MONOTONY OF THE OSCULATING CIRCLES OF ARCS OF CYCLIC ORDER THREE

N. D. Lane, K. D. Singh and P. Scherk
(received November 1, 1963)

1. Introduction. It is well-known in elementary calculus that if a differentiable function has a monotone increasing curvature, then its curvature is continuous and the circles of curvature at distinct points have no points in common. In particular, two one-sided osculating circles at distinct points of an arc A_{3} of cyclic order three have no points in common; cf. [1], [2], [3]. The conformal proof given here that any two general osculating circles at distinct points of A_{3} are disjoint (Theorem 1), may be of interest. We also prove that all but a countable number of points of A_{3} are strongly conformally differentiable (Theorem 2).
2. The notations and definitions used in this discussion are the same as in [4] and [5]. For the convenience of the reader, we list some of the results which are needed here.

An arc A in the conformal plane is the continuous image of a real interval. P, Q, \ldots denote points in the conformal plane, and p, s, q, \ldots denote points of arcs. C denotes an oriented circle, with the interior C_{*} and exterior C^{*}, the latter region lying at its right.

An arc A is called once conformally differentiable at p if it satisfies the following:

CONDITION I. There exists a point $Q \neq p$ such that if s is sufficiently close to P on A, then the circle $C(p, s, Q)$ exists. It converges if s converges to p [4; Theorem 1].

Canad. Math. Bull. vol. 7, no. 2, April 1964

We denote the limit tangent circle by $C(\tau ; Q)$.
If Condition I holds for a single point $Q \neq p$, then it holds for all such points, and the closed set $\tau=\tau(p)$, of all the tangent circles of A at p is a parabolic pencil, i.e., any two circles of τ meet at p and nowhere else.

We call A conformally differentiable at p if it satisfies
CONDITION II. If $s \neq p$, then $\lim _{s \rightarrow p} C(\tau ; s)$ exists.
The limit osculating circle is denoted by $C(p)$.
We call C a general tangent circle of an arc A at p, if there exists a sequence of triples of mutually distinct points t_{n}, u_{n}, Q_{n}, such that t_{n} and u_{n} converge on A to p, and $\lim C\left(t_{n}, u_{n}, Q_{n}\right)=C$. If, in addition, $Q_{n} \in A$ also converges to p, then we call C a general osculating circle of A at p.
A_{3} denotes an arc of cyclic order three; thus no circle meets A_{3} more than three times. Here, p is counted twice on any general tangent circle of A at p which is not a general osculating circle. On a general osculating circle, and, in particular, on $C(p), p$ is counted three times; cf. [5; Section 3].

Each point of A_{3} has the property that if $Q, R \neq p$, $Q \rightarrow R$ and two distinct points u and v converge on A_{3} to p, then $C(u, v, Q)$ always converges [5; Theorem 2].

If p is an end-point of A_{3}, then $C(t, u, v)$ converges if the three mutually distinct points t, u, v converge on A to p [5; Theorem 3].
3. Let $p \in A_{3}$. Let B_{3} denote the open subarc of A_{3} bounded by p and an end-point of A_{3}. Let C be any general osculating circle of A_{3} at p, and let $C(p)$ be the (unique) osculating circle of B_{3} at p .

If p is an end-point of A_{3}, the strong differentiability of A_{3} at p implies that $C=C(p)$ (cf. [5], Theorem 3).

Suppose, next, that p is an interior point of A_{3}. Then C and $C(p)$ both intersect A_{3} at p (cf. [5], Section 3.3). By [5; Theorem 2], the general tangent circles of A_{3} at p form a pencil $\boldsymbol{\tau}$; thus, $C \in \tau, C(p) \in \tau$.

LEMMA. If $C^{*} C \mathrm{C}(\mathrm{p})^{*}$, then $\mathrm{B}_{3} \mathrm{CC}(\mathrm{p})_{*}$.
Proof. By [5; Sections 3.32 and 3.33], $\mathrm{B}_{3} \cap \mathrm{C}=\mathrm{B}_{3} \cap \mathrm{C}(\mathrm{p})=\mathrm{p}$. Suppose that $\mathrm{B}_{3} \mathrm{CC}(\mathrm{p})^{*}$. Then $\mathrm{B}_{3} \mathrm{CC}(\mathrm{p})^{*} \cap \mathrm{C}_{*}$; otherwise, $C(\tau ; s)$ could not converge to $C(p)$ as s tends to p on B_{3}. This implies, however, that $C(p)$ and C cannot both intersect A_{3} at p .

COROLLARY. If p is an interior point of A_{3}, then any general osculating circle of A_{3} at p lies between the two onesided osculating circles of A_{3} at p in the pencil $\tau(p)$ (cf. [5], 3.42).
4. THEOREM 1. Two general osculating circles at distinct points of A_{3} have no points in common.

Proof. On account of the above Corollary, we may now assume that A_{3} is an open arc with the end-points p and q. Thus, A_{3} has uniquely defined osculating circles $C(p)$ and $C(q)$ at p and q, respectively. We may assume that neither $C(p)$ nor $C(q)$ is a point-circle. Let τ and τ_{q} denote the families of tangent circles at p and q, respectively.

If t, u, v lie on A_{3} in that order, we may assign to $C(t, u, v)$ the orientation associated with the order of the points t, u, v on $C(t, u, v)$.

Thus, the arc A_{3} induces a natural and continuous orientation on all the circles which meet $p \cup A_{3} \cup q$ three times (cf. [5], Section 3.51).

We may assume that $A_{3} C C(p)_{*}$. By considering the circles $C(\tau: s)$ and $C(p, s, q)$, and letting s move from p to q on A_{3}, we readily verify that

$$
\mathrm{A}_{3} \mathrm{CC}(\mathrm{p})_{*} \cap \mathrm{C}(\tau ; q)^{*} \cap \mathrm{C}\left(\mathrm{p} ; \tau_{\mathrm{q}}\right)_{*} \cap \mathrm{C}(\mathrm{q})^{*}
$$

$$
\begin{equation*}
\mathrm{C}(\tau ; q)_{*} C \mathrm{C}(\mathrm{p})_{*}, \text { and } \mathrm{C}\left(\mathrm{p} ; \mathrm{T}_{\mathrm{q}}\right)^{*} \mathrm{C} C(\mathrm{q})^{*} \tag{1}
\end{equation*}
$$

Since $C\left(p ; \tau_{q}\right) \neq C(\tau ; q), C\left(p ; \tau_{q}\right)$ intersects $C(\tau ; q)$ at p and q. Hence $C\left(p ; \tau{ }_{q}\right)$ also intersects $C(p)$ at p and at another point. Since $C(\tau ; q)$ intersects $C(p ; \tau)$ at q, $C(\tau ; q)$ also intersects $C(q)$ at q. Thus $C(\tau ; q)$ and $C(q)$ intersect at another point R. The points q and R decompose $C(q)$ into two arcs C^{\prime} and $C^{\prime \prime}$, such that $C^{\prime} C C(p ; \tau)_{q} \cap C(\tau ; q)_{*}$, while $C^{\prime \prime}\left(C\left(p ; \tau_{q}\right)_{*} \cap C(\tau ; q)^{*}\right.$. Since $C(\tau ; q)_{*} C C(p)_{* *}$, we obtain $\mathrm{C}^{\prime} \mathrm{C}(\mathrm{p})_{\text {* }}$.

Suppose that $C^{\prime \prime}$ meets $C(p)$; thus $C^{\prime \prime}$ meets $C(p) \cap C\left(p ; \tau q_{*}\right)$. Then $C^{\prime \prime}$ decomposes the region

$$
\mathrm{C}(\mathrm{p})_{* k} \cap \mathrm{C}\left(\mathrm{p} ; \tau_{\mathrm{q}}\right)_{*} \cap \mathrm{C}(\tau ; \mathrm{q})^{*}
$$

into three disjoint regions. Two of the se lie in

$$
\begin{equation*}
\mathrm{C}\left(\mathrm{p} ; \tau_{\mathrm{q}}\right)_{*} \cap \mathrm{C}(\mathrm{q})^{*} \cap \mathrm{C}(\mathrm{p})_{*} \tag{2}
\end{equation*}
$$

and their boundaries have at most a single point in common which lies in $C(p)$. The region of (2) whose boundary includes an arc of $C(\tau ; q)[C(p ; \tau)]$ contains points of A_{3} close to p [q]. But then the continuity of A_{3} and Relation (1) imply
that these two regions are connected. Hence $C^{\prime \prime} C C(p)_{\text {\% }}$ and the whole of $C(q)=C^{\prime} \cup C^{\prime \prime} \cup\{q, R\}$ lies in $C(p)_{\text {ね }}$.

Remark. The following alternative method of proving that $\overline{C^{\prime \prime} C C(p)}{ }_{*}$ is shorter and direct, but it requires the full Jordan curve theorem.

As above, $C^{\prime \prime} C C\left(p ; \tau_{q}\right)_{*} \cap C(\tau ; q)^{*}$. Since $C(q)$ does not meet $A_{3}, C^{\prime \prime}$ even lies in the region in $C\left(p ; \tau_{q}\right)_{*}$ bounded by A_{3} and $C(\tau ; q)$. Hence $C^{\prime \prime} C C(p)_{*}$.
5. THEOREM 2. All but a countable number of points of A_{3} are strongly conformally differentiable; cf. [6].

Proof. Let p and q be the end-points of A_{3}. We may assume that $C(p) \neq p$, and $A_{3} C C(p)_{*}$. By choosing a suitable co-ordinate system we may even assume that $C(p)$ is a circle of area 1 .

Let $s \in A_{3}$ be a point at which A_{3} is not strongly conformally differentiable; then A_{3} does not satisfy Condition II at s; cf. 3, Corollary. Let $C(s)$ and $C^{\prime}(s)$ be the onesided osculating circles of A_{3} at s . We may assume that $C(s)_{*} C C^{\prime}(s)_{*}$. Let $f(s)$ be the area between $C(s)$ and $C^{\prime}(s)$. By Theorem 1, the regions $C(s)^{*} \cap C^{\prime}(s)_{*}$ and $C(t) * \cap C^{\prime}(t)_{*}$ are disjoint if $s \neq t$, and they lie in $C(p)_{*}$.

Thus there are not more than 2^{n} members in the class of points s for which

$$
1 / 2^{n-1}>f(s) \geq 1 / 2^{n} \quad(n=1,2,3, \ldots)
$$

Since every point $s \in A_{3}$ with $f(s)>0$ is included in exactly one of these classes, there is only a countable set of points s with $f(s)>0$.

REFERENCES

1. J. Hjelmslev, Die graphische Geometrie, Attőnde Skandinav. Mat-Kong. Fortand 1 (Stockholm, 1934).
2. H. Haller, Ueber die K_{3}-Schmieggebilde der ebenen Bogen von der K_{3}-Ordnung drei, S.-B. Phys.-Med. Soz. Erlangen, 69 (1937), 15-18.
3. O. Haupt, Zur geometrischen Kennzeichnung der Scheitel ebener Kurven, Archiv der Mathematik (1948), 102-105.
4. N. D. Lane and Peter Scherk, Differentiable points in the conformal plane, Can. J. Math. 5 (1953), 512-518.
5. \qquad , Characteristic and order of differentiable points in the conformal plane, Trans. Amer. Math. Soc., 81 (1956), 353-378.
6. A. Marchaud, Sur les continus d'ordre borné, Acta Math. 55 (1930), 57-115.

McMaster University and
University of Toronto

