.3^6 < (3^2 \times 3^{1+8}_+).3^3$	$(3^2 \times 3^{1+8}).3^3.(SD_{16} \times 2^2)$
C(12)	$1 < 3^2 < 3^5.3^6 < 3^4.3^3.3^6$	$3^4.3^3.3^6.(SD_{16} \times 2S_4)$
C(13)	$1 < 3^2 < 3^5.3^6 < 3^4.3^3.3^6 < (3^2 \times 3^{1+8}_+) 3^3$	$(3^2 \times 3^{1+8}_+) 3^3 . (SD_{16} \times 2^2)$
C(14)	$1 < 3^2 < 3^5.3^6 < 3^8.3^3.3^2$	$3^8.3^3.3^2.(SD_{16} \times 2S_4)$
C(15)	$1 < 3^2 < 3^5.3^6$	$3^5.3^6.(SD_{16} \times L_3(3))$
C(16)	$1 < 3^2 < 3^4.3^3.3^6 < (3^2 \times 3^{1+8}_+).3^3$	$(3^2 \times 3^{1+8}_+).3^3.2^3.S_4$
C(17)	$1 < 3^2 < 3^4.3^3.3^6$	$3^4.3^3.3^6.2^2.2^4.3^2.2^2$
C(18)	$1 < 3^{1+12}_{+}$	$3^{1+12}_{\pm}.2.\mathrm{Suz.2}$
C(19)	$1 < 3^{2+5+10} < 3^{1+12}_+.3^5$	$3^{1+12}_{+}.3^{5}.(2^2 \times M_{11})$
C(20)	$1 < 3^{2+5+10}$	$3^{2+5+10} (2S_4 \times M_{11})$
C(21)	$1 < 3^{3+2+6+6} < 3^{1+12}_+.3^{2+4}_+$	$3^{1+12}_{+}.3^{2+4}.(2S_4 \times SD_{16})$
C(22)	$1 < 3^{3+2+6+6} < 3^{1+12}_+.3^{2+4} < S$	$S.(SD_{16} \times 2^2)$
C(23)	$1 < 3^{3+2+6+6} < 3^{2+5+10}.3^2$	$3^{2+5+10}.3^2.(SD_{16} \times 2S_4)$
C(24)	$1 < 3^{3+2+6+6}$	$3^{3+2+6+6} (L_3(3) \times SD_{16})$
C(25)	$1 < 3^8 < 3^{1+12}_{+}.3$	$3^{1+12}_{+}.3.2U_4(3).2^2$
C(26)	$1 < 3^{8}$	$3^8.O_8^-(3).2$
C(27)	$1 < 3^8 < 3^{3+2+6+6}$	$3^{3+2+6+6}.(Q_8 \times L_3(3))$
C(28)	$1 < 3^8 < 3^{3+2+6+6} < 3^{1+12}.3^{2+4}$	$3^{1+12}.3^{2+4}.(2S_4 \times Q_8)$
C(29)	$1 < 3^8 < 3^{2+5+10}$	$3^{2+5+10}.(2S_4 \times M_{10})$
C(30)	$1 < 3^8 < 3^{2+5+10} < 3^{1+12}.3^5$	$3^{1+12}.3^5.(2^2 \times M_{10})$
C(31)	$1 < 3^8 < 3^{2+5+10} < 3^{1+12}.3^5 < 3^8.3^{1+8}_+.3^2.3$	$3^8.3^{1+8}_{+}.3^2.3.(Q_8 \times 2^2)$
C(32)	$1 < 3^8 < 3^{2+5+10} < 3^{2+5+10} \cdot 3^2$	$3^{2+5+10}.3^2.(2S_4 \times Q_8)$
C(33)	$1 < 3^2 < 3^{1+2}_+$	$3^{1+2}_+:2^2 \times G_2(3)$
C(34)	$1 < 3^{1+2}_+$	$(3^{1+2}_+:2^2 \times G_2(3)):2$

By [2, (5A)], Dade's invariant conjecture holds for He. Using [2, Tables I–III], it is easy to check that Uno's invariant conjecture also holds for He when p = 7.

Let $\mathcal{R}(G, V)_{e}$ and $\mathcal{R}(G, V)_{o}$ be the subfamilies of $\mathcal{R}(G, V)$ consisting of chains C such that |C| is even or odd, respectively. Let

$$\mathcal{X}_{K}^{+} = \bigcup_{C \in \mathcal{R}(G,V)_{e}/K} \operatorname{Irr}(B_{0}(N_{K}(C))) \quad \text{and} \quad \mathcal{X}_{K}^{-} = \bigcup_{C \in \mathcal{R}(G,V)_{o}/K} \operatorname{Irr}(B_{0}(N_{K}(C))),$$

where K = H or N(V).

By [4, Lemma (3B)(b)] and the truth of Uno's invariant conjecture for He, there is a defect-preserving bijection ϕ from \mathcal{X}_{H}^{+} to \mathcal{X}_{H}^{-} such that for each $\chi \in \mathcal{X}_{H}^{+}$,

 $r(\phi(\chi)) \equiv \pm r(\phi(\chi)) \pmod{p}$ and $\phi(\chi^{\tau}) = \phi(\chi)^{\tau}$.

It follows that ϕ can be extended as a defect- and r-preserving bijection from $\mathcal{X}^+_{N(V)}$ to $\mathcal{X}^-_{N(V)}$. Thus

$$\sum_{C \in \mathcal{R}(G,V)/N(V)} (-1)^{|C|} \mathbf{k}(N_{N(V)}(C), B_0, d, [r]) = 0.$$
(5.1)

Therefore we may suppose $P_1 \neq_G V$. If $P_1 = 7^{1+4} = O_7(M_3)$, let $C' : 1 < 7^{1+4} < 7^{1+4}.7$ and $g(C') : 1 < 7^{1+4}.7$. Then $N(C') = N(g(C')) = 7^{1+4}.7.6^2$ and

$$k(N(C'), B, d, [r]) = k(N(g(C')), B, d, [r]),$$
(5.2)

so we may suppose $P_1 \neq 7^{1+4}$.7 and that if $P_1 = 7^{1+4}$, then $C =_G C(4)$. If $P_1 = 7^2 = O_7(M_2)$, then $C \in_G \{C(2), C(3)\}$; if $P_1 = 7^{2+1+2} = O_7(M_4)$, then $C \in C(4)$. $\{C(5), C(6)\};$ and if $P_1 = (7^2)^* = O_7(M_5)$, then $C \in \{C(7), C(8)\}.$

Case 2. Suppose p = 5, and let $V = O_5(M_1)$ so that $N(V) = (D_{10} \times HN)$.2. Uno's invariant conjecture for HN is verified by [10, Theorem 6.1]. A similar proof to that in Case 1 shows that we may suppose (5.1) holds.

Let $R \in \mathcal{R}_0(M_3, 5) \setminus \{5^{1+6}\}$ and $\sigma(R) : 1 < Q = 5^{1+6} < R$, so that $\sigma(R)' : 1 < R$. Then $\sigma(R) = 1 < 1 < R$. and $\sigma(R)'$ satisfy the conditions of Lemma 2.1, so there is a bijection g from $\mathcal{R}^{-}(\sigma(R), 5^{1+6})$ onto $\mathcal{R}^{0}(\sigma(R), 5^{1+6})$ such that N(C') = N(g(C')) and |C'| = |g(C')| - 1 for each $C' \in C'$ $\mathcal{R}^{-}(\sigma(R), 5^{1+6})$. So we may suppose

$$C \notin \bigcup_{R \in \mathcal{R}_0(M_3, 5) \setminus \{5^{1+6}\}} (\mathcal{R}^-(\sigma(R), 5^{1+6}) \cup \mathcal{R}^0(\sigma(R), 5^{1+6})).$$
(5.3)

In particular, we may suppose $P_1 \notin \mathcal{R}_0(M_3, 5) \setminus \{5^{1+6}\}$ and that if $P_1 = 5^{1+6}$, then C = C(4). If $P_1 = 5^2 = O_5(M_2)$, then $C \in \{C(2), C(3)\}$; if $P_1 = 5^{2+2+4} = O_5(M_4)$, then $C \in \{C(5), C(6)\}$; if $P_1 = 5^4 = O_5(M_6)$, then $C \in \{C(11), C(12)\}$. Suppose $P_1 = 5^{3+3} = O_5(M_5)$. Let

$$C': 1 < 5^{3+3} < 5^2 \cdot 5^2 \cdot 5^4 < 5^{3+3} \cdot 5^{1+2} \quad \text{and} \quad g(C'): 1 < 5^{3+3} < 5^{3+3} \cdot 5^{1+2}$$

so that N(C') = N(g(C')) and (5.2) holds. Thus $C \in \{C(7), C(8), C(9), C(10)\}$.

Case 3. Suppose p = 3 and $B = B_0$. Let $V \in \{3, 3^*, 3^{1+2}_+\}$ so that N(V) = 3. Fi₂₄, $S_3 \times$ Th or $(3^{1+2}_+: 2 \times G_2(3)): 2$. Uno's projective invariant conjecture was verified for Th, Fi'_{24} and $G_2(3)$ by [5, 23] and [3], respectively. A proof similar to that in Case 1 shows that (5.1) holds, so we may suppose $P_1 \neq_G 3$, 3^* or 3^{1+2}_+ . In the following, the groups L_1, L_2 and L_3 are the same as those appearing in the proof of Case 3.5 in Proposition 4.1.

Case 3.1. Let $R \in \mathcal{R}_0(M_3, 3) \setminus \{3^{1+12}\}$ and $\sigma(R) : 1 < Q = 3^{1+12} < R$, so that $\sigma(R)' : 1 < R$, where $\mathcal{R}_0(M_3, 3)$ is given by (4.9). A similar proof to that in Case 1 shows that we may

suppose (5.3) holds with $\mathcal{R}_0(M_3, 5)$ replaced by $\mathcal{R}_0(M_3, 3)$ and 5^{1+6} replaced by 3^{1+12} . In particular, $P_1 \notin \mathcal{R}_0(M_3, 3) \setminus \{3^{1+12}\}$, and if $P_1 = 3^{1+12}$, then C = C(18).

We may suppose

$$P_1 \in_G \{3^2, 3^8, 3^{2+5+10}, 3^{3+2+6+6}, 3^{2+5+10}, 3^2\}$$

Case 3.2. Let $\sigma: 1 < Q = 3^{2+5+10} < 3^{2+5+10} . 3^2$ so that $\sigma': 1 < 3^{2+5+10} . 3^2$, where $3^{2+5+10}, 3^{2+5+10}.3^2 \in \mathcal{R}_0(M_4, 3)$, which is given by (4.10). Then σ and σ' satisfy the conditions of Lemma 2.1. A similar proof to that in Case 1 shows that we may suppose

$$C \notin (\mathcal{R}^{-}(\sigma, 3^{2+5+10}) \cup \mathcal{R}^{0}(\sigma, 3^{2+5+10})).$$
(5.4)

In particular, $P_1 \neq_G 3^{2+5+10} \cdot 3^2$, and if $P_1 = 3^{2+5+10}$, then $P_2 \neq_G 3^{2+5+10} \cdot 3^2$. Let $C': 1 < 3^{2+5+10} < S$ and $g(C'): 1 < 3^{2+5+10} < 3^{1+12} \cdot 3^5 < S$. Then N(C') = N(g(C')) = N(G(C')) = N(G(C')) = N(G(C')) $S(SD_{16} \times 2^2)$ and so (5.2) holds. Thus, if $P_1 = 3^{2+5+10} = O_3(M_4)$, we may suppose $C \in G$ $\{C(19), C(20)\}.$

Case 3.3. Let $C': 1 < 3^{3+2+6+6} < S$ and $g(C'): 1 < 3^{3+2+6+6} < 3^{2+5+10}.3^2 < S$, where $3^{3+2+6+6}, 3^{2+5+10}, 3^2 \in \mathcal{R}_0(M_5, 3)$. Then N(C') = N(g(C')), and (5.2) holds. We may suppose $C \neq_G C'$ or g(C'), so that if $P_1 = 3^{3+2+6+6}$, we may suppose

$$C \in_G \{C(21), C(22), C(23), C(24)\}.$$

Case 3.4. If $P_1 = 3^8$, then $N(P_1) = M_6 = 3^8 \cdot O_8^-(3) \cdot 2$. Applying the Borel–Tits theorem [14] to $O_8^-(3)$, it follows that $C \in_G \{C(j) : 25 \leq j \leq 32\}$.

Case 3.5. Finally, suppose $P_1 = 3^2 = O_3(M_2)$. Let δ be the radical 3-chain $1 < 3^2 < 3^{1+2}_+$, and let $\mathcal{R}(G, \delta)$ be the subfamily of $\mathcal{R}(G)$ consisting of chains C such that $C_1 =_G \delta$. Then $N(\delta) = L_3 = 3^{1+2}_+: 2^2 \times G_2(3)$. The ordinary conjecture for $G_2(3)$ was verified in [3]. A similar proof to that in Case 1 shows that we may suppose (5.1) holds with $\mathcal{R}(G, V)$ replaced by $\mathcal{R}(G, \delta)$ and N(V) replaced by $N(\delta)$.

Let $R \in \mathcal{R}_0(L_2, 3) \setminus \{3^2 \times 3^{1+8}\}$ and $\sigma(R) : 1 < 3^2 < Q = 3^2 \times 3^{1+8} < R$, so that $\sigma(R)' : 1 < 3^2 < Q = 3^2 \times 3^{1+8} < R$. $3^2 < R$. A proof similar to that in Case 2 shows that we may suppose (5.3) holds with $\mathcal{R}_0(M_3,5)$ replaced by $\mathcal{R}_0(L_2,3)$ and 5^{1+6} replaced by $3^2 \times 3^{1+8}$. Thus we may suppose $P_2 \notin_G \mathcal{R}_0(L_2, 5) \setminus \{3^2 \times 3^{1+8}\}$ and that if $P_2 = 3^2 \times 3^{1+8}$, then C = C(3).

Let $L_4 := 3^5 \cdot 3^6 \cdot (Q_8 \times L_3(3)) \leq L_1 \leq M_2$. We may take

$$\mathcal{R}_0(L_4,3) = \{3^5.3^6, 3^4.3^3.3^6, 3^8.3^3.3^2, (3^2 \times 3^{1+8}).3^3\} \subseteq \mathcal{R}_0(L_1,3).$$

Moreover, $N_{L_1}(R) = N_{L_4}(R)$ for $R \neq 3^4 \cdot 3^3 \cdot 3^6$ or $(3^2 \times 3^{1+8}) \cdot 3^3$, and

$$N_{L_4}(R) = \begin{cases} 3^4.3^3.3^6.(Q_8 \times 2S_4) & \text{if } R = 3^4.3^3.3^6, \\ (3^2 \times 3^{1+8}).3^3.(Q_8 \times 2^2) & \text{if } R = (3^2 \times 3^{1+8}).3^3. \end{cases}$$

Let

$$\sigma: 1 < 3^2 < 3^8 < Q = 3^5 \cdot 3^6 < 3^8 \cdot 3^3 \cdot 3^2$$

so that

$$\sigma': 1 < 3^2 < 3^8 < 3^8.3^3.3^2.$$

A similar proof to that in Case 1 shows that we may suppose (5.4) holds with 3^{2+5+10} replaced by $3^5.3^6$.

Let

$$C': 1 < 3^2 < 3^8 < 3^5.3^6 < 3^4.3^3.3^6 < (3^2 \times 3^{1+8}).3^3$$

and

$$g(C'): 1 < 3^2 < 3^8 < 3^5 \cdot 3^6 < (3^2 \times 3^{1+8}) \cdot 3^3$$
.

Then N(C') = N(g(C')) and (5.2) holds. In particular, if $P_1 = 3^2$, $P_2 = 3^8$ and $P_3 = 3^5 \cdot 3^6$, then $C \in_G \{C(4), C(7)\}$.

Let $L_5 := 3^8 \cdot 3^4 \cdot (4 \times 2) \cdot 2^3 \cdot 3^2 \cdot D_8 \leqslant L_1 \leqslant M_2$. We may take

$$\mathcal{R}_0(L_5,3) = \{3^8.3^4, 3^8.3^3.3^2, (3^2 \times 3^{1+8}).3^3\} \subseteq \mathcal{R}_0(L_1,3)$$

and, moreover, $M_{L_1}(R) = N_{L_5}(R)$ for all $R \in \mathcal{R}_0(L_5, 3)$. Let

$$C': 1 < 3^2 < 3^8 < 3^8.3^4 < (3^2 \times 3^{1+8}).3^3 \quad \text{and} \quad g(C'): 1 < 3^2 < 3^8 < (3^2 \times 3^{1+8}).3^3.$$

Then N(C') = N(g(C')) and (5.2) holds. Thus, if $P_1 = 3^2$ and $P_2 = 3^8$, then $C \in_G \{C(i) : 4 \leq i \leq 11\}$.

Let $L_6 := 3^5 \cdot 3^6 \cdot (SD_{16} \times L_3(3)) \leq M_2$. We may take

$$\mathcal{R}_0(L_6,3) = \{3^5.3^6, 3^4.3^3.3^6, 3^8.3^3.3^2, (3^2 \times 3^{1+8}).3^3\} \subseteq \mathcal{R}_0(L_1,3)$$

and, moreover, $M_{L_1}(R) = N_{L_6}(R)$ for $R \neq 3^8 \cdot 3^3 \cdot 3^2$ or $3^5 \cdot 3^6$ and

$$N_{L_2}(3^8.3^3.3^2) = N_{L_6}(3^8.3^3.3^2) = 3^8.3^3.3^2.(SD_{16} \times 2S_4).$$

Let

$$C': 1 < 3^2 < 3^5.3^6 < 3^8.3^3.3^2 < (3^2 \times 3^{1+8}).3^3$$

and

$$g(C'): 1 < 3^2 < 3^5.3^6 < (3^2 \times 3^{1+8}).3^3.$$

Then N(C') = N(g(C')) and (5.2) holds.

Let $L_7 := 3^4 \cdot 3^3 \cdot 3^6 \cdot 2^2 \cdot 2^4 \cdot 3^2 \cdot 2^2 \leqslant M_2$. We may take

$$\mathcal{R}_0(L_7,3) = \{3^4.3^3.3^6, 3^4.3^3.3^6.3, (3^2 \times 3^{1+8}).3^3, (3^2 \times 3^{1+8}).3^3.3\}$$

and, moreover, $M_{M_2}(R) = N_{L_7}(R)$ for $R \in \mathcal{R}_0(L_7, 3) \setminus \{3^4.3^3.3^6.3\}$ and

$$N_{L_7}(3^4.3^3.3^6.3) = N_{M_2}(3^4.3^3.3^6.3) = 3^4.3^3.3^6.3.2^3.S_4$$

Let $\sigma: 1 < 3^2 < Q = 3^4.3^3.3^6 < 3^4.3^3.3^6.3$ so that $\sigma': 1 < 3^2 < 3^4.3^3.3^6.3$. A proof similar to that in Case 2 shows that we may suppose (5.4) holds with 3^{2+5+10} replaced by $3^4.3^3.3^6$. Thus we may suppose $P_2 \neq_G 3^4.3^3.3^6.3$ and that if $P_2 = 3^4.3^3.3^6$, then $P_3 \neq_G 3^4.3^3.3^6.3$.

Let

$$C': 1 < 3^2 < 3^4.3^3.3^6 < (3^2 \times 3^{1+8}).3^3 < (3^2 \times 3^{1+8}).3^3.3$$

and

$$g(C'): 1 < 3^2 < 3^4.3^3.3^6 < (3^2 \times 3^{1+8}).3^3.3^6$$

Then N(C') = N(g(C')) and (5.2) holds.

It follows that if $P_1 = 3^2$, then we may suppose $C \in_G \{C(i) : 2 \leq i \leq 17\}$.

Now suppose p = 3 and $B = B_1$, so that $D(B) = 3^{1+2}_+$. Let C be a radical chain such that there exists a block $b \in Blk(N(C))$ with $b^G = B$. Then we may suppose that the last subgroup of C is a subgroup of D(B). If P_1 is the first non-trivial subgroup of C, then

$$P_1 \in \{3, 3^2, 3^{1+2}_+\}$$

If $P_1 = 3 = V$, then $N(P_1) = 3$. Fi₂₄ and the same proof as above shows that (5.1) holds with B_0 replaced by B, so that we may suppose $P_1 \neq_G 3$. If $P_1 = 3^2$, then $C =_G C(2)$ or C(33). If $P_1 = 3^{1+2}_+$, then C = C(34).

6. The proof of Uno's ordinary conjecture

Suppose $B \in Blk(\mathbb{M})$ with $D(B) \cong p^2$, so that plr(B) = 2. By Lemma 2.3, Uno's ordinary conjecture for B is equivalent to the equation

$$k(\mathbb{M}, B, d, [r]) = k(N_{\mathbb{M}}(D(B)), B, d, [r]).$$
(6.1)

Tables listing the degrees of irreducible characters referenced in the proof of Theorem 6.1 are given in the Appendix.

THEOREM 6.1. Let B be a p-block of the Monster $G = \mathbb{M}$ with a positive defect. If p is odd, then B satisfies Uno's ordinary conjecture.

Proof. We may suppose that D(B) is non-cyclic; then, by Lemma 4.3, $B = B_0$ when p = 13 or 11 and $B \in \{B_0, B_1\}$ when p = 7, 5 or 3.

Case 1. If p = 13, then $B = B_0$ and $D(B) \cong 13^{1+2}_+$. The representatives of radical 13-chains are given in Table 5. We set k(i, d, r) = k(N(C(i)), B, d, [r]) for integers i, d and r. The values of k(i, d, r) are given in Table 7.

It follows that

$$\sum_{i=1}^{6} (-1)^{|C(i)|} \mathbf{k}(N(C(i)), B_0, d, [r]) = 0.$$

Case 2. If p = 11, then $B = B_0$, $D(B) \cong 11^2$ and $N_{\mathbb{M}}(D(B)) \cong (11^2:(5 \times 2A_5))$. Thus

$$\mathbf{k}(\mathbb{M}, B, d, [r]) = \mathbf{k}(N_{\mathbb{M}}(D(B)), B, d, [r]) = \begin{cases} 10 & \text{if } d = 2 \text{ and } r = 1, \\ 10 & \text{if } d = 2 \text{ and } r = 2, \\ 10 & \text{if } d = 2 \text{ and } r = 3, \\ 10 & \text{if } d = 2 \text{ and } r = 4, \\ 10 & \text{if } d = 2 \text{ and } r = 4, \\ 10 & \text{if } d = 2 \text{ and } r = 5, \\ 0 & \text{otherwise.} \end{cases}$$

Thus (6.1) holds.

Case 3. If
$$p = 7$$
 and $B = B_1$, then $D(B) \cong 7^2$,
 $N_{\mathbb{M}}(D(B)) \cong (7^2:(3 \times 2A_4) \times L_2(7)):2 \leqslant (7:3 \times \text{He}):2$

and

$$k(\mathbb{M}, B, d, [r]) = k(N(D(B)), B, d, [r]) = \begin{cases} 9 & \text{if } d = 2 \text{ and } r = 1, \\ 9 & \text{if } d = 2 \text{ and } r = 2, \\ 9 & \text{if } d = 2 \text{ and } r = 3, \\ 0 & \text{otherwise.} \end{cases}$$
(6.2)

Thus (6.1) holds.

Defect d	3	3	3	3	3	3	2	2	2	2	2	2	Otherwise
Value r	1	2	3	4	5	6	1	2	3	4	5	6	Otherwise
$\mathbf{k}(1,d,r) = \mathbf{k}(6,d,r)$	18	12	3	4	12	6	3	3	0	0	1	0	0
$\mathbf{k}(2, d, r) = \mathbf{k}(3, d, r)$	3	0	0	56	0	0	0	0	0	4	0	0	0
$\mathbf{k}(4, d, r) = \mathbf{k}(5, d, r)$	0	0	0	0	0	0	4	0	39	0	0	12	0

TABLE 7. Values of k(i, d, r) when p = 13 and $B = B_0$.

Suppose $B = B_0$, The values of k(i, d, r) are given in Table 8. It follows that

$$\sum_{i=1}^{8} (-1)^{|C(i)|} \mathbf{k}(N(C(i)), B_0, d, [r]) = 0.$$

Case 4. Suppose p = 5 and $B = B_1$. Then

$$D(B) \cong 5^2$$
, $N(D(B)) = N(C(2)) \cong (5^2:4.2^2 \times U_3(5)):S_3$

and Theorem 6.1 follows from

$$\mathbf{k}(\mathbb{M}, B, d, [r]) = \mathbf{k}(N(C(2)), B, d, [r]) = \begin{cases} 10 & \text{if } d = 2 \text{ and } r = 1, \\ 10 & \text{if } d = 2 \text{ and } r = 2, \\ 0 & \text{otherwise.} \end{cases}$$

Suppose $B = B_0$, The non-zero k(i, d, r) values are given in Table 9. It follows that

$$\sum_{i=1}^{12} (-1)^{|C(i)|} \mathbf{k}(N(C(i)), B_0, d, [r]) = 0.$$

Case 5. Suppose p = 3, so that Uno's ordinary conjecture is equivalent to Dade's ordinary conjecture.

Defect d	6	5	5	5	4	4	3	3	3	2	Otherwise
Value r	1	1	2	3	1	3	1	2	3	1	Otherwise
k(1, d, r)	49	0	24	12	1	0	0	5	1	0	0
$\mathbf{k}(2, d, r) = \mathbf{k}(3, d, r)$	0	0	0	0	0	0	36	36	36	0	0
k(4, d, r)	49	0	24	12	6	4	0	5	1	0	0
k(5, d, r)	49	24	9	8	6	4	0	0	0	0	0
k(6, d, r)	49	24	9	8	1	0	0	0	0	0	0
$\mathbf{k}(7, d, r) = \mathbf{k}(8, d, r)$	0	0	0	0	0	0	13	0	4	1	0

TABLE 8. Values of k(i, d, r) when p = 7 and $B = B_0$.

TABLE 9. Values of k(i, d, r) when p = 5 and $B = B_0$.

Defect d	9	9	8	8	7	7	6	6	5	5	4	4
Value r	1	2	1	2	1	2	1	2	1	2	1	2
$\mathrm{k}(1,d,r)$	40	40	10	5	12	12	0	4	0	0	2	4
$\mathbf{k}(2,d,r)=\mathbf{k}(3,d,r)$	0	0	0	0	0	0	0	0	66	66	20	20
k(4, d, r)	40	40	0	20	12	12	24	4	2	2	2	4
k(5, d, r)	40	40	0	20	44	29	24	4	0	0	0	0
k(6, d, r)	40	40	10	5	44	29	0	4	0	0	0	0
k(7, d, r)	10	60	0	10	50	50	2	4	0	0	0	0
k(8, d, r)	10	60	0	10	16	16	2	4	0	0	0	0
k(9, d, r)	10	60	10	20	16	16	16	16	2	2	0	0
k(10, d, r)	10	60	10	20	50	50	16	16	0	0	0	0
k(11, d, r) = k(12, d, r)	0	0	0	0	0	0	16	51	0	0	2	1

If
$$B = B_1$$
, then $D(B) = 3^{1+2}_+$, $N(D(B)) = N(C(34)) = (3^{1+2}_+:2^2 \times G_2(3)):2$ and

$$\mathbf{k}(\mathbb{M}, B, d) = \mathbf{k}(N(D(B)), B, d) = \begin{cases} 9 & \text{if } d = 3, \\ 4 & \text{if } d = 2, \\ 0 & \text{otherwise.} \end{cases}$$

TABLE 10. Values of k(i, d) when p = 3 and d(N(C(i))) = 14 or 15.

Defect d	15	14	13	12	11	10	9	8	7	Otherwise
k(2, d)	81	99	24	108	30	2	0	27	2	0
k(3, d)	81	99	93	108	75	48	24	27	2	0
k(4, d)	0	162	54	108	60	6	0	0	0	0
k(5, d)	0	171	57	108	72	9	0	18	0	0
k(6, d)	0	171	180	108	72	114	24	18	0	0
k(7, d)	0	162	54	216	234	6	0	0	0	0
k(8, d)	0	171	57	180	255	9	0	0	0	0
k(9, d)	0	162	216	108	60	108	24	0	0	0
k(10, d)	0	162	216	216	234	108	0	0	0	0
k(11, d)	0	171	180	180	255	114	0	0	0	0
k(12, d)	0	171	57	180	255	9	0	0	0	0
k(13, d)	0	171	180	180	255	114	0	0	0	0
k(14, d)	0	171	180	90	78	114	24	0	0	0
k(15, d)	0	171	57	90	78	9	0	0	0	0
k(16, d)	81	99	93	243	156	48	0	0	0	0
k(17, d)	81	99	24	243	111	2	0	0	0	0

TABLE 11. Values of k(i, d) when p = 3 and d(N(C(i))) = 20.

Defect d	20	19	18	17	16	15	14	13	12	11	8	7	Otherwise
k(1, d)	81	27	18	13	3	0	9	2	0	2	8	2	0
k(18, d)	81	27	36	19	3	9	9	38	10	11	8	2	0
k(19, d)	81	45	36	19	90	15	63	53	10	0	0	0	0
k(20, d)	81	45	18	13	90	15	63	17	0	0	0	0	0
k(21, d)	81	27	81	181	3	9	108	55	40	11	0	0	0
k(22, d)	81	45	81	181	90	15	162	115	40	0	0	0	0
k(23, d)	81	45	63	61	90	15	162	79	0	0	0	0	0
k(24, d)	81	27	63	61	3	0	108	19	0	2	0	0	0
k(25, d)	54	18	72	92	3	6	36	25	32	13	3	0	0
k(26, d)	54	18	63	35	3	0	36	7	0	1	3	0	0
k(27, d)	54	18	81	62	3	0	90	17	0	1	0	0	0
k(28, d)	54	18	90	221	3	6	90	35	44	13	0	0	0
k(29, d)	54	27	63	35	108	18	63	55	0	0	0	0	0
k(30, d)	54	27	72	92	108	18	63	73	32	0	0	0	0
k(31, d)	54	27	90	221	108	18	117	101	44	0	0	0	0
k(32, d)	54	27	81	62	108	18	117	83	0	0	0	0	0

Thus Theorem 6.1 follows from Lemma 5.1 and

$$k(N(C(2), B, d) = k(N(C(33)), B, d) = \begin{cases} 9 & \text{if } d = 3, \\ 2 & \text{if } d = 2, \\ 0 & \text{otherwise} \end{cases}$$

Suppose $B = B_0$ and suppose $C \in \mathcal{R}^0$ with d(N(C)) = 14 or 15, so that $C =_G C(i)$ for $2 \leq i \leq 17$. Set k(i, d) = k(N(C(i)), B, d). The values of k(i, d) are given in Table 10. It follows that

ionows that

$$\sum_{i=2}^{17} (-1)^{|C(i)|} \mathbf{k}(N(C(i)), B_0, d) = 0.$$

Suppose $C \in \mathcal{R}^0$ with d(N(C)) = 20, so that $C =_G C(i)$ for i = 1 or $18 \leq i \leq 32$. The values of k(i, d) are given in Table 11. It follows that

$$\sum_{\mathrm{d}(N(C(i)))=20} (-1)^{|C|} \mathrm{k}(N(C), B_0, d) = 0.$$

Theorem 6.1 follows for \mathbb{M} .

	IAD	LE A.I. 1	ne degrees	or charact		$(3.2 \times 0_8)$	5)).54).	
Degree Number	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{2}$	$\frac{4}{1}$	$\frac{8}{2}$	16 1	300 2	$\begin{array}{c} 600 \\ 3 \end{array}$
Degree Number	900 2	$\begin{array}{c} 1200 \\ 1 \end{array}$	$ \begin{array}{c} 1560\\ 4 \end{array} $	$\frac{2400}{2}$	$\begin{array}{c} 2457 \\ 4 \end{array}$	$\frac{2808}{2}$	$\begin{array}{c} 3120 \\ 1 \end{array}$	$\begin{array}{c} 4800 \\ 1 \end{array}$
Degree Number	$\begin{array}{c} 4914\\ 3\end{array}$	5616 3	${}^{6240}_{4}$	$\overset{8424}{2}$	$\begin{array}{c} 9100 \\ 4 \end{array}$	$\frac{9450}{2}$	$\begin{array}{c} 11232 \\ 1 \end{array}$	$\begin{array}{c}17550\\2\end{array}$
Degree Number	$\begin{array}{c} 18200 \\ 6 \end{array}$	$\frac{18900}{3}$	$\begin{array}{c} 19656 \\ 2 \end{array}$	$\frac{22464}{2}$	$\frac{24192}{2}$	$\begin{array}{c} 27300\\2\end{array}$	$\frac{28350}{2}$	$\begin{array}{c} 32760 \\ 4 \end{array}$
Degree Number	$\begin{array}{c} 35100\\ 3\end{array}$	$\begin{array}{c} 36400 \\ 4 \end{array}$	$\begin{array}{c} 37800\\1\end{array}$	$44928 \\ 1$	$\begin{array}{c}48384\\3\end{array}$	$\begin{array}{c} 52650\\2\end{array}$	$\frac{54600}{7}$	$\begin{array}{c} 65520 \\ 1 \end{array}$
Degree Number	$\begin{array}{c} 70200 \\ 1 \end{array}$	$\begin{array}{c} 72576 \\ 2 \end{array}$	$\begin{array}{c} 72800 \\ 5 \end{array}$	$\frac{75600}{2}$	$\begin{array}{c} 81900\\2 \end{array}$	$96768 \\ 1$	$\begin{array}{c} 109200 \\ 1 \end{array}$	$\begin{array}{c}131040\\4\end{array}$
Degree Number	$139776 \\ 4$	$\begin{array}{c} 140400 \\ 6 \end{array}$	$\begin{array}{c} 145600 \\ 6 \end{array}$	$151200 \\ 1$	$\begin{array}{c} 163800\\ 4 \end{array}$	$\begin{array}{c} 174720\\ 4 \end{array}$	$\begin{array}{c}193536\\2\end{array}$	$\begin{array}{c} 199017\\ 4 \end{array}$
Degree Number	$\begin{array}{c} 218400 \\ 6 \end{array}$	$\begin{array}{c} 218700\\ 2\end{array}$	$\begin{array}{c} 245700 \\ 6 \end{array}$	$\begin{array}{c} 279552\\ 3\end{array}$	$\frac{280800}{2}$	$\begin{array}{c} 291200\\ 4 \end{array}$	$\begin{array}{c} 294840 \\ 4 \end{array}$	$\begin{array}{c} 327600\\ 3\end{array}$
Degree Number	$\frac{332800}{2}$	$\begin{array}{c} 349440 \\ 1 \end{array}$	$387072 \\ 1$	$\begin{array}{c} 398034\\ 3\end{array}$	$436800 \\ 7$	$\begin{array}{c} 437400\\ 3\end{array}$	$\begin{array}{c} 491400\\ 10\end{array}$	$\begin{array}{c} 531441 \\ 2 \end{array}$
Degree Number	$\begin{array}{c} 561600\\ 4 \end{array}$	$\frac{582400}{3}$	$589680 \\ 1$	$\begin{array}{c} 656100\\ 2\end{array}$	$\begin{array}{c} 665600\\ 3\end{array}$	$698880 \\ 4$	$\begin{array}{c} 716800 \\ 4 \end{array}$	$\begin{array}{c} 737100 \\ 6 \end{array}$
Degree Number	$\begin{array}{c} 873600\\ 3\end{array}$	$\begin{array}{c} 874800\\1\end{array}$	$982800 \\ 11$	$\begin{array}{c} 998400 \\ 6 \end{array}$	$\begin{array}{c} 1062882\\ 3\end{array}$	$\frac{1118208}{2}$	$\begin{array}{c}1137240\\4\end{array}$	$ \begin{array}{r} 1164800 \\ 5 \end{array} $
Degree Number	$1179360 \\ 4$	$1257984 \\ 4$	$\begin{array}{c}1310400\\4\end{array}$	$\begin{array}{c}1331200\\1\end{array}$	$1397760 \\ 8$	$\begin{array}{c}1433600\\6\end{array}$	$\begin{array}{c} 1474200 \\ 6 \end{array}$	$\begin{array}{r}1572480\\4\end{array}$
Degree Number	$\begin{array}{c}1592136\\2\end{array}$	$\begin{array}{c}1594323\\2\end{array}$	$\begin{array}{c}1749600\\2\end{array}$	$\begin{array}{c} 1965600\\ 3\end{array}$	$\begin{array}{c} 1996800\\ 3\end{array}$	$2125764 \\ 1$	$\begin{array}{c} 2150400\\ 4\end{array}$	$2274480 \\ 1$
Degree Number	$\begin{array}{c} 2329600\\ 6\end{array}$	$\begin{array}{c} 2515968\\ 3\end{array}$	$\frac{2662400}{2}$	$\begin{array}{c} 2795520\\ 4 \end{array}$	$\frac{2867200}{2}$	$\begin{array}{c} 2948400 \\ 1 \end{array}$	$\begin{array}{c} 3144960 \\ 1 \end{array}$	$3499200 \\ 1$
Degree Number	$3931200 \\ 5$	$\begin{array}{c}4251528\\2\end{array}$	$\begin{array}{c} 4422600\\2\end{array}$	$\begin{array}{c}4548960\\4\end{array}$	$\begin{array}{c}4659200\\2\end{array}$	$5324800 \\ 1$	$\begin{array}{c} 5591040\\ 4\end{array}$	$\begin{array}{c} 5734400\\ 4\end{array}$
Degree Number	$6289920 \\ 4$	$\begin{array}{c} 6988800\\ 2\end{array}$	$7862400 \\ 1$	$\begin{array}{c} 7987200\\2\end{array}$	$8503056 \\ 1$	$\begin{array}{c} 10063872\\ 2\end{array}$	$\begin{array}{c} 11182080\\ 2\end{array}$	$ \begin{array}{r} 11468800 \\ 2 \end{array} $

TABLE A.1. The degrees of characters in $Irr((3^2:2 \times O_8^+(3)).S_4)$.

Appendix. Degrees of character tables for chain normalizers of \mathbb{M}

Degree	1	2	3	4	6	8	9	12	16
Number	4	6	4	2	4	12	8	7	12
Degree	18	24	27	32	36	48	54	64	72
Number	6	5	12	3	8	12	16	8	6
Degree	81	96	108	128	144	162	192	216	256
Number	4	7	5	10	4	2	1	8	7
Degree	288	324	384	432	486	512	576	648	768
Number	1	3	12	4	2	2	8	9	4
Degree	864	972	1024	1152	1296	1458	1536	1728	1944
Number	4	4	8	10	12	4	15	14	5
Degree	2048	2304	2592	2916	3072	3456	3888	4096	4374
Number	6	14	10	3	13	12	14	1	6
Degree	4608	5184	5832	6144	6912	7776	8748	9216	10368
Number	12	13	8	14	19	5	10	9	15
Degree	11664	12288	13122	13824	15552	17496	18432	20736	23328
Number	6	1	2	8	5	2	6	7	3
Degree	27648	31104	34992	36864	55296	62208	69984		
Number	4	12	8	1	2	1	1		

TABLE A.2. The degrees of characters in $Irr((3^2 \times 3^{1+8}).2^2.2^6.3^3.2^3.S_3)$.

TABLE A.3. The degrees of characters in $Irr(3^5.3^6.(Q_8 \times L_3(3)))$.

Degree Number	$\frac{1}{4}$	21	8 1	$\frac{12}{4}$	13 4	$\begin{array}{c} 16 \\ 16 \end{array}$	$ \begin{array}{c} 24\\ 1 \end{array} $	$26 \\ 21$	$\begin{array}{c} 27\\ 4\end{array}$	$32 \\ 4$	39 4
Degree Number	$52 \\ 25$	$ 54 \\ 1 $	$78 \\ 9$	$\begin{array}{c} 96 \\ 1 \end{array}$	$\begin{array}{c} 104 \\ 17 \end{array}$	$ \begin{array}{c} 128\\ 4 \end{array} $	$\begin{array}{c} 156 \\ 6 \end{array}$	$\begin{array}{c} 208 \\ 25 \end{array}$	${}^{216}_{1}$	$\overset{234}{4}$	$312 \\ 1$
Degree Number	$\frac{416}{26}$	$\begin{array}{c} 468 \\ 17 \end{array}$	$\frac{624}{8}$	702 4	$^{832}_{2}$	$936 \\ 17$	$\begin{array}{c} 1248 \\ 9 \end{array}$	$\begin{array}{c} 1404 \\ 9 \end{array}$	$\begin{array}{c} 1664 \\ 12 \end{array}$	$\begin{array}{c} 1872 \\ 23 \end{array}$	$2496 \\ 2$
Degree Number	$\begin{array}{c} 2808 \\ 6 \end{array}$	$3744 \\ 28$	$4992 \\ 9$	$\begin{array}{c} 5616\\ 23 \end{array}$	$\begin{array}{c} 7488 \\ 4 \end{array}$		$11232 \\ 12$	$14976 \\ 15$	$\begin{array}{c}16848\\4\end{array}$		

TABLE A.4. The degrees of characters in $Irr(3^8.4.L_4(3).2^2)$.

Degree	1	2	8	39	52	78	90	104	130
Number	4	3	2	4	8	3	4	4	4
Degree	180	208	260	312	351	390	416	468	520
Number	3	4	9	2	4	4	10	12	14
Degree	702	720	729	780	832	936	1040	1170	1280
Number	3	2	4	7	10	5	17	4	8
Degree	1458	1560	1664	1872	2080	2340	2560	2808	3120
Number	3	7	1	8	18	5	2	6	7
Degree	3328	3744	4160	4680	5616	5832	6240	6656	7020
Number	4	2	11	11	1	2	2	1	8
Degree	8320	9360	10240	11232	12480	14040	16640	18720	22464
Number	12	12	2	8	7	6	6	8	1
Degree	24960	28080	29952	33280	37440	37908	42120	44928	49920
Number	5	17	4	8	13	4	4	4	8
Degree	56160	59904	66560	74880	75816	84240	99840	112320	119808
Number	9	1	6	5	1	4	1	5	4
Degree	133120	149760	151632	168480					
Number	3	5	4	1					

Degree Number	$\frac{1}{8}$	$2 \\ 10$	419		$\frac{8}{24}$	9 8	12 10	$\frac{16}{21}$	18 10		32 26
Degree Number	$\frac{36}{3}$	$\begin{array}{c} 48 \\ 10 \end{array}$	$\begin{array}{c} 64 \\ 20 \end{array}$	72 4	$\frac{96}{22}$	$128 \\ 15$	$\frac{144}{18}$	$\begin{array}{c} 162 \\ 4 \end{array}$	$\begin{array}{c} 192 \\ 20 \end{array}$	$256 \\ 14$	$288 \\ 12$
Degree Number	$324 \\ 7$	$\frac{384}{36}$	$\frac{432}{8}$	$512 \\ 10$	$576 \\ 18$		$\begin{array}{c} 768 \\ 31 \end{array}$	$\begin{array}{c} 864 \\ 10 \end{array}$	$\begin{array}{c} 972 \\ 4 \end{array}$	$\begin{array}{c} 1024 \\ 4 \end{array}$	$1152 \\ 16$
Degree Number	$1296 \\ 27$	$\begin{array}{c}1458\\4\end{array}$	$1536 \\ 22$	$1728 \\ 26$	$\begin{array}{c} 1944 \\ 9 \end{array}$	$2304 \\ 12$	$2592 \\ 26$	$2916 \\ 7$	$3072 \\ 15$	$3456 \\ 17$	$\frac{3888}{2}$
Degree Number	$\begin{array}{c} 4608 \\ 6 \end{array}$	$\begin{array}{c} 5184 \\ 20 \end{array}$	$5832 \\ 1$	$\begin{array}{c} 6912\\ 9\end{array}$	$7776 \\ 9$	$\begin{array}{c} 9216 \\ 1 \end{array}$	$\begin{array}{c} 10368\\9\end{array}$	$\begin{array}{c}11664\\6\end{array}$	$\begin{array}{c}13824\\2\end{array}$		

TABLE A.5. The degrees of characters in $Irr(3^8.3^4.(4 \times 2).2^3.3^2.D_8)$.

TABLE A.6. The degrees of characters in $Irr(3^4.3^3.3^6.(Q_8 \times 2S_4))$.

Degree	1	2	3	4	6	8	16	18	24	32	36
Number	8	14	8	7	2	27	45	12	2	20	39
Degree	48	54	64	72	96	108	128	144	192	216	288
Number	12	12	28	33	15	15	13	45	2	14	54
Degree	384	432	576	648	864	1152	1296	1728	3456		
Number	13	57	6	2	45	27	4	64	27		

TABLE A.7. The degrees of characters in $Irr(3^4.3^3.3^6.(SD_{16} \times 2S_4))$.

Degree	1	2	3	4	6	8	16	18	24	32	36	48
Number	8	18	8	13	6	15	32	4	4	33	19	4
Degree Number	$\frac{54}{4}$	$\begin{array}{c} 64 \\ 30 \end{array}$	$72 \\ 30$	$\frac{96}{11}$	$\begin{array}{c} 108 \\ 11 \end{array}$	$128 \\ 18$	$\frac{144}{35}$	$\begin{array}{c} 192 \\ 10 \end{array}$	$216 \\ 26$	$ \begin{array}{c} 256\\ 4 \end{array} $	288 41	$384 \\ 10$
Degree Number	$432 \\ 48$	$576 \\ 25$	${}^{648}_{4}$	$\begin{array}{c} 768 \\ 4 \end{array}$	$\frac{864}{59}$	$\begin{array}{c} 1152 \\ 16 \end{array}$	$ \begin{array}{c} 1296 \\ 4 \end{array} $	$\begin{array}{c} 1728 \\ 60 \end{array}$	$\begin{array}{c} 2304 \\ 10 \end{array}$	$2592 \\ 1$	$3456 \\ 38$	$6912 \\ 9$

TABLE A.8. The degrees of characters in $Irr(3^8.3^3.3^2.(Q_8 \times 2S_4))$.

Degree	1	2	3	4	6	8	12	16	24	32	48	64
Number	8	22	8	29	10	27	6	31	18	28	48	4
Degree Number	$\frac{72}{8}$	$\begin{array}{c} 96 \\ 40 \end{array}$	$128 \\ 13$	$\frac{144}{30}$	$\begin{array}{c} 162 \\ 4 \end{array}$	$\frac{192}{38}$	$288 \\ 21$	$324 \\ 17$	$384 \\ 48$	$432 \\ 8$	$\begin{array}{c} 486\\ 4 \end{array}$	$576 \\ 34$
Degree Number	$\begin{array}{c} 648 \\ 23 \end{array}$		$972 \\ 9$	$ \begin{array}{r} 1152 \\ 15 \end{array} $	$1296 \\ 37$	$\begin{array}{c} 1728 \\ 24 \end{array}$	$\begin{array}{c} 1944 \\ 2 \end{array}$	$2592 \\ 27$	$3456 \\ 6$	$\frac{3888}{9}$		

TABLE A.9. The degrees of characters in $Irr((3^2 \times 3^{1+8}).3^3.(Q_8 \times 2^2)).$

Degree	1	2	4	6	8	12	16	18	24	32	36	48	54
Number	16	36	44	24	23	54	30	24	46	13	66	40	8
Degree	72	96	108	144	162	216	288	324	432	648	864	1296	
Number	39	52	42	60	8	60	27	26	88	20	36	54	

TABLE A.10. The degrees of characters in $Irr((3^2 \times 3^{1+8}).3^3.(SD_{16} \times 2^2)).$

Degree	1	2	4	6	8	12	16	18	24	32
Number	16	28	32	8	39	22	34	8	44	18
Degree	36	48	54	64	72	96	108	144	162	192
Number	34	50	8	4	45	36	22	47	8	20
Degree	216	288	324	432	576	648	864	1296	1728	2592
Number	76	36	14	87	10	34	50	40	12	18

TABLE A.11. The degrees of characters in $Irr(3^4.3^3.3^6.(SD_{16} \times 2S_4))$.

Degree	1	2	3	4	6	8	16	18	24	32	36	48
Number	8	18	8	13	6	15	32	4	4	33	19	4
Degree	54	64	72	96	108	128	144	192	216	256	288	384
Number	4	30	30	11	11	18	35	10	26	4	41	10
Degree	432	576	648	768	864	1152	1296	1728	2304	2592	3456	6912
Number	48	25	4	4	59	16	4	60	10	1	38	9

TABLE A.12. The degrees of characters in $Irr((3^2 \times 3^{1+8}).3^3.(SD_{16} \times 2^2)).$

Degree	1	2	4	6	8	12	16	18	24	32
Number	16	28	32	8	38	22	34	8	44	18
Degree	36	48	54	64	72	96	108	144	162	192
Number	34	50	8	4	45	36	22	47	8	20
Degree	216	288	324	432	576	648	864	1296	1728	2592
Number	76	36	14	87	10	34	50	40	12	18

TABLE A.13. The degrees of characters in $Irr(3^8.3^3.3^2.(SD_{16} \times 2S_4))$.

Degree Number	$\frac{1}{8}$	$2 \\ 18$	$\frac{3}{8}$	421		8 33		$\frac{16}{34}$		$32 \\ 25$
Degree Number	$\frac{48}{20}$	$\begin{array}{c} 64 \\ 18 \end{array}$	$72 \\ 8$	$\frac{96}{37}$	$128 \\ 10$	$\frac{144}{18}$	$\begin{array}{c} 162 \\ 4 \end{array}$	$\begin{array}{c} 192 \\ 44 \end{array}$	$ \begin{array}{c} 256\\ 4 \end{array} $	$288 \\ 17$
Degree Number	$324 \\ 11$	$384 \\ 32$	$432 \\ 8$	$\begin{array}{c} 486\\ 4 \end{array}$	$576 \\ 21$	$ \begin{array}{c} 648 \\ 24 \end{array} $	$\frac{768}{19}$	$\frac{864}{30}$	$\begin{array}{c} 972\\ 3\end{array}$	$ \begin{array}{r} 1152 \\ 20 \end{array} $
Degree Number	$1296 \\ 37$	$1728 \\ 28$	$\frac{1944}{8}$	$\begin{array}{c} 2304 \\ 6 \end{array}$	$2592 \\ 29$	$3456 \\ 10$	$\begin{array}{c} 3888\\ 6\end{array}$	$5184 \\ 9$	$\begin{array}{c} 6912 \\ 2 \end{array}$	$7776 \\ 3$

TABLE A.14. The degrees of characters in $Irr(3^5.3^6.(SD_{16} \times L_3(3)))$.

Degree Number	$\frac{1}{4}$	$\frac{2}{3}$	$\frac{8}{2}$	$\frac{12}{4}$	13 4	$\begin{array}{c} 16 \\ 16 \end{array}$	$\frac{24}{3}$	$26 \\ 15$	$\begin{array}{c} 27\\ 4\end{array}$	$32 \\ 12$	39 4
Degree Number	$52 \\ 17$	54 3	$\frac{78}{3}$	$\frac{96}{2}$	$\begin{array}{c} 104 \\ 20 \end{array}$		$\frac{156}{8}$	$208 \\ 24$	216 2	$\begin{array}{c} 234 \\ 4 \end{array}$	312 4
Degree Number	$\begin{array}{c} 416 \\ 20 \end{array}$	$\begin{array}{c} 468 \\ 11 \end{array}$	${}^{624}_{8}$	702 4	$832 \\ 14$	$936 \\ 12$	$\begin{array}{c} 1248 \\ 4 \end{array}$	$\frac{1404}{3}$	$\frac{1664}{8}$	$\begin{array}{c} 1872 \\ 17 \end{array}$	$\begin{array}{c} 2496 \\ 8 \end{array}$
Degree Number	$2808 \\ 16$	$3328 \\ 4$	$3744 \\ 21$	$4992 \\ 6$	$\frac{5616}{26}$	$7488 \\ 11$	$\begin{array}{c} 8424 \\ 4 \end{array}$		$11232 \\ 17$	$\begin{array}{c}14976\\8\end{array}$	$\begin{array}{c} 16848 \\ 4 \end{array}$
Degree Number	$22464 \\ 3$	$\begin{array}{c} 29952 \\ 6 \end{array}$	$33696 \\ 1$								

TABLE A.15. The degrees of characters in $Irr((3^2 \times 3^{1+8}).3^3.2^3.S_4)$.

Degree	1	2	3	4	6	8	12	16	18	24	32	36	48
Number	8	16	8	10	12	18	18	20	8	17	8	14	29
Degree Number	$54 \\ 12$	$ \begin{array}{c} 64\\ 1 \end{array} $	$72 \\ 18$	$\frac{96}{14}$	$\begin{array}{c} 108 \\ 34 \end{array}$	$\frac{144}{28}$	$\frac{162}{8}$	$\begin{array}{c} 192 \\ 1 \end{array}$	$\begin{array}{c} 216 \\ 68 \end{array}$	$288 \\ 22$	$324 \\ 20$	$432 \\ 87$	
Degree Number	$576 \\ 3$		$\frac{864}{38}$	$972 \\ 8$	$1296 \\ 62$	$ \begin{array}{r} 1728 \\ 4 \end{array} $	$\begin{array}{c} 1944 \\ 10 \end{array}$	$2592 \\ 26$	$3888 \\ 24$	$5184 \\ 1$	$\begin{array}{c} 7776\\ 2\end{array}$		

Degree Number	$\frac{1}{4}$	$\frac{2}{12}$	$\frac{3}{8}$	4 13	$\begin{array}{c} 6 \\ 12 \end{array}$	8 10	$9\\4$	12 4	16 9	$ \begin{array}{c} 24 \\ 12 \end{array} $
Degree Number	$\frac{32}{13}$	$\frac{48}{20}$	54 4	$\begin{array}{c} 64 \\ 13 \end{array}$	96 9	$\begin{array}{c} 108 \\ 15 \end{array}$	$\begin{array}{c} 128 \\ 6 \end{array}$	$ \begin{array}{c} 144\\ 4 \end{array} $	$\begin{array}{c} 162 \\ 4 \end{array}$	$ \begin{array}{c} 192 \\ 21 \end{array} $
Degree Number	$216 \\ 33$	$256 \\ 1$	$\frac{288}{7}$	$324 \\ 7$	$384 \\ 12$	$432 \\ 56$	$576 \\ 1$	$^{648}_{9}$	$768\\1$	
Degree Number		$1296 \\ 26$	$1728 \\ 39$	$2592 \\ 21$	$\begin{array}{c} 3456\\ 30 \end{array}$	$\frac{3888}{2}$	$5184 \\ 29$	$\substack{6912\\4}$	$\begin{array}{c} 10368 \\ 14 \end{array}$	$20736 \\ 1$

TABLE A.16. The degrees of characters in $Irr(3^4.3^3.3^6.2^2.2^4.3^2.2^2)$.

TABLE A.17. The degrees of characters in $Irr(3^{1+12}.2.Suz.2)$.

Degree Number	$\frac{1}{2}$	$\frac{143}{2}$	$\frac{220}{2}$	3642	$\begin{array}{c} 728 \\ 1 \end{array}$	$780 \\ 2$	1001 2
Degree Number	$\frac{1144}{1}$	$\frac{3432}{2}$	$\begin{array}{c} 4928 \\ 2 \end{array}$	5940 2	$\begin{array}{c} 10010 \\ 1 \end{array}$	$\begin{array}{c}10725\\2\end{array}$	$\begin{array}{c} 12012 \\ 2 \end{array}$
Degree Number	$\frac{14300}{2}$	$\begin{array}{c} 15795 \\ 2 \end{array}$	$\begin{array}{c}17496\\1\end{array}$	$\frac{18954}{2}$	$\begin{array}{c} 20020\\ 4 \end{array}$	$25025\\2$	$\begin{array}{c} 30030\\1\end{array}$
Degree Number	$32032 \\ 1$	$\begin{array}{c} 40040\\2\end{array}$	$50050\\1$	$\frac{54054}{2}$	${}^{64064}_{2}$	$\begin{array}{c} 65520\\ 2\end{array}$	$\begin{array}{c} 66560 \\ 2 \end{array}$
Degree Number	$\begin{array}{c} 70200 \\ 2 \end{array}$	$\frac{75075}{2}$	$\begin{array}{c} 79872 \\ 2 \end{array}$	$\begin{array}{c} 80080\\ 4 \end{array}$	$\frac{88452}{2}$	$96228 \\ 1$	$\begin{array}{c} 100100\\ 5\end{array}$
Degree Number	$\frac{102400}{2}$	$113724 \\ 1$	$\begin{array}{c} 120120\\1\end{array}$	$122472 \\ 1$	$\begin{array}{c}128128\\2\end{array}$	$128700 \\ 1$	$\begin{array}{c}133056\\2\end{array}$
Degree Number	$\begin{array}{c}137280\\2\end{array}$	$\frac{146432}{2}$	$159744 \\ 1$	$\begin{array}{c} 163800\\ 2 \end{array}$	$\begin{array}{c}168960\\2\end{array}$	$\begin{array}{c}187110\\1\end{array}$	$\begin{array}{c}189540\\2\end{array}$
Degree Number	$\begin{array}{c}192192\\2\end{array}$	$\begin{array}{c}193050\\2\end{array}$	$\begin{array}{c}197120\\4\end{array}$	$\begin{array}{c} 208494 \\ 2 \end{array}$	$\frac{228800}{2}$	$243243 \\ 2$	$\frac{248832}{2}$
Degree Number	$\begin{array}{c} 277200\\ 2 \end{array}$	288288 1	$\begin{array}{c} 315392 \\ 2 \end{array}$	$465920 \\ 2$	$625482 \\ 1$	$\begin{array}{c} 655200\\ 2\end{array}$	$1137240 \\ 1$
Degree Number	$1347192 \\ 1$	$\begin{array}{c}1441440\\1\end{array}$	$\begin{array}{c} 1990170 \\ 1 \end{array}$	2501928 1	2882880 2	$3127410 \\ 1$	$\frac{3603600}{2}$
Degree Number	$\begin{array}{c}4264650\\2\end{array}$	$4378374 \\ 1$	$4659200 \\ 6$	$\begin{array}{c} 5125120\\2\end{array}$	$6254820 \\ 1$	$\begin{array}{c} 6368544\\ 2\end{array}$	$\begin{array}{c} 7207200\\ 3\end{array}$
Degree Number	$\begin{array}{c} 7440174 \\ 2 \end{array}$	$\begin{array}{c} 7454720\\ 4 \end{array}$	$\begin{array}{c} 7862400 \\ 2 \end{array}$	$\begin{array}{c} 8648640 \\ 1 \end{array}$	$9797760 \\ 1$	$\begin{array}{c}10810800\\2\end{array}$	$\begin{array}{c}11531520\\2\end{array}$
Degree Number	$12509640 \\ 1$	$\frac{14414400}{2}$	$\begin{array}{c} 16166304\\ 2\end{array}$	$17513496 \\ 3$	$\begin{array}{c} 20500480\\ 2\end{array}$	$\begin{array}{c} 20966400\\ 4\end{array}$	$\begin{array}{c} 25625600\\ 2\end{array}$
Degree Number	27634932 1	$28828800 \\ 4$	$31274100 \\ 1$	$33679800 \\ 2$	$34594560 \\ 1$	35026992 1	$39405366 \\ 1$
Degree Number	40030848 2	$43243200 \\ 3$	$45034704 \\ 1$	$\begin{array}{c} 51175800\\ 2\end{array}$	$51251200 \\ 4$	$57657600 \\ 1$	$58378320 \\ 2$
Degree Number	$\begin{array}{c} 61501440\\ 2\end{array}$	$\begin{array}{c} 62548200\\ 2\end{array}$			75779550 1	$87567480 \\ 1$	89282088 2
Degree Number	$92252160 \\ 1$	$93822300 \\ 1$	$\begin{array}{c}102502400\\3\end{array}$	$ \begin{array}{r} 109459350 \\ 2 \end{array} $	$112586760 \\ 1$	$115315200 \\ 1$	$116756640 \\ 1$
Degree Number	$125096400 \\ 1$	$129729600 \\ 1$	$151992126 \\ 1$	$153964800 \\ 1$	$157621464 \\ 1$	$159213600 \\ 1$	$163762560 \\ 1$
Degree Number	$193995648 \\ 1$	$197026830 \\ 1$	$\begin{array}{c} 203793408\\ 2\end{array}$	$\begin{array}{c} 210161952\\ 2\end{array}$	$233834040 \\ 1$	246005760 2	250192800 1
Degree Number	$\begin{array}{c} 262702440\\ 2\end{array}$	276349320 1	$281466900 \\ 1$	303984252 1	$\begin{array}{c} 307507200\\2\end{array}$	$328378050 \\ 1$	369008640 1
Degree Number	$\begin{array}{c}410009600\\2\end{array}$	$437837400 \\ 1$	$483611310 \\ 1$	$636854400 \\ 1$			

Degree	1	2	10	11	16	20	22	32
Number	4	2	12	4	8	6	2	4
Degree	44	45	55	88	90	110	132	220
Number	4	4	4	2	2	10	4	10
Degree	264	330	396	440	528	660	792	880
Number	2	8	4	3	4	10	2	4
Degree	1056	1320	1584	1760	1782	1980	2376	2640
Number	2	2	5	2	4	4	2	8
Degree	3564	3960	5280	5832	7128	7920	10560	10692
Number	4	2	4	2	1	9	1	2
Degree	11664	11880	15840	16038	17496	17820	23760	28512
Number	1	14	4	4	2	18	3	6
Degree	29160	32076	35640	57024	58320	64152	69984	71280
Number	4	8	21	3	6	5	4	22
Degree	80190	87480	96228	106920	116640	128304	139968	142560
Number	4	4	6	7	2	5	2	10
Degree	160380	171072	174960	192456	209952	213840	240570	256608
Number	12	1	4	4	4	1	8	2
Degree	285120	320760	384912	427680	481140	577368	641520	721710
Number	1	7	5	4	12	2	1	4
Degree	962280							
Number	2							

TABLE A.18. The degrees of characters in $Irr(3^{1+12}.3^5.(2^2 \times M_{11}))$.

TABLE A.19. The degrees of c.	characters in $Irr(3^{2+5+10})$	$^{0}.3^{5}.(2S_{4} \times M_{11})).$
-------------------------------	---------------------------------	---------------------------------------

Degree	1	2	3	4	10	11	16	20
Number	2	3	2	1	6	2	4	9
Degree	22	30	32	33	40	44	45	48
Number	3	6	6	2	3	3	2	4
Degree	55	64	88	90	110	132	135	165
Number	2	2	3	3	3	2	2	2
Degree	176	180	220	440	528	880	1056	1760
Number	1	1	1	8	4	10	2	3
Degree	1782	2112	2640	3168	3520	3564	4224	5280
Number	2	4	4	2	4	3	2	2
Degree	5346	6336	7040	7128	7920	10560	14256	15840
Number	2	1	2	1	2	4	2	5
Degree	16038	17820	21120	23328	23760	28512	31680	32076
Number	2	9	4	2	6	4	2	3
Degree	35640	42240	46656	47520	48114	53460	57024	64152
Number	15	1	1	5	2	7	3	1
Degree	71280	85536	106920	116640	128304	142560	213840	228096
Number	14	1	1	4	6	18	4	3
Degree	233280	256608	279936	285120	320760	466560	513216	559872
Number	6	5	4	7	4	2	5	2
Degree	570240	641520	769824	962280	1026432	1140480	1283040	1539648
Number	8	12	2	4	2	1	7	1
Degree	1924560	2566080						
Number	2	1						

Degree	1	2	3	4	6	8	16	32	36	48
Number	8	18	8	13	6	11	10	11	8	4
Degree	64	72	96	108	128	144	192	216	288	384
Number	8	22	3	8	2	18	4	6	13	2
Degree	432	576	864	1152	1296	1728	2304	2592	3456	3888
Number	24	15	45	4	2	47	1	1	32	4
Degree	5832	6912	7776	11664	13122	17496	23328	26244	31104	34992
Number	12	19	3	24	4	16	43	11	2	16
Degree	39366	46656	52488	69984	78732	93312	104976	139968	157464	209952
Number	4	25	16	3	3	4	7	20	4	2

TABLE A.20. The degrees of characters in $Irr(3^{1+12}.3^{2+4}.(SD_{16} \times 2S_4))$.

TABLE A.21. The degrees of characters in $Irr(S.(SD_{16} \times 2^2))$.

Degree Number	$\begin{array}{c} 1 \\ 16 \end{array}$	$\frac{2}{28}$	$\begin{array}{c} 4\\ 16\end{array}$		8 11	$ \begin{array}{c} 12\\ 6 \end{array} $	$\frac{16}{8}$	$\frac{24}{8}$	32 2
Degree Number	$\frac{36}{16}$	$\begin{array}{c} 48\\ 16 \end{array}$	$\frac{72}{36}$	$\begin{array}{c} 96 \\ 6 \end{array}$	$\begin{array}{c} 108 \\ 16 \end{array}$	$\begin{array}{c} 144 \\ 22 \end{array}$	$\begin{array}{c} 192 \\ 1 \end{array}$	$\begin{array}{c} 216 \\ 44 \end{array}$	$\begin{array}{c} 288 \\ 6 \end{array}$
Degree Number	$324 \\ 16$	$432 \\ 62$	$576 \\ 1$	$\begin{array}{c} 648 \\ 28 \end{array}$	$\begin{array}{c} 864 \\ 40 \end{array}$	$1296 \\ 26$	$\frac{1458}{8}$	$1728 \\ 19$	$\frac{1944}{8}$
Degree Number	$2592 \\ 16$	$2916 \\ 18$	$\frac{3888}{2}$	$\begin{array}{c} 4374 \\ 8 \end{array}$	$5184 \\ 4$	$5832 \\ 73$	$\begin{array}{c} 7776 \\ 4 \end{array}$	$8748 \\ 22$	$11664 \\ 53$
Degree Number	$\frac{13122}{8}$	$\begin{array}{c} 15552 \\ 1 \end{array}$	$\begin{array}{r}17496\\44\end{array}$	$23328 \\ 10$	$26244 \\ 14$	$34992 \\ 37$	$\begin{array}{c} 52488 \\ 10 \end{array}$	$\begin{array}{c} 69984 \\ 4 \end{array}$	$\begin{array}{c}104976\\8\end{array}$

TABLE A.22. The degrees of characters in $Irr(3^{2+5+10}.3^2.(SD_{16} \times 2S_4))$.

Degree Number	1 8	2 18	3	4 13	6	8 15	16 16	24 4	32 5	64 4
Degree Number	96 8	128 2	$144\\16$	192 12	288 28	324 8	384 6	432 8	$576 \\ 14$	648 18
Degree Number	$768\\1$	$\begin{array}{c} 864 \\ 14 \end{array}$	$972\\8$	$\begin{array}{c}1152\\4\end{array}$	$1296 \\ 18$	$\begin{array}{c}1458\\4\end{array}$	$1728 \\ 22$	$\begin{array}{c}1944\\2\end{array}$	$\begin{array}{c} 2304 \\ 1 \end{array}$	$\begin{array}{c} 2592 \\ 20 \end{array}$
Degree Number	$\begin{array}{c} 2916 \\ 11 \end{array}$	$3456 \\ 14$	$\frac{3888}{4}$	$\begin{array}{c} 4374 \\ 4 \end{array}$	$5184 \\ 14$	$5832 \\ 28$	$\begin{array}{c} 6912\\ 3\end{array}$	$7776\\1$	$\begin{array}{c} 8748\\ 3\end{array}$	$\begin{array}{c} 10368\\ 8\end{array}$
Degree Number	$\frac{11664}{29}$	$\begin{array}{c} 17496 \\ 20 \end{array}$	$\begin{array}{c} 20736\\ 4 \end{array}$	$23328 \\ 35$	$34992 \\ 18$	$\begin{array}{c} 46656 \\ 45 \end{array}$	$69984 \\ 17$	$\begin{array}{c} 93312\\ 10\end{array}$	$\begin{array}{c} 139968\\ 13\end{array}$	$279936 \\ 4$

TABLE A.23. The degrees of characters in $Irr(3^{3+2+6+6}.(SD_{16} \times L_3(3)))$.

Degree Number	$\frac{1}{4}$	$2 \\ 3$	12 4	13 4	$\begin{array}{c} 16 \\ 16 \end{array}$	$\frac{24}{3}$	$26 \\ 15$	$\begin{array}{c} 27 \\ 4 \end{array}$	32 12
Degree Number	$\begin{array}{c} 39 \\ 4 \end{array}$	$\frac{52}{9}$	$\frac{54}{3}$	$78 \\ 3$	$ \begin{array}{c} 104\\ 4 \end{array} $	$\begin{array}{c} 208 \\ 6 \end{array}$	312 4	$\begin{array}{c} 416 \\ 2 \end{array}$	$\begin{array}{c} 468\\ 8\end{array}$
Degree Number	${}^{624}_4$	$\overset{832}{4}$	$936 \\ 18$	$\begin{array}{c} 1248\\ 3\end{array}$	$\frac{1404}{8}$	$\begin{array}{c} 1664 \\ 2 \end{array}$	$\begin{array}{c} 1872 \\ 12 \end{array}$	$\frac{2808}{2}$	$3744 \\ 11$
Degree Number		$\begin{array}{c} 5616 \\ 12 \end{array}$	5832 2	$7488 \\ 11$	$11232 \\ 12$	$\begin{array}{c} 14976 \\ 2 \end{array}$	$\frac{16848}{2}$	$\begin{array}{c}18954\\4\end{array}$	$22464 \\ 11$
Degree Number	$29952 \\ 1$	$33696 \\ 1$	$37908 \\ 11$	$\begin{array}{c} 44928 \\ 6 \end{array}$	56862 4	$\begin{array}{c} 69984 \\ 2 \end{array}$	$75816 \\ 26$	$\begin{array}{c} 89856\\ 3\end{array}$	$93312 \\ 8$
Degree Number	$ \begin{array}{r} 113724 \\ 3 \end{array} $	$\begin{array}{c}151632\\29\end{array}$	$\begin{array}{c}157464\\2\end{array}$	$\begin{array}{c} 227448\\ 10\end{array}$	$\begin{array}{c} 303264\\9\end{array}$	$\begin{array}{c} 606528 \\ 17 \end{array}$	$\begin{array}{c} 1213056\\ 2\end{array}$		

Degree	1	21	40	70	72	90	112	140
Number	4	4	1	6	2	4	2	4
Degree	180	189	210	224	240	252	280	378
Number	3	4	4	4	1	2	1	2
Degree	420	504	560	630	729	896	1008	1080
Number	6	4	4	8	4	8	5	4
Degree	1120	1260	1280	1440	1458	1512	1890	2016
Number	2	5	4	4	2	2	2	4
Degree	2240	2520	3024	3584	4480	5040	6048	7560
Number	6	2	2	2	4	3	1	4
Degree	8960	10080	12096	13440	15120	16128	17496	20160
Number	1	5	2	2	4	4	1	5
Degree	24192	26880	30240	32256	35840	40320	40824	43740
Number	9	1	14	2	1	8	4	1
Degree	45360	52488	60480	61236	64512	81648	96768	108864
Number	3	2	7	1	2	1	2	2
Degree	120960	131220	163296	183708	204120	241920	244944	275562
Number	8	3	2	2	4	14	2	2
Degree	306180	326592	349920	367416	408240	459270	483840	612360
Number	3	4	1	3	5	2	10	4
Degree	734832	787320	816480	918540	967680	979776	1049760	1062882
Number	2	5	2	6	1	4	6	2
Degree	1088640	1102248	1119744	1224720	1306368	1377810	1632960	1741824
Number	3	2	2	2	4	2	4	1
Degree	1837080	1959552	2125764	2204496	2449440	2755620		
Number	6	2	1	1	2	1		

TABLE A.24. The degrees of characters in $Irr(3^{1+12}.3.2U_4(3).2^2)$.

TABLE A.25. The degrees of characters in $Irr(3^8.O_8^-(3).2)$.

Degree	1	246	574	819	1066	7462	7749
Number	2	2	3	2	1	1	4
Degree	14391	14924	21320	22386	29848	44772	51660
Number	4	2	2	6	1	2	3
Degree	59696	66339	67158	74620	76752	95940	119556
Number	6	2	2	1	2	1	1
Degree	127920	134316	149240	179334	191880	201474	223860
Number	2	2	1	2	3	6	2
Degree	238784	268632	358176	367360	402948	418446	447720
Number	6	3	2	8	4	3	1
Degree	531441	537264	575640	596960	604422	671580	682240
Number	2	8	2	3	1	3	8
Degree	716352	734720	777114	931840	955136	1074528	1151280
Number	1	2	1	5	2	3	3
Degree	1343160	1535040	1554228	1611792	1673784	2014740	2686320
Number	5	4	4	2	1	2	2
Degree	5372640	6447168	7651584	10745280	10879596	12433824	16117920
Number	2	1	2	2	3	2	2
Degree	17192448	21490560	21759192	23313420	25788672	31084560	32235840
Number	4	5	2	1	1	1	3
Degree	32638788	33475680	41964156	42981120	43518384	48353760	54397980
Number	2	2	1	5	1	2	5
Degree	64471680	65277576	68769792	74602944	87036768	87156324	99470592
Number	1	1	2	1	3	1	2
Degree	107122176						
Number	1						

Degree	1	2	12	13	16	24	26	27	32
Number	4	1	4	4	16	1	13	4	4
Degree	39	52	54	78	104	208	234	312	416
Number	4	3	1	1	2	3	8	2	1
Degree	468	624	702	832	936	1248	1404	1664	1872
Number	22	4	8	2	16	1	6	1	13
Degree	3744	4992	5616	5832	7488	11232	14976	16848	18954
Number	17	1	14	1	2	18	3	3	4
Degree	22464	37908	44928	56862	69984	75816	93312	113724	151632
Number	2	17	9	4	1	24	4	9	17
Degree	157464	227448	303264	606528					
Number	1	3	13	10					

TABLE A.26. The degrees of characters in $Irr(3^{3+2+6+6}.(Q_8 \times L_3(3)))$.

TABLE A.27. The degrees of characters in $Irr(3^{1+12}.3^{2+4}.(Q_8 \times 2S_4))$.

Degree Number	$\frac{1}{8}$	$2 \\ 14$	$\frac{3}{8}$	$\frac{4}{7}$	$\begin{array}{c} 6 \\ 2 \end{array}$	8 9	$\begin{array}{c} 16 \\ 6 \end{array}$	18 8
Degree Number	$32 \\ 5$	$\frac{36}{22}$	$\begin{array}{c} 48 \\ 4 \end{array}$		$ \begin{array}{c} 64\\ 4 \end{array} $	$72 \\ 18$	$\frac{96}{1}$	$ \begin{array}{c} 108\\ 6 \end{array} $
Degree Number	$\begin{array}{c} 128 \\ 1 \end{array}$	$\begin{array}{c} 144 \\ 16 \end{array}$	$ \begin{array}{c} 192\\ 2 \end{array} $	$216 \\ 18$	288 18	384 1	$432 \\ 54$	576 4
Degree Number	$\begin{array}{c} 864 \\ 49 \end{array}$	$\begin{array}{c}1152\\4\end{array}$	$1296 \\ 3$	$\begin{array}{c} 1728\\ 38 \end{array}$	$3456 \\ 48$	$3888 \\ 4$	$5832 \\ 10$	$7776 \\ 1$
Degree Number	$\begin{array}{c} 11664\\ 33 \end{array}$	$\begin{array}{c}13122\\4\end{array}$	$\begin{array}{c}17496\\8\end{array}$	$23328 \\ 34$	$26244 \\ 17$	$\begin{array}{c} 31104 \\ 1 \end{array}$	$34992 \\ 10$	$39366 \\ 4$
Degree Number	$46656 \\ 12$	$52488 \\ 19$	$69984 \\ 9$	$78732 \\ 9$	$\begin{array}{c} 93312\\1\end{array}$	$\begin{array}{c}104976\\4\end{array}$	$139968 \\ 8$	

TABLE A.28. The degrees of characters in $Irr(3^{2+5+10}.(2S_4 \times M_{10}))$.

Degree	1	2	3	4	9	10	16 2	18 6	20
D	4	0	4	4	4	0	4	0	9
Degree Number	27 4	30 6	32 3	36 2	40 3	$\frac{48}{2}$	64 1	80 8	160 6
Degree	162	240	288	320	324	360	480	486	576
Number	2	4	8	1	3	8	4	2	4
Degree Number	$ \begin{array}{c} 640\\ 2 \end{array} $	6481	$720 \\ 14$	$960\\1$	$\frac{1152}{2}$	$1280 \\ 1$	$\frac{1296}{2}$	$ \begin{array}{r} 1440 \\ 7 \end{array} $	$^{1458}_{2}$
Degree Number	$\begin{array}{c} 1620 \\ 9 \end{array}$	$\begin{array}{c} 1920\\2\end{array}$	$\frac{2160}{8}$	$\begin{array}{c} 2304 \\ 1 \end{array}$	$\begin{array}{c} 2592 \\ 4 \end{array}$	2880 1	$\begin{array}{c} 2916\\ 3 \end{array}$	$3240 \\ 19$	$\overset{3840}{4}$
Degree Number	$4320 \\ 12$	$4374 \\ 2$	$\begin{array}{c} 4860 \\ 7 \end{array}$	$\frac{5184}{3}$	5760 4	$5832 \\ 1$	$\begin{array}{c} 6480 \\ 12 \end{array}$	$7776\\1$	$8640 \\ 9$
Degree Number	$9720 \\ 5$	$ \begin{array}{r} 11520 \\ 2 \end{array} $	$ \begin{array}{r} 11664 \\ 2 \end{array} $	$12960 \\ 20$	$\begin{array}{c}14580\\4\end{array}$	$\begin{array}{c} 17280\\2 \end{array}$	$\begin{array}{c} 20736\\ 3\end{array}$	$23328 \\ 3$	$25920 \\ 19$
Degree Number	$29160 \\ 9$	$\frac{38880}{3}$	$\begin{array}{c} 43740\\ 4\end{array}$	$\begin{array}{c} 46656 \\ 1 \end{array}$	51840 2	$58320 \\ 9$	$69984 \\ 12$	$87480 \\ 9$	$\begin{array}{c} 93312\\2\end{array}$
Degree Number	$ \begin{array}{r} 103680 \\ 9 \end{array} $	$\begin{array}{c} 116640 \\ 10 \end{array}$	$139968 \\ 6$	$174960 \\ 14$	$ 186624 \\ 1 $	$233280 \\ 11$	$279936 \\ 2$	$349920 \\ 5$	$466560 \\ 4$
Degree Number	$559872 \\ 1$	$\begin{array}{c} 933120\\1\end{array}$							

Degree	1	2	9	10	16	18	20	32	40
Number	8	4	8	12	4	4	14	2	6
Degree	60	72	80	90	120	144	160	162	180
Number	12	8	1	8	6	4	2	4	18
Degree	216	240	270	288	320	324	360	480	540
Number	8	1	8	2	1	4	9	4	10
Degree	576	648	720	864	960	972	1080	1440	1458
Number	1	1	1	2	4	2	22	6	4
Degree	1620	2160	2592	2880	2916	3240	4320	5184	5832
Number	18	29	6	3	4	29	12	3	3
Degree	6480	8640	8748	9720	11664	12960	14580	15552	17496
Number	14	1	2	7	1	20	12	1	14
Degree	19440	21870	23328	25920	29160	34992	43740	46656	52488
Number	5	8	2	9	20	6	18	1	12
Degree	58320	65610	69984	77760	87480	116640	131220	139968	174960
Number	11	8	4	3	13	4	10	1	5
Degree	209952	233280	349920						
Number	2	1	2						

TABLE A.29. The degrees of characters in $Irr(3^{1+12}.3^5.(2^2 \times M_{10}))$.

TABLE A.30. The degrees of characters in $Irr(3^8.3^{1+8}.3^2.3.(Q_8 \times 2^2))$.

Degree Number	$\begin{array}{c} 1\\ 16 \end{array}$	$2 \\ 20$	$\frac{4}{8}$		$\frac{8}{5}$	$\frac{12}{2}$	$ \begin{array}{c} 16\\ 4 \end{array} $	$\frac{18}{16}$
Degree Number	$\frac{24}{4}$	$32 \\ 1$	$\frac{36}{36}$	$\frac{48}{8}$	$\begin{array}{c} 54 \\ 16 \end{array}$	$72 \\ 22$	$\begin{array}{c} 96 \\ 5 \end{array}$	$ \begin{array}{r} 108 \\ 52 \end{array} $
Degree Number	$\begin{array}{c} 144 \\ 12 \end{array}$	$\begin{array}{c} 162 \\ 16 \end{array}$	$\begin{array}{c} 216 \\ 46 \end{array}$		$324 \\ 36$	$432 \\ 58$	$\begin{array}{c} 648 \\ 18 \end{array}$	$ 864 \\ 49 $
Degree Number	$\frac{972}{8}$	$1296 \\ 26$	$\frac{1458}{8}$	$\begin{array}{c} 1944 \\ 6 \end{array}$	$2592 \\ 12$	$\begin{array}{c} 2916\\ 30 \end{array}$	$\begin{array}{c} 4374 \\ 8 \end{array}$	$5832 \\ 49$
Degree Number	$\begin{array}{c} 7776 \\ 4 \end{array}$	$\begin{array}{c} 8748\\ 34\end{array}$	$\begin{array}{c} 11664 \\ 26 \end{array}$	$\frac{13122}{8}$	$17496 \\ 42$	$23328 \\ 4$	$26244 \\ 26$	$34992 \\ 16$
Degree Number	$\begin{array}{c} 52488\\ 8\end{array}$		$\begin{array}{c} 104976 \\ 2 \end{array}$					

TABLE A.31. The degrees of characters in $Irr(3^{2+5+10}.3^2.(Q_8 \times 2S_4))$.

Degree Number	$\frac{1}{8}$	$2 \\ 14$	$\frac{3}{8}$	$\frac{4}{7}$	$\begin{array}{c} 6 \\ 2 \end{array}$	8 11	$\frac{16}{9}$	$\frac{24}{2}$	$32 \\ 2$	
Degree Number	$\begin{array}{c} 72 \\ 16 \end{array}$	${}^{96}_4$	${}^{128}_{1}$	$\frac{144}{36}$	$\frac{162}{8}$	$\begin{array}{c} 192 \\ 6 \end{array}$	$ 288 \\ 18 $	$324 \\ 22$	$384 \\ 5$	$432 \\ 16$
Degree Number	$\frac{486}{8}$	$\frac{576}{8}$	$\begin{array}{c} 648 \\ 16 \end{array}$	$\begin{array}{c} 864 \\ 16 \end{array}$	$\begin{array}{c} 972 \\ 6 \end{array}$	$ \begin{array}{c} 1152\\ 3 \end{array} $	$1296 \\ 22$	$\begin{array}{c}1458\\4\end{array}$	$\begin{array}{c} 1728 \\ 20 \end{array}$	$2592 \\ 26$
Degree Number	$2916 \\ 17$	$3456 \\ 10$	$3888 \\ 4$	$\begin{array}{c} 4374 \\ 4 \end{array}$	5184 2	$5832 \\ 25$	$8748\\9$	$\begin{array}{c} 10368\\ 12 \end{array}$	$\begin{array}{c} 11664 \\ 17 \end{array}$	$17496 \\ 12$
Degree Number	$\begin{array}{c} 23328\\ 26\end{array}$	$\begin{array}{c} 34992 \\ 30 \end{array}$	$\begin{array}{c} 46656\\ 24 \end{array}$	$69984 \\ 21$	$\begin{array}{c} 93312\\ 4\end{array}$	$\begin{array}{c} 139968\\ 6\end{array}$	$279936 \\ 1$			

Degree Number	$\frac{1}{4}$	$\frac{2}{4}$	4 1	$\begin{array}{c} 6 \\ 2 \end{array}$	$ \begin{array}{c} 14\\ 4 \end{array} $	28 4	56 1	64 8	$\begin{array}{c} 78 \\ 4 \end{array}$		91 12
Degree Number	$ \begin{array}{c} 104\\ 4 \end{array} $	$\frac{128}{8}$	$ \begin{array}{c} 156\\ 4 \end{array} $	${}^{168}_{4}$	$\frac{182}{20}$	$\overset{208}{4}$	$\frac{256}{2}$	$\frac{273}{8}$	312 1	336 4	$364 \\ 11$
Degree Number	$\frac{384}{4}$	$\begin{array}{c} 416 \\ 1 \end{array}$	$\frac{448}{8}$	$546 \\ 22$	$ \begin{array}{c} 624\\ 2 \end{array} $		$728 \\ 10$	$729 \\ 4$	$\substack{819\\4}$	$\overset{832}{4}$	$\frac{896}{8}$
Degree Number	$ \begin{array}{c} 1008 \\ 2 \end{array} $	$\begin{array}{c} 1092 \\ 14 \end{array}$	$\begin{array}{c} 1456 \\ 6 \end{array}$	$\begin{array}{c}1458\\4\end{array}$	$\frac{1638}{8}$	$\begin{array}{c} 1664 \\ 4 \end{array}$	$ \begin{array}{c} 1792 \\ 2 \end{array} $	$\begin{array}{c} 2184 \\ 2 \end{array}$		$\begin{array}{c} 2912\\ 2\end{array}$	$3276 \\ 5$
Degree Number	$3328 \\ 1$	$\begin{array}{c} 4368\\ 4\end{array}$	$4374 \\ 2$	$\begin{array}{c} 4914 \\ 2 \end{array}$	$\begin{array}{c} 4992 \\ 2 \end{array}$						

TABLE A.32. The degrees of characters in $Irr(3^{1+2}_+:2^2 \times G_2(3))$.

TABLE A.33. The degrees of characters in $Irr((5^2:4.2^2 \times U_3(5)):S_3)$.

Degree Number	$\frac{1}{4}$	$\frac{2}{6}$	$\frac{3}{4}$	$\frac{4}{2}$	$ \begin{array}{c} 20 \\ 4 \end{array} $	$\frac{21}{4}$	$\frac{24}{4}$	$\begin{array}{c} 40 \\ 6 \end{array}$	42 6	60 4
Degree Number	$ \begin{array}{c} 63\\ 4 \end{array} $	$\frac{80}{2}$	$\frac{84}{14}$	$ \begin{array}{c} 105 \\ 4 \end{array} $	$ \begin{array}{c} 125\\ 4 \end{array} $	$ \begin{array}{c} 126\\ 4 \end{array} $	168 12	$\begin{array}{c} 210 \\ 6 \end{array}$	$\begin{array}{c} 250 \\ 6 \end{array}$	$252 \\ 16$
Degree Number	$\begin{array}{c} 288 \\ 6 \end{array}$	${}^{315}_{4}$	$336 \\ 2$	$375 \\ 4$	$378 \\ 4$	$\frac{420}{2}$	${}^{480}_{4}$	$\frac{500}{2}$	$504 \\ 12$	$\begin{array}{c} 576 \\ 6 \end{array}$
Degree Number	${672 \\ 4}$	$\begin{array}{c} 756 \\ 2 \end{array}$		$\begin{array}{c} 1344 \\ 2 \end{array}$	$\begin{array}{c} 2016 \\ 4 \end{array}$	$\begin{array}{c} 2520\\ 4 \end{array}$	$\begin{array}{c} 3000\\ 4 \end{array}$	$\begin{array}{c} 3024 \\ 4 \end{array}$	$ \begin{array}{c} 6048\\ 2 \end{array} $	

TABLE A.34. The degrees of characters in $Irr((5^2 \times 5^{1+2})(4.2^2 \times 8):S_3)$.

Degree	1	2	3	4	6	20	24	40	48	60	80	192	384	480
Number	16	36	16	20	4	8	24	12	10	8	4	4	2	8

Degree $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ Number $\mathbf{4}$ Degree Number $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{4}$ Degree Number $\mathbf{2}$ $\mathbf{2}$ Degree $\mathbf{2}$ Number $\mathbf{2}$ $\mathbf{2}$ Degree Number $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ Degree $\mathbf{2}$ Number

TABLE A.35. The degrees of characters in $Irr((5^{1+6}_+:2.J_2:4))$.

TABLE A.36. The degrees of characters in $Irr(5^{1+6}.5^2.(S_3 \times 4^2))$.

Degree	1	2	4	8	12	48	60	100	200	240
Number	32	16	8	4	16	4	16	8	4	4
Degree	300	400	500	600	800	1000	1200	2400	3000	
Number	16	2	8	32	1	4	8	2	16	

 $\mathbf{2}$

Degree

Number

Degree	1	2	4	5	6	8	10	12	72	288	300	480
Number	8	4	20	8	12	10	4	6	16	4	4	2
Degree	600	900	960	1200	1500	1800	2400	3600	4800	7200	14400	
Number	16	8	1	12	4	4	2	16	1	8	2	

TABLE A.37. The degrees of characters in $Irr(5^{2+2+4}.(S_3 \times GL_2(5)))$.

TABLE A.38. The degrees of characters in $Irr(5^{2+2+4}.(2 \times GL_2(5)))$.

Degree	1	4	5	6	24	48	96	100	192	200
Number	8	20	8	12	16	8	4	4	2	10
Degree	300	400	480	500	600	800	1000	1200	2400	4800
Number	8	12	2	4	16	4	2	18	18	10

TABLE A.39. The degrees of characters in $Irr(5^{3+3}.(2 \times L_3(5)))$.

Degree	1	30	31	96	124	125	155	186
Number	2	2	6	20	22	2	6	2
Degree	248	372	496	620	744	2976	3100	5952
Number	4	4	4	2	2	2	2	2
Degree	6200	9300	12400	15500	18600	24800	31000	37200
Number	6	4	8	2	6	4	2	2

TABLE A.40. The degrees of characters in $Irr(5^{3+3}.5^2(2 \times GL_2(5)))$.

Degree Number	1 8	$\frac{4}{22}$	5 8	6 12	8 4	$\frac{12}{4}$		$\frac{20}{2}$	24 10
Degree Number	$96 \\ 4$	120 8	$192 \\ 2$	240 8	$\frac{480}{2}$	$500 \\ 2$	600 8	$\frac{-}{960}$	1000 6
Degree Number	$\begin{array}{c} 1200 \\ 16 \end{array}$	$\begin{array}{c} 1500 \\ 4 \end{array}$	$\frac{2000}{8}$	$\frac{2400}{8}$	$\begin{array}{c} 2500\\ 2 \end{array}$	$\begin{array}{c} 3000\\ 6\end{array}$	$\begin{array}{c} 4000\\ 4\end{array}$	5000 2	$ \begin{array}{c} 6000\\ 2 \end{array} $

TABLE A.41. The degrees of characters in $Irr(5^{3+3}.5^{1+2}.(2 \times 4^2))$.

Degree	1	4	8	16	20	32	40	80	100	160	200	400	500	800	1000	2000
Number	32	24	8	4	16	2	8	4	24	2	40	26	8	10	16	8

TABLE A.42. The degrees of characters in $Irr(5^4.5^2.(6 \times 3).(4 \times 2))$.

Degree	1	2	12	24	48	72	144	600	1200
Number	8	34	8	6	1	8	2	2	1

TABLE A.43. The degrees of characters in $Irr(5^4:(3 \times 2.L_2(25)):2)$.

Degree	1	2	12	13	24	25	26	48	50	52	624	1248	1872	3744
Number	2	1	4	4	2	2	8	18	1	15	2	1	8	2

TABLE A.44. The degrees of characters in $Irr(7^2:(3 \times 2A_4) \times L_2(7)):2)$.

Degree	1	2	3	4	6	7	8	12	14	16
Number	6	9	6	3	15	6	6	18	9	9
Degree	18	21	24	28	32	48	144	288	336	384
Number	9	6	9	3	3	3	6	3	3	3

Degree	1	2	3	4	6	12	18	48	144
Number	18	27	18	9	9	9	3	9	6

TABLE A.45. The degrees of characters in $Irr(7^3.(3^2 \times 2A_4):2)$.

TABLE A.46. The degrees of characters in $Irr(7^{1+4}.(3 \times 2S_7))$.

Degree	1	6	8	14	15	20	21	28
Number	6	6	3	12	6	15	6	3
Degree Number	$\frac{35}{6}$	$\frac{36}{6}$	$ \begin{array}{c} 294 \\ 1 \end{array} $	$\begin{array}{c} 720 \\ 6 \end{array}$	$\frac{1176}{2}$	$\begin{array}{c} 1680 \\ 6 \end{array}$	$\begin{array}{c} 1764 \\ 1 \end{array}$	$2940 \\ 2$
Degree Number	$\begin{array}{c} 3360\\ 3\end{array}$	$\begin{array}{c} 4116\\ 4\end{array}$	$4320 \\ 1$	$\begin{array}{c} 4410 \\ 1 \end{array}$	$\begin{array}{c} 5880\\ 2\end{array}$	$\begin{array}{c} 6174 \\ 1 \end{array}$	$\begin{array}{c} 10290 \\ 1 \end{array}$	$ \begin{array}{c} 10584 \\ 1 \end{array} $

TABLE A.47. The degrees of characters in $Irr(7^{1+4}.7.6^2)$.

Degree	1	6	36	42	84	126	252	294	882
Number	36	12	1	18	9	8	6	6	4

TABLE A.48. The degrees of characters in $Irr(7^{2+1+2}.GL_2(7))$.

Degree	1	6	7	8	42	48	126	168	252	288	294	336	672	1008	2016
Number	6	21	6	15	1	6	2	2	3	1	1	8	9	4	6

TABLE A.49. The degrees of characters in $Irr(7^{1+2}.6)$.

Degree	1	3	6	42
Number	6	4	$\overline{7}$	1

TABLE A.50. The degrees of characters in $Irr(7^2.SL_2(7))$.

Degree	1	3	4	6	7	8	48
Number	1	2	2	3	1	2	7

TABLE A.51. The degrees of characters in $Irr(11^2:(5 \times 2A_5))$.

Damaa	1	0	2	4	F	C	190
Degree	T	2	3	4	5	0	120
Number	5	10	10	10	5	5	5

TABLE A.52. The degrees of characters in $Irr(13^2:4L_2(13).2)$.

Degree	1	12	13	14	168	672
Number	4	26	4	22	4	3

TABLE A.53. The degrees of characters in $Irr(13^{1+2}:4^2.3)$.

Degree	1	12	48	156
Number	48	8	3	4

	IA	DLE 1	1.04.	The	degr	ees of	Ciiai	acter	s m n	1((13.0	$J \wedge L_3$	(3)).2)	•	
Degree	1	12	13	26	27	32	39	52	144	156	192	312	324	468
Number	12	13	12	12	12	12	12	6	1	1	4	3	1	1

TABLE A.54. The degrees of characters in $Irr((13:6 \times L_3(3)).2)$.

ber	12	13	12	12	12	12	12	6	1	1	4	3	1	

TABLE A.55. The degrees of characters in $Irr((13^2.(12 \times 3)))$.

Degree	1	6	12	36
Number	36	12	3	4

TABLE A.56.	The degrees	of characters	in Irr($((13^{1+2}))$	$(3 \times 4S_4)$)).
-------------	-------------	---------------	---------	----------------	-------------------	-----

Degree	1	2	3	4	72	96	156	312	468
Number	12	18	12	6	4	3	3	3	1

References

- 1. J. L. ALPERIN, 'Weights for finite groups', *The Arcata conference on representations of finite groups*, Proceedings of Symposia in Pure Mathematics 47 (American Mathematical Society, Providence, RI, 1987) 369–379.
- 2. J. AN, 'The Alperin and Dade conjectures for the simple Held group', J. Algebra 189 (1997) 34-57.
- **3.** J. AN, 'Dade's invariant conjecture for the Chevalley groups $G_2(q)$ in the defining characteristic, $q = 2^a, 3^a$ ', Algebra Colloq. 10 (2003) 519–533.
- J. AN, 'Uno's invariant conjecture for the general linear and unitary groups in nondefining characteristics', J. Algebra 284 (2005) 462–479.
- J. AN, J. CANNON, E. A. O'BRIEN and W. UNGER, 'The Alperin and Uno conjectures for the Fischer simple group Fi₂₄', LMS J. Comput. Math. 11 (2008) 100–145.
- 6. J. AN and C. W. EATON, 'The p-local rank of a block', J. Group Theory 3 (2000) 369–380.
- J. AN and C. W. EATON, 'Modular representation theory of blocks with trivial intersection defect groups', Algebr. Represent. Theory 8 (2005) 427–448.
- 8. J. AN and E. A. O'BRIEN, 'A local strategy to decide the Alperin and Dade conjectures', J. Algebra 206 (1998) 183–207.
- J. AN and E. A. O'BRIEN, 'The Alperin and Dade conjectures for the simple Fischer group Fi₂₃', Internat. J. Algebra Comput. 9 (1999) 621–670.
- J. AN and E. A. O'BRIEN, 'Conjectures on the character degrees of the Harada–Norton simple group HN', Israel J. Math. 137 (2003) 157–181.
- J. AN and R. A. WILSON, 'The Alperin and Uno conjectures for the Baby Monster B, p odd', LMS J. Comput. Math. 7 (2004) 120–166.
- W. BOSMA, J. CANNON and C. PLAYOUST, 'The Magma algebra system I: T the user language', J. Symbolic Comput. 24 (1997) 235–265.
- J. N. BRAY and R. A. WILSON, 'Explicit representations of maximal subgroups of the Monster', J. Algebra 300 (2006) 834–857.
- N. BURGOYNE and C. WILLIAMSON, 'On a theorem of Borel and Tits for finite Chevalley groups', Arch. Math. 27 (1976) 489–491.
- 15. J. H. CONWAY, R. T. CURTIS, S. P. NORTON, R. A. PARKER and R. A. WILSON, Atlas of finite groups (Clarendon Press, Oxford, 1985).
- 16. E. C. DADE, 'Counting characters in blocks I', Invent. Math. 109 (1992) 187-210.
- 17. E. C. DADE, 'Counting characters in blocks, II.9.', Representation theory of finite groups (Proceedings of a special research quarter at the Ohio State University, spring, 1995), Ohio State University Mathematical Research Institute Publications 6 (de Gruyter, Berlin, 1997) 45–59.
- 18. The GAP group, 'GAP—groups, algorithms, and programming, version 4'. Lehrstuhl D für Mathematik, RWTH Aachen and School of Mathematical and Computational Sciences, University of St Andrews, 2000.
- 19. G. HISS and K. LUX, Brauer trees of sporadic groups (Oxford University Press, Oxford, 1989).
- 20. I. M. ISAACS and G. NAVARRO, 'New refinements of the McKay conjecture for arbitrary finite groups', Ann of Math. (2) 156 (2002) 333–344.
- 21. R. KNÖRR, 'On the vertices of irreducible modules', Ann. of Math. (2) 110 (1979) 487-499.
- S. LINTON, R. PARKER, P. WALSH and R. WILSON, 'Computer construction of the Monster', J. Group Theory 1 (1998) 307–337.
- K. UNO, 'Conjectures on character degrees for the simple Thompson group', Osaka J. Math. 41 (2004) no. 1, 11–36.
- 24. R. A. WILSON, 'The odd-local subgroups of the Monster', J. Austral. Math. Soc. 44 (1988) 1–16.
- 25. R. A. WILSON et al., 'ATLAS of finite group representations', http://web.mat.bham.ac.uk/atlas.
- 26. S. YOSHIARA, 'Odd radical subgroups of some sporadical simple groups', J. Algebra 291 (2005) 90–107.

Jianbei An Department of Mathematics University of Auckland Auckland New Zealand

an @math.auckland.ac.nz

R. A. Wilson Department of Mathematics The University of Birmingham Birmingham B15 2TT United Kingdom

R.A.Wilson@bham.ac.uk