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Abstract

Tissues form from collections of cells that interact together mechanically via cell-to-cell
adhesion, mediated by transmembrane cell adhesion molecules. Under a sufficiently
large amount of induced stress, these tissues can undergo elastic deformation in the
direction of tension, where they then elongate without any topological changes, and
experience plastic deformation within the tissue. In this work, we present a novel
mathematical model describing the deformation of cells, where tissues are elongated in a
controlled manner. In doing so, the cells are able to undergo remodelling through elastic
and then plastic deformation, in accordance with experimental observation. Our model
describes bistable sizes of a cell that actively deform under stress to elongate the cell. In
the absence of remodelling, the model reduces to the standard linear interaction model.
In the presence of instant remodelling, we provide a bifurcation analysis to describe
the existence of the bistable cell sizes. In the case of general remodelling, we show
numerically that cells within a tissue may populate both the initial and elongated cell
sizes, following a sufficiently large degree of stress.

2020 Mathematics subject classification: 92-10.

Keywords and phrases: individual-based models, tissue remodelling, creep experiment,
biphasic response, tissue rheology.

1School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia;
e-mail: domenic.germano@sydney.edu.au, jmosborne@unimelb.edu.au
2Department of Bioengineering, University of California San Diego, La Jolla, CA, USA;
e-mail: stkhuu@ucsd.edu
3School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland,
Australia; e-mail: adrianne.jenner@qut.edu.au
4School of Mathematics and Statistics, The University of Sydney, Camperdown, Sydney,
New South Wales, Australia; e-mail: mary.myerscough@sydney.edu.au
5School of Mathematics, Monash University, Clayton, Victoria, Australia;
e-mail: mark.flegg@monash.edu
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Australian
Mathematical Society. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
re-use, distribution and reproduction, provided the original article is properly cited.

195

https://doi.org/10.1017/S1446181123000226 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1446181123000226
https://orcid.org/0000-0001-5893-4840
https://orcid.org/0000-0003-2128-0358
https://orcid.org/0000-0001-9103-7092
https://orcid.org/0000-0002-5622-0104
https://orcid.org/0000-0002-4993-765X
https://orcid.org/0000-0002-4697-4789
mailto:domenic.germano@sydney.edu.au
mailto:jmosborne@unimelb.edu.au
mailto:stkhuu@ucsd.edu
mailto:adrianne.jenner@qut.edu.au
mailto:mary.myerscough@sydney.edu.au
mailto:mark.flegg@monash.edu
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446181123000226&domain=pdf
https://doi.org/10.1017/S1446181123000226


196 D. P. J. Germano et al. [2]

1. Introduction

Cell-to-cell adhesion is essential for tissue morphogenesis and homeostasis [21,
23]. Chains of cells within tissues are highly dynamic and can resist the abrasive
influences of their environment, including mechanical stresses. The mechanical
coupling between lateral surfaces of adjacent cells is mediated by transmembrane cell
adhesion molecules (CAMs), which cross the intercellular space and attach to the cell
surface or cytoskeleton of neighbouring cells. The process of cell–cell adhesion is
dynamic, and the regulation of adhesivity between cells is ongoing due to external
mechanical stimuli [21]. A canonical example is the adhesion complex formed between
the CAM, cadherin, and the actomyosin cytoskeleton in epithelial tissues [11, 14].
Since the cadherin–actomyosin adhesion complex bears the brunt of mechanical stress
between cells in epithelia, it accordingly remodels contact zones between adjacent
cells [10, 18]. Under tension, cadherin transmits forces through the cytoskeleton
and adapts by either strengthening adhesion complexes to withstand higher forces
or dissociating and remodelling adhesion complexes when forces become too large
[6, 10], a process which we refer to as “active remodelling.” These dynamics are
pronounced under stress relaxation and creep experiments. Here, a monolayered tissue
is clamped between two callipers and an external stress is applied, which stretches the
tissue, (model depicted in Figure 1). Given a sufficiently large degree of induced stress,
the tissue may actively deform elastically, without topological rearrangement, and then
undergo plastic deformation [2, 12, 20]. Furthermore, understanding the viscoelastic
behaviour of tissues under induced stress has direct consequences for understanding
the developmental process of tissue growth, where mechanical forces initial tissue
growth, elongation and bending to coordinate morphogenesis [13], and also tissue
maintenance [8, 25].

Mathematical modelling has been used to answer fundamental questions of tissue
dynamics and to help better understand a tissue’s behaviours [22]. Traditionally, these
models rely on the concept of Hooke’s law and use Newton’s laws of motion, along
with overdamped motion, to lead to a force balance, resulting in a simple linear spring
interaction between cells with a single fixed point [9, 16, 19]. However, there has
been recent work to model bistable springs to describe the mechanical transfer of
information [5, 15].

There have been efforts to describe the tissues’ multiphasic response to stress, using
a spring-pot model, which behaves as both a spring and a dashpot in different situations
[1]. More recently, these spring-pot models have been coupled with traditional models
of springs and dashpots, in what is referred to as generalised viscoelastic models
[3, 17, 26]. Here, the authors are able to capture the time-dependent response of both
single cells and epithelial monolayers under relaxation tests and creep experiments
[3]. However, these models are described using fractional calculus which makes their
analysis, and subsequent adoption, a challenge.

Another approach to describing the multiscaled response of tissues is to use a
power-law response in time. In this type of model, there are multiple time scales
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[3] Biphasic tissues remodelling for rheological responses 197

FIGURE 1. Model schematic, depicting a uni-axial chain of N = 5 cells undergoing constant elongation
between times t = 0 hrs and t = τ hrs, after which the tissue is allowed to relax, reaching equilibrium as
t → ∞ hrs. The tissue is clamped at the base (at x0 = 0), with the top cell (xN) is free (for t > τ hrs). The
labelling for cells junctions xi for 0 ≤ i ≤ N and cells sizes li for 1 ≤ i ≤ N are depicted. Initially, the cells
all occupy the initial rest lengths (see panel a). However, as the tissue is stretched, some cells remodel,
elongating beyond the elongated rest length (see panel b). Upon the release of the applied stretching, the
tissue eventually reaches equilibrium with cells occupying a combination of the initial and elongated rest
lengths (see panel c).

describing a cell’s response which allow the biphasic response of the cells to be
represented [7]. Alternatively, a more realistic cellular model, the vertex model, can
be used to represent cell–cell interactions. Vertex models contain highly detailed
cell–cell interactions and intracellular mechanics, making them a suitable model for
studying tissue rheology. As such, others have used a modified vertex model with a
threshold on tension remodelling and continuous strain relaxation to account for cell
remodelling [24].

In this paper, we present a simple individual-based model for a tissue as a uni-axial
(1D) chain of cells. In Section 2, we describe the model we propose. In Section 3,
we consider three special cases. The first case is no cell remodelling, where the
model collapses to the simple linear interaction model. The second case is instant
remodelling, where we present a bifurcation analysis to show where the model exhibits
mono and bistability. The final case is finite remodelling, which requires numerical
methods for analysis. In Section 4, we present these numerical analyses, showcasing
how the tissue undergoes remodelling for various remodelling parameters. Finally, in
Section 5, we discuss the key results of our model, the limitations of our model and
possible future extensions.
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198 D. P. J. Germano et al. [4]

2. Model

2.1. Tissue model In this section, we present our individual-based model for a
uni-axial (1D) chain of cells. We consider N cells where the cell junctions are
numbered i = 0 (left boundary) to i = N (right boundary) and are at positions {xi}Ni=0,
respectively, such that x0(t) and xN(t) are the positions of the boundaries as the tissue
grows/stretches and xi > xj if i > j. We make the following assumptions:

• cells are differentiated and so do not undergo proliferation;
• the timescales considered are sufficiently small, so no topological rearrangement

occurs.

These assumptions result in the tissue maintaining a fixed topology, supported by
experimental observations [12]. Figure 1 shows the model schematic we will consider
throughout this paper.

Each cell i (1 ≤ i ≤ N) is assumed to be spring-like and able to remodel its cellular
properties, such as its rest length, in response to strain. We denote the size of cell i,
li = xi − xi−1 for 1 ≤ i ≤ N. The value li is therefore the length of the cell (between cell
junctions i and i − 1 at positions xi and xi−1, respectively). The instantaneous behaviour
of cell i is Hookean [19], since we assume the tissue to be near a homeostatic state.
That is, the tension in the ith cell Ti is given by

Ti = k̄(li − Γi(t)), 1 ≤ i ≤ N, (2.1)

where k̄ is the spring constant assumed to be identical for each cell and Γi is the rest
length which we will consider to be dynamic and may be different for each i.

We assume that cell junction movement is over-damped with uniform drag [19] and
so any net force Fi placed on the ith cell junction is proportional to the velocity of the
junction. That is, since Fi = Ti+1 − Ti (for 1 ≤ i ≤ N − 1), (2.1) becomes

dxi

dt
= k(li+1 − li − Γi+1(t) + Γi(t)), 1 ≤ i ≤ N − 1, (2.2)

with li = xi − xi−1 ≥ 0 and Γi the dynamic rest length, for which a model is yet to be
defined. Here k is the spring constant scaled by drag.

At this time, we would like to represent the full problem in terms of just {li}Ni=1,
instead of {xi}N−1

i=1 . Subtracting the ith from the (i − 1)th, (2.2) yields

dli
dt
= kLi(l − Γ(t)), 2 ≤ i ≤ N − 1,

where l = [l1, l2, . . . , lN−1, lN]†, Γ = [Γ1, Γ2, . . . , ΓN−1, ΓN]† and the 1D discrete Lapla-
cian operator for node i is Li(l) = li+1 − 2li + li−1.

Without loss of generality, we can hold the frame of reference with x0 = 0. However,
the end of the 1D cell xN(t) may change relative to the origin as the tissue is stretched.
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For i = 1, we may have the clamped (fixed boundary) or free (zero force, Tj = 0 where
j is a fictitious external cell) boundary conditions. Using (2.2), we have the equations:

dl1
dt
= k([l2 − Γ2] − (2 − φ0)[l1 − Γ1]),

dlN
dt
= k([lN−1 − ΓN−1] − (2 − φN)[lN − ΓN]) + φNx′N(t),

where in both cases, φ = [φ0, φN] are indicator functions. That is, φ0 and φN are equal
to 1 if the boundaries x0 and xN , respectively, are clamped, otherwise they take the
value zero. Finally, the Nth cell experiences an applied force given by φNx′N(t).

Including, therefore, the known boundary conditions x0(t) and xN(t), the model for
the chain of cells is determined by solving

dl
dt
= kLφ(l − Γ(t)) + bφ (2.3)

for some initial l(0) = l0. Here the discrete 1D Laplacian matrix Lφ includes the
boundary conditions, given in

Lφ[1, 1] = Lφ[N, N] = −(2 − φN),
Lφ[1, 2] = Lφ[N, N − 1] = 1,
Lφ[i, i] = −2 for 2 ≤ i ≤ N − 1,

Lφ[i, i − 1] = Lφ[i, i + 1] = 1 for 2 ≤ i ≤ N − 1,

and all other elements are zero. The boundaries are included in the matrix bφ;
bφ[N] = x′N(t)φN , whilst all other elements of b are zero. Finally, we note that there
is nothing in this model that would explicitly force li > 0 for all i. This is because we
are assuming that deformations are sufficiently small and the cells remain in the linear
regime described by (2.1). At the least, this model is only appropriate if li stays strictly
positive for each cell.

2.2. Model for dynamic rest length If a cell is pulled apart by some force to a
given length li, it is assumed that the cell is capable of remodelling in such a way
that, once released, the spring modelling the cell and its external interactions have
a new rest length. Of course, since we are assuming that remodelling is a response
to strain, as the cells contract towards this new rest length, the strain changes and a
new rest length is achieved dynamically through remodelling. We assume therefore
that for any given cell size li, the cells remodel to a configuration in which the rest
length γi = γ(li) is desirable. If we assume a tissue is initially at its natural length,
γ0, then upon stretching over some nonzero time, the tissue will undergo remodelling.
Therefore, upon contraction, the tissue will result in a state greater than its original
rest length, γ0. Therefore, we assume that γ′(li) > 0. Furthermore, we assume that
for very small deformations, the tissue does not undergo significant changes, γ′(li) is
small and the rest length remains close to its minimum value γ = γ0. Stretching the
cells of the order of some critical length scale li ∼ lc, we assume that the rest length
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may significantly change up to some maximum rest length γ = γm > γ0. We model this
using the sigmoidal function, giving the equation

γi = γ(li) = γ0 + (γm − γ0)
l2i

l2i + l2c
. (2.4)

This nonlinear response enables us to describe bistable rest lengths. We assume that
there is some relaxation time λ−1 associated with the remodelling process of each cell
and, in response to strain, the dynamic rest length Γi(t) is determined by the following
relaxation equation:

dΓi

dt
= −λ[Γi − γi] = −λ[Γi(t) − γ(li(t))], 1 ≤ i ≤ N.

In matrix form, this is

dΓ
dt = −λ(Γ − γ(l)), (2.5)

where in this context, γ(l) = [γ(l1), γ(l2), . . . , γ(lN−1), γ(lN)]†.

2.3. Dimensionless model summary In this manuscript, we are interested in
understanding the effects of rest length remodelling on the dynamics of a simple 1D
tissue after being stretched. The general model assumes that the parameters can take
their full range. The general model consists of (2.3) and (2.5).

Nondimensionalising time with respect to the characteristic timescale associated
with spring contraction k−1 and length with respect to the separation associated with
remodelling lc, we find the new dimensionless model. To avoid notation clutter, we
do not use markings to indicate dimensionless quantities, and instead simply continue
with this dimensionless model for the remainder of the manuscript. The following
equations give the dimensionless description:

dl
dt
= Lφ(l − Γ) + bφ, l(0) = l0 (2.6)

and
dΓ
dt
= −λ(Γ − γ(l)), Γ(0) = Γ0 = γ(l0), (2.7)

with γ(l) = [γ(l1), . . . , γ(lN)]† as in the nondimensionalising equation (2.4), giving

γ(l) = γ0 + (γm − γ0)
l2

l2 + 1
and noting that Γ0 = γ(l0) implies the assumption that the rest lengths are all in
equilibrium initially. The vector bφ = [0, 0, . . . , 0, φNx′N(t)]† is nonzero, when the right
boundary is clamped and stretched or compressed. The remaining parameters of the
system include the cell sizes associated with normal contracted γ0 and stretched γm

cells relative to the critical length scale lc (which is therefore nondimensionalised as 1),
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γ0 < 1 < γm. The parameter λ describes the rate of remodelling relative to the spring
contraction rate.

It is useful for us to study the behaviour of this system in two potential limits.
The first of these is a well-studied case where remodelling is slow. This situation is
captured in the case where λ→ 0. In this case, we expect that the tissue behaves as an
elastic tissue where all of the cells interact by means of linear springs with constant
parameters. In the second situation, remodelling is fast λ→ ∞. Indeed, here “fast” and
“slow” in a dimensional sense mean that the cells are able to remodel faster or slower
than cells are able to contract/stretch, respectively.

We will also find it useful to investigate the behaviour of a single cell. If N = 1,
then we denote Γ = Γ, l = l1 = x and l0 = x̄. The model (2.6)–(2.7) only makes sense
in the unclamped regime (φ = [0, 0]), because if the cell is clamped at xN , the solution
is trivial (x(t) = xN(t)). In the unclamped regime, the model reduces to

dx
dt
= −(x − Γ), x(0) = x̄ (2.8)

dΓ
dt
= −λ(Γ − γ(x; γ0, γm)), Γ(0) = γ(x̄). (2.9)

3. Analysis

3.1. No remodelling (λ = 0) In the case of no remodelling, the rest length between
cells ceases to be dynamic. The solution to (2.7) is Γ = Γ0. That is, each junction is
associated with a static rest length. The tissue then evolves according to

dl
dt
= Lφl + b̄φ, l(0) = l0,

where b̄φ = bφ − LφΓ0. This is a relatively uninteresting elastic 1D tissue. The solution
l can be found analytically as per the equation

l(t) = exp(Lφt)
[ ∫ t

0
exp(−Lφτ)b(τ)φ dτ −

∫ t

0
exp(−Lφτ)LφΓ0 dτ + l0

]
. (3.1)

The model here behaves in a very straightforward manner. The tissue relaxes into a
steady state if limt→∞ b(t) = 0 or φN = 0; the end cell is not clamped and continuously
moving. Since −Lφ is symmetric positive definite, the eigenvalues are all positive
and therefore as t → ∞, the integrals inside the square braces of (3.1) are dominant
over the constant l0. Furthermore, the early dynamic behaviour of bφ(t) adds just a
cumulative constant to each element of l. By taking the integrals in (3.1) and recalling
the definition of bφ = [0, 0, . . . , 0, φNx′N(t)]†, it is possible to show that with clamping
at xN , the long-term behaviour is given by

lim
t→∞

X(t) = Γ0 +
xN(∞)

N
(1 − ‖Γ0‖1)1,
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where 1 is a vector of ones and ‖·‖1 is the 1-norm. If there is no clamping, then
limt→∞ l(t) = Γ0. Most importantly, this steady state is independent of the initial
condition l0 and is therefore globally attracting. It is also the case that in this steady
state, the cell sizes are all equal to the initial rest lengths compressed or stretched the
same length for each in such a way that the total size of the tissue ‖l‖1 = xN(∞), as
described by the boundary condition. This is because the equilibrium state for a series
of linear springs is the state in which the stress is uniform, and in this case, we require
the extensions of the cells to be the same since we are assuming they all have the same
spring constant.

A single free cell in this regime (2.8)–(2.9) has a length x that simply undergoes
exponential decay at a dimensionless rate of 1 to its initial rest length, and is too trivial
to warrant further discussion.

3.2. Instantaneous remodelling (λ → ∞) In the case where remodelling is rapid
with respect to elastic contraction, we note the pseudo-equilibrium in (2.7), Γ = γ(l).
Therefore, the system amounts to solving the set of differential equations in

dl
dt
= Lφ(l − γ(l)) + bφ, l(0) = l0.

This is a nontrivial problem due to the nonlinearity γ(l), and will require numerical
investigation in the next section. We can get some understanding of the behaviour for
this system by looking at the behaviour of a single free cell (2.8)–(2.9) as λ→ ∞.

In the case N = 1 and φ = [0, 0],

dx
dt
= −
[
x −
(
γ0 + (γm − γ0)

x2

x2 + 1

)]
, x(0) = x̄. (3.2)

Such a cell will contract or expand to find equilibrium points. We denote an
equilibrium point x = xS. To find all possible values xS, we set the time derivative
to zero giving

0 = xS −
(
γ0 + (γm − γ0)

x2
S

x2
S + 1

)
, (3.3)

which rearranges to the following:

γ0 = x3
S − γmx2

S + xS.

At this point, we can find the closed-form solution of the cubic solving for xS; however,
this form is complicated and not particularly insightful. Instead, we define

f (xS; γ0, γm) = γ0,

g(xS; γ0, γm) = x3
S − γmx2

S + xS,
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m

m

FIGURE 2. Different forms of g(xS; γ0, γm), depending on γm. Here, g(xS) bifurcates from two stationary
points when γm >

√
3 to no stationary points for γm <

√
3.

FIGURE 3. Fixed points (black dots) show where f (yellow) and g (purple) intersect (colour available
online). These points are solutions to (3.3) and are therefore possible equilibrium sizes for a single
cell with rapid remodelling (λ→ ∞). If either γ0 is outside of a particular window associated with
the stationary points of g or if g does not have stationary points, there is only a single fixed point of
intersection.

and observe when these functions intersect. Noting that g is cubic, we see that it can
have at most two stationary points, given by g′(xS) = 0 which are at the points

xS =
γm ±

√
γ2

m − 3
3

.

We therefore see that there are two different forms for g in terms of stationary points
depending on whether γm is greater than or less than

√
3, as shown by Figure 2.

In the case where γm >
√

3, we find it is possible for some γ0 values to have multiple
fixed points. Graphically, this is shown in Figure 3 by equating g = f and indicating
the intersection of these curves on the graph.
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FIGURE 4. Bifurcation diagram of the single cell with rapid remodelling (3.2). In panel (a), the equilibria
branches for xS as a function of γ0 are presented, for a fixed value of γm = 1.85. Solid red curves signify a
stable branch of equilibria and the black dashed line signifies the unstable branch for a small region of γ0
described by (3.4) (colour available online). In panel (b), the (γ0, γm) parameter space is split into regions
containing only a single stable steady state (these points lie outside of the interval (3.4)) and containing
two stable steady states (inside the interval (3.4)). The later region of the parameter space is the region
between both blue bifurcation branches which meet at a cusp (beyond which only single stable steady
states are expected).

We see that for multiple (three) fixed points xS, we require that not only should
γm >

√
3 but also γ0 be given in the interval

γ0 ∈
[
max
{
0, g
(γm +

√
γ2

m − 3
3

)}
, g
(γm −

√
γ2

m − 3
3

)]
= [γ−0 (γm), γ+0 (γm)]. (3.4)

Outside of this region, there is only a single stationary point. We note also by (3.4) that
the interval cannot contain negative numbers for γ0.

We show the nature of this bifurcation, see Figure 4. In Figure 4(a), we have plotted
the one-parameter bifurcation diagram for γ0, where γm is fixed to γm = 1.85 >

√
3.

There are two stable branches of equilibria and an unstable branch of equilibria. We
can see the presence of bi-stability for a small range of γ0 values (the domain for the
unstable branch).

The effect of varying γm on the co-existence of two stable steady states in the
system as a function of γ0 is given in Figure 4(b). We notice that as γ0 is increased,
the window of γm values which permit two stable steady states diminishes to a cusp
at (γ0, γm) =

√
3/9(1, 9). We have chosen to plot only the positive quadrant in both

bifurcation diagrams. This is because only the region satisfying 0 < γ0 < γm in the
parameter space is allowable, due to physically realistic constraints.

In this case, we expect that if γm >
√

3 and γ0 ∈ (γ−0 (γm), γ+0 (γm)), it will be possible
for a cell which starts off with a small rest length on the lower branch to be stretched
either by force of the cells around it or by external forces. In this case, the cell can
be deformed into the stretched state by crossing the unstable steady state (see the
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black dashed curves in Figure 4(a)) and at this point, it will tend towards a free rest
length on the upper stretched branch. If this happens, to return to the original rest
length, compression is necessary (perhaps from neighbouring cells). This proposes an
interesting prospect when placing N > 1 of these cells in series.

3.3. Finite remodelling (finite, nonzero λ) In the case of finite remodelling rates
λ, if the cells are stretched dynamically beyond the unstable separation distance and
released, the cells have time to retract, elastically, towards their small rest length before
remodelling has a chance to change the cells substantially enough to push them towards
the stretched state at rest. We will see that this can produce some interesting behaviour
in the next section, where we re-introduce λ finite and N > 1 to see how a tissue
responds to a period of rapid stretching and then release to contract to a new stable
steady state.

4. Numerical simulations

Here we will explore numerical simulations of a tissue of N cells described by
the model (2.6)–(2.7). All numerical results in this section have been compiled using
second-order Runge–Kutta on the model equations. We run numerical experiments on
our model undergoing tissue stretching and release. We will run two different types of
numerical experiments on this model; stretch and compression.

In our stretch experiments, we will begin with a chain of N + 1 cells, with each cell
initially separated by its minimum rest length l0 = γ01. In this way, the tissue length
is ‖l0‖1 = Nγ0 and the cell centres are at xi(0) = iγ0 for each 0 ≤ i ≤ N. The tissue is
then stretched by clamping the bottom of the tissue x0(t) = 0 and increasing the top of
the tissue at a constant speed v for a time τ, until the size of the tissue has increased by
a factor of α. During this time, the cells remodel at a rate λ. At time t = τ, the top of
the tissue is released and the tissue is allowed to relax.

4.1. Stretching duration, τ, and tissue remodelling constant, λ, affect tissue
elongation dynamics We first investigate how the tissue behaves under various
stretching durations, τ, with various tissue remodelling constants, λ. This will give
us an understanding as to how the tissue remodels under various circumstances. For
the purpose of this work, we will use the model parameters given in Table 1.

To understand the role stretching has on the remodelling of the tissue, we vary
both the stretching duration and the tissue remodelling constant. We will track the
tissue size, initial tissue size and also the final tissue size, as well as the (dynamic)
cell rest lengths. The final tissue size is calculated by considering the number of cells
that are below and above the unstable rest length, and multiplying by the appropriate
rest length, as the dynamic remodelling process can require a long time to achieve
equilibrium.

We can see immediately that the stretching experiments for the case of slow
(no) remodelling (λ = 0) result in a tissue with the same initial and final tissue
length, after the applied stretching event, irrespective of the stretching duration (see
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TABLE 1. Model parameters used to investigate how stretching duration, τ, and tissue remodelling
constant, λ, affect tissue elongation dynamics under tissue stretching experiments.

Parameter Interpretation Value

N + 1 Number of cells 25
γ0 Initial rest length 0.15
γm Elongation parameter 1.85
α Tissue stretching factor 0.5
τ Tissue stretching duration {5, 50, 500}
λ Tissue remodelling constant {0, 0.002, 0.02, 0.2,∞}

Figures 5(a)–5(c)). Consulting the associated cell rest length plots in Figures 6(a)–6(c),
we can see that the cell’s rest lengths do not vary, due to the fact that here remodelling
does not occur, and so the cells act as simple Hookean springs.

In comparison, we observe that as we allow the cells to remodel, we can obtain a
larger final tissue. Considering the relatively low strength tissue remodelling constant
of λ = 0.002, we see that we must stretch the tissue for τ = 500 to achieve a larger than
initial tissue (Figure 5(f)), whereas for smaller stretching durations, the tissue returns to
its original size, despite its ability to undergo remodelling (see Figures 5(d) and 5(e)).
This lack of tissue elongation can be understood by seeing how the cell rest length
varies. For small stretching durations, we see that no cells are able to remodel beyond
the unstable rest length (Figures 6(d) and 6(e)), and so after the stretching event, these
tissues return back to their original size. However, for the larger stretching duration,
we can observe that some cells remodel beyond the unstable rest length (Figure 5(f)).
As this tissue further relaxes, any cell which has remodelled beyond this unstable rest
length will eventually remodel to the elongated stable rest length, resulting in a larger
tissue. However, due to the relatively low tissue remodelling constant, this process
occurs slowly and therefore the final tissue size in Figure 5(f) is smaller than that
shown within the plot.

We next consider a relatively mid strength tissue remodelling constant of λ = 0.02.
Here, we can see that irrespective of the stretching duration, all of the tissues elongate
upon being stretched (see Figures 5(g)–5(i)). However, the extent of the elongation is
drastically affected. Looking at the cell rest lengths (Figures 6(g)–6(i)), we see that
cells remodel sufficiently quickly to respond to the tissue stretching, meaning that
following on from the stretching duration, most cells that will remodel beyond the
unstable cell rest length have already done so. We also now observe the stable nature
of both the initial and elongated stable rest length in Figure 6(i), as there are some cells
which remodel beyond the elongated stable rest length within the stretching duration,
but return to the elongated stable rest length after stretching.

Then, we consider a relatively high strength tissue remodelling constant of λ = 0.2.
We observe that the stretching duration affects the final tissue size less so than
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FIGURE 5. Plot of normalised tissue length (lTissue) with time (t) for various stretching times τ and
remodelling parameters λ. Coloured lines correspond to individual cell’s position, dashed black line is
the initial tissue size and solid black line is the steady state tissue size (colour available online).
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FIGURE 6. Plot of normalised cell rest length (ΓCell) with time (t) for various stretching times τ and
remodelling parameters λ. Coloured lines correspond to individual cell’s normalised rest length. Lower
solid black line is the initial stable cell rest length, the upper solid black line is the elongated stable cell
rest length and the dotted line is the unstable cell rest length (colour available online).
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TABLE 2. Model parameters used to investigate how initial rest length, γ0, elongation parameter, γm, and
tissue stretching factor, α, affect extent of tissue elongation under tissue stretching experiments.

Parameter Interpretation Value

N + 1 Number of cells 25
γ0 Initial rest length {0.100, 0.150, 0.186}
γm Elongation parameter {2.000, 1.850, 1.750}
α Tissue stretching factor {0.25, 0.50, 0.75, 1.00}
τ Tissue stretching duration [10−1.0, 104.5]
λ Tissue remodelling constant [2 × 10−4.0, 2 × 101.0]

previously (see Figures 5(j)–5(l)). Looking at the cell rest length in Figures 6(j)–6(l),
we see that this is due to the fact that the cells readily remodel and have the ability to
pull cells up even after the stretching duration has concluded (most evident in Figure
6(l), where a cell is clearly seen to remodel beyond the unstable rest length after time
t = 500). However, there is still some variation in the final tissue size.

Finally, we consider the case of fast (instant) remodelling (λ→ ∞). As with the case
of a relatively high strength tissue remodelling constant, we see that the stretching
duration has less of an effect on the final tissue size, though it still contributes
to the tissue elongation (see Figures 5(m)–5(o)). This is due to the fact that the
cells instantly remodel to fill the elongated tissue space (see Figures 6(m)–6(o)).
Interestingly, in comparison to previous cases where we observed cells remodelling
beyond the elongated rest length and pulling neighbouring cells up, if we look
closely at the initial stable rest length, as a cell remodels beyond its elongated rest
length, it also pushes both of its neighbouring cells. This is most easy to observe in
Figure 6(o) where we see elongated cells pushing the neighbour above them (more
purple/darker in colour) upwards and cells below them (more yellow/bright in colour)
downwards.

4.2. Initial rest length, γ0, elongation parameter, γm, and tissue stretching factor,
α, affect extent of tissue elongation We now investigate how the tissue behaves
under stretching for various initial rest lengths, γ0, elongation parameters, γm, and
tissue stretching factors, α. This will give us an understanding as to how the tissue
remodels, providing an understanding to the onset of elongation and also the extent of
elongation. For the purpose of this work, we will use the model parameters given
in Table 2. As we have observed, upon stretching, the tissue may respond in a
heterogeneous manner, with cells at both the initial and elongated state. To obtain
a tissue-level understanding, we will measure the tissue elongation factor, which is
given as the proportion of cells in the elongated state.

The initial rest length, γ0, and the elongation parameter, γm, control the distance
between the two stable rest lengths. Therefore, we consider the three cases of
when the stable rest lengths are: large separation where (γ0, γm) = (0.1, 2.0) (see
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Figure 7(a)), a standard separation where (γ0, γm) = (0.15, 1.85) (see Figure 7(b)) and
small separation where (γ0, γm) = (0.186, 1.750) (see Figure 7(c)). These parameter
choices are specified to produce stable rest lengths of either a large, standard or
small separation, and to ensure the unstable rest length is at the midpoint between the
standard and small separation cases. As before, we will stretch the tissue by a factor of
α for a duration τ, where the tissue remodels with constant λ.

We consider first when the separation between the stable rest lengths is large (see
Figure 7(a)). These results are shown in Figures 7(d), 7(g), 7(j) and 7(m). Here,
irrespective of the tissue stretching factor α, we see that there is always a region within
the τ–λ parameter space where the tissue does not elongate. We note that if we choose
a particular τ and increase λ, the tissue transitions from a state of no elongation to
elongated. This indicates that the lack of elongation occurs within this region since
the tissue does not remodel sufficiently quickly and therefore no cells can access the
elongated rest length. Interestingly, if we fix the remodelling constant λ and increase
the stretching duration, we would expect that the tissue elongation factor would also
increase monotonically. However, we can see there are instances where this does not
occur, but instead the tissue elongation factor peaks as λ increases and then proceeds
to decrease again. This indicates that there is a balancing to achieve the maximum
tissue elongation, between how quickly the tissue remodels and how quickly the tissue
is stretched. Lastly, we would also expect the fastest remodelling tissues to elongate
most. However, if we consider α = 0.75 (Figure 7(j)), we see that the tissue elongates
fully for small λ and large τ. Recalling our previous results, we saw that for small λ
and large τ (that is, Figure 6(f)), all of the cells elongated together and so the tissue
transitioned in unison to being elongated. However, for the same τ, but increasing λ,
(that is, Figure 6(o)), we saw that cells elongated in isolation and then pushed their
neighbouring cell down, overshooting the elongated rest length in the process. In this
case, since the stable rest lengths are far apart, we see that only small remodelling
parameters can elongate fully.

We now consider the case when the stable rest lengths have a standard separation
(see Figure 7(b)). Results are shown in Figures 7(e), 7(h), 7(k) and 7(n). As before,
we observe the similar style dynamics where varying the stretching duration for some
remodelling constants results in the tissue elongation factor being nonmonotonic. We
also observe that in this regime where the stable rest lengths have a standard separation,
there is a larger region in the τ–λ parameter space where the tissue elongates fully.
However, as before, we observe that full elongation occurs first within the large τ,
small λ region.

Lastly, we consider the stable rest lengths to have a small separation (see
Figure 7(c)), results shown in Figures 7(f), 7(i), 7(l) and 7(o). Here, we see the
onset of full tissue elongation occurs very readily, even for small elongation factors. In
this regime, we also observe that for a fixed remodelling constant, the tissue elongation
factor increases monotonically with the stretching duration, τ. We also observe that
here, the region in the τ–λ parameter space where the tissue elongates fully has again
expanded further for all tissue stretching factors considered here.
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FIGURE 7. (a)–(c) Bifurcation diagrams for different values of γm, depicting cells with large separation,
standard separation and small separation, when specifying a given γ0 for each. (d)–(o) Plots of steady
state tissue elongation factor with remodelling (λ) and stretching duration (τ) for various γ0, γm and α.
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5. Discussion

Cells within tissues are held together by cell-to-cell adhesion, with these mechanical
couplings being mediated by transmembrane cell adhesion molecules. However, as this
mediation is an active process, the distribution of cell-adhesion molecules throughout
the cell reacts to stressors acting upon the cell. This in turn leads to the active
remodelling of cells to actively elongate in the direction of tension.

In this work, we have presented a mathematical model to understand how these
tissue and cells remodel under tension. The model significantly expands upon current
work, where cells are unable to elongate in a controlled manner. Rather, we propose
a novel model of the cell with bistable rest lengths. In the limit of slow remodelling
(with λ→ 0), we have shown how this model reduces down to the standard Hookean
spring model of a cell, which is valid when the cell is under no (minimal) tension.
We have also shown using a bifurcation analysis in the limit of fast remodelling (with
λ→ ∞) how we can maintain bistable rest lengths.

Lastly, using numerical simulations, we have shown how the general remodelling
behaves under various tissue stretching experiments. We have shown how we are able
to elongate a tissue with the cells actively remodelling, resulting in cells populating
both the initial rest length and the elongated rest length. We then showed that
irrespective of the initial rest length and elongation parameters used, there exists a
persistent region within the τ–λ parameter space where tissue elongation is prohibited.
We also showed that there exists a balance between how readily the cells remodel
and how quickly/slowly the tissue is stretched, with how elongated the tissue is
at steady state. Slow remodelling and slow stretching generally lead to the most
elongated tissue. Finally, we showed that for a particular remodelling constant λ, it is
possible to obtain nonmonotonic behaviour in the tissue elongation factor with various
stretching durations τ. These observations provide an interesting hypothesis that has
the possibility to be experimentally verifiable.

We believe that this model will provide useful insights into the remodelling of
mechanical cell-to-cell interactions. Further model extensions include generalising
the model into two and three dimensions. An extension to higher dimensions may
prevent limitations of our approach, such as topological changes throughout the tissue.
Such extensions may be performed in a number of different ways, depending on
model specificity. For centre-based models, the extension follows naturally, where
our biphasic model could be implemented to describe the changing natural separation
between neighbouring cells. For more sophisticated many-node models (such as vertex
models), this extension may be implemented in a similar way to our approach;
however, using connections to a central node and the cells boundary instead (see [4]).
Other potential future investigations could also include understanding how the tissue
stretching heterogeneities are sensitive to both tissue size stretching under applied force
and the minimal applied force required to induce remodelling, as well as including
more sophisticated mechanical force interactions between cells, such as incorporating
cell stiffness into a cell’s ability to remodel. Calibrating the model to real-life
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biological data could provide insights into the particular realistic model dynamics.
Moreover, verifying the hypothesis predicted by this work could also prove useful
in better understanding the biological dynamics behind cell and tissue remodelling.
Finally, while individual-based models of tissues provide a detailed cellular-level
understanding into tissue dynamics, extending our model in the continuous limit would
provide broader tissue-level insight. However, this would require significant effort to
formulate the continuous analogue of our remodelling rest length.
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