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Summary

A series of multivariate mixed-inheritance models is fitted to the data from an outbred-line pig cross
commercially used in Norway. Each model accommodates information on polygenic (co)variances
between F2 individuals and their F1 parents across the five traits through incorporation of a random
animal effect. Considered traits relate to meat quality and are chosen following up the results from
a previous evaluation, in which a putative quantitative trait locus (QTL) was identified on
chromosome six that affects the amount of intramuscular fat (IMF), meat percentage, meat
tenderness and smell intensity (Grindflek et al., 2001). An additional trait included in the model,
based on results of other studies, is the backfat thickness. The analysed material comprises data
scored for 305 F2 individuals, whereas marker information is available for F1 and F2 generations.
Based on the results of the multivariate analysis with the mixed-inheritance model, it was possible to
conclude that the evidence for QTLs for meat percentage, meat tenderness and smell intensity in the
study of Grindflek et al. (2001) do not represent separate QTLs, but is caused by the fact that the
applied pre-adjustment of trait values for polygenic effects failed properly to remove the polygenic
variation. The QTL effect on IMF on chromosome six was confirmed.

1. Introduction

Recent research results indicate that porcine chromo-
some six (SSC6) probably hosts genes related to meat
quality. Among the most often reported is a quantitat-
ive trait locus (QTL) for the amount of intramuscular
fat (IMF) (deKoning et al., 1999; Gerbens et al., 1999;
de Koning et al., 2000; Gerbens et al., 2000; Óvilo
et al., 2000; Grindflek et al., 2001). Additionally, a
QTL affecting backfat thickness (BFT) has also been
reported within the same chromosomal region (Óvilo
et al., 2000; Malek et al., 2001). Results obtained in a
Norwegian commercial slaughter pig cross, based on
univariate analyses using the Lander & Botstein model
(1989), give evidence for a putativeQTL for IMF,meat
percent, meat tenderness and smell intensity, located
on SSC6 (Grindflek et al., 2001).

The usual approach to mapping QTLs for meat
quality is to evaluate series of univariate models (i.e.
separate analysis for each trait). On one hand, such a
strategy is a plausible one, because meat quality in pig
is described by a very large number of traits (e.g. 44
traits in the data of Grindflek et al., 2001) and simul-
taneous analysis of all the traits is practically im-
possible. From a computational point of view, such a
model would have too many dimensions and, stat-
istically, there would be too many parameters to
be estimated simultaneously for a limited number of
individuals. On the other hand, however, some of
the traits are highly correlated, so that QTL detection
could profit from increased power and higher accuracy
of gene localization by performing a multivariate
analysis (Jiang & Zeng, 1995; Henshall & Goddard,
1999; Williams et al., 1999; Knott & Haley, 2000).
Moreover, as pointed by Rencher (1998), a univariate
model provides only partial information about the
genetic architecture underlying meat quality, be-
cause it ignores other traits that are also related to
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the phenomenon under study. Finally, performing
several separate univariate analyses increases the
probability of type I error, which is usually not realized
and consequently not accounted for (Caliński et al.,
2000). Mixed models for QTL detection in line-cross
data have been proposed byRathje et al. (1997), Pérez-
Enciso & Varona (2000), Szyda et al. (2000, 2002) and
Nagamine &Haley (2001).Multivariate methods have
been applied as an extension to regression interval
mapping (Haley & Knott, 1992) by Knott & Haley
(2000) and Hackett et al. (2001), to composite interval
mapping of Zeng (1994) by Jiang & Zeng (1995) and
Caliński et al. (2000), and in the form of principal-
component analysis byWeller et al. (1996) andMangin
et al. (1998).

The objective of the current study was to refine the
results of Grindflek et al. (2001) by applying a series of
multivariate mixed-inheritancemodels covering all the
five traits of main interest on SSC6 (i.e. IMF, meat
percentage,meat tenderness, smell intensity and BFT).
One of the most important gains from multivariate
modelling, apart from enhanced estimation accuracy
and detection power, is the possibility of distinguishing
between linked and pleiotropic QTL scenarios. Ad-
ditional power and accuracy are provided by the dif-
ferentiation between polygenic and QTL-based
components of genetic variance directly in the model
(as shown by, for example, Nagamine & Haley, 2001).
Consequently, no precorrection of parental effects is
needed, which might often be inaccurate, especially if
there are few parents in the pedigree.

2. Materials

(i) Phenotypic information

Animals in this experiment originate from a cross
commercially used for slaughter pigs in Norway. The
cross was designed by mating five Duroc boars to five
Norwegian Landrace sows in the parental generation
to produce five Landrace–Duroc boars (F1). Each of
the F1 boars was then mated to five Norwegian
Slaughter Pig cross sows (50% Norwegian Landrace,
50% Yorkshire) to produce 305 F2 individuals that
were recorded for a number of meat quality and car-
cass traits. In the current study, of 44 traits describing
meat quality, five quantitative measurements (IMF,
meat percent, meat tenderness, smell intensity and
BFT) are considered. IMF was determined from
samples from the longissimus dorsi muscle by the
Foss–Let method (Woodward et al., 1976), meat
percentage was measured by GP2 analyses and BFT
measurements were taken between fourth and fifth
ribs. The meat tenderness (scored by chewing force)
and smell intensity were evaluated by a trained taste
panel of ten assessors, who scored the traits on a scale
from 1 (no intensity) to 9 (distinct intensity). Details

about the cross and trait recording are given by
Grindflek et al. (2001).

(ii) Genotypic information

Marker genotypes are available for F1 and F2 in-
dividuals. The marker map on SSC6 consists of nine
markers and has already been described (Grindflek
et al., 2001). Marker linkage analysis was performed
using the CRIMAP package version 2.4 (Green et al.,
1990). The CHROMPIC option was used to search
for unlikely double crossovers, and the map for SSC6
(Fig. 1) was constructed with the BUILD option of the
program.

The assumption underlying the configuration of
genotypes in the available data set is that both paternal
lines in a cross are fully homozygous both for markers
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Fig. 1. Genetic linkage map for SSC6 from the study of
Grindflek et al. (2001).
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and for a QTL. As a consequence, F1 sires are expected
to be fully informative (i.e. heterozygous) for all the
loci considered. However, this is an ideal situation and
so, for the practical analysis of our data, the following
approximations are set :

(a) possible multiple alleles of a putative QTL are
divided into two categories – favourable (Q) and
unfavourable (q), so that the practical analysis
relies on a biallelic QTL

(b) all dams mated to F1 sires are homozygous at a
putative QTL (qq)

(c) based on marker information from dams, off-
spring and sires, the marker haplotype phase of F1

sires is known without error
(d) for a given F1 sire, a favourable QTL allele is as-

signed to the marker haplotype associated with a
higher phenotypic mean value of offspring with
this haplotype; the other haplotype is assigned an
unfavourable QTL allele.

Corresponding probabilities of a given QTL geno-
type in F2 animals, which are equivalent to paternal
QTL allele transmission probabilities, are given by

P(Qq jMi, QqSi, qqDi, r)=P(Q jMi, QqSi, qqDi, r)

=P(Q jMi, r)P(QqSi)P(qqDi)

P(qq jMi, QqSi, qqDi, r)=P(q jMi, QqSi, qqDi, r)

=P(q jMi, r)P(QqSi)P(qqDi)

where Mi is the set of marker information for F2 in-
dividual i comprising marker genotype of a sire, a dam
and its own genotype, QqSi and qqDi are the assumed
genotypes at a putative QTL of a sire and a dam (re-
spectively) of individual i, and r is a set of recombi-
nation rates between both markers or between a
marker and a putative QTL. In the current analysis,
P(QqSi)=P(qqDi)=1, it is however, possible to relax

the assumption that a given sire is heterozygous at a
putative QTL by modelling P(QqSi).

(iii) Statistical model

QTL mapping was based on the mixed inheritance
model (Szyda et al., 2000) : y=Xb+Xqq+Za+e.
Here it is assumed that y follows a multivariate nor-
mal distribution: yyMVNp (Xb+Xqq+ZGZT+R),
where p is the number of traits considered, which is
five (IMF, meat percentage, meat tenderness, smell
intensity and BFT) for the current study. The model
components can be partitioned as follows:

y=[y1 … yp]
T, where y is the vector of phenotypic

values for p traits considered,
b=[b1 … bp]

T, where b is the vector of fixed effects
other than QTL for p traits, with bi=[m sex]T,
q=[q1 … qp]

T, where q is the vector of fixed QTL
effects on p traits expressed as a difference between
a heterozygous (Qq) and a homozygous (qq)
genotype,
a=[a1 … ap]

T, where a is the vector of random ad-
ditive genetic effect of each of n F1 and F2 individuals
for p traits, with a=[a1 … an]

T,
e is the vector of random errors,
X, Xq and Z represent appropriate design matrices,

G=

G11 � � � G1p

..

. ..
. ..

.

Gp1 � � � Gpp

2
64

3
75,

whereGij is the polygenic (co)variancematrix for traits
i and j,

R=

R11 � � � R1p

..

. ..
. ..

.

Rp1 � � � Rpp

2
64

3
75,

Table 1. Polygenic and residual variances and correlations between meat
quality traits. Numbers in roman text show polygenic effects, whereas those
in italics show residual effects. The numbers on the diagonal are polygenic
and residual variances. Numbers above the diagonal are polygenic
correlations and those below are residual correlations between considered
meat-quality traits, estimated based on the full model

IMF
Meat
percentage

Meat
tenderness

Smell
intensity BFT

IMF x0.22 x0.45 x0.97 x0.13 x0.43
x0.22

Meat percentage x0.01 x3.44 x0.33 x0.45 x0.22
x9.11

Meat tenderness x0.18 x0.07 x10.54 x0.39 x0.47
x21.43

Smell intensity x0.07 x0.22 x0.25 x1.96 x0.32
x0.99

BFT x0.01 x0.06 x0.03 x0.65 x7.62
x2.04
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where Rij is the residual (co)variance matrix for traits
i and j.

QTL genotype probabilities in Xq are calculated
following themultiple-marker approach ofKnott et al.
(1996) every 1 cM along the marked chromosome
region.

Additionally, a bivariate two-QTL model (y=
Xb+Xq

IMF qIMF+Xq
BFT qBFT+Za+e) was applied

to construct a likelihood surface for data on IMF and
BFT. Here, qIMF and qBFT represent the QTL effect on
IMFandBFT, respectively, with correspondingdesign
matrices Xq

IMF and Xq
BFT.

(iv) Hypothesis testing

As a testing criterion the likelihood ratio test statistic
is used

l=x2 ln
L(M0)

L(M1)
yx2

where, L(M0) and L(M1) are the maximum values of a
likelihood function underlying a more-parsimonious
model corresponding to the null hypothesis (H0) and
an unrestricted model, respectively. Model parsimony

is defined in terms of the number of traits affected
by a fitted QTL, whereas the other parameters (i.e. b
and a) are the same for all the models. Consequently,
the full model labelled as M(11111) assumes that
q=[q1 q2 q3 q4 q5]

T, where the sequence of traits
considered in q is IMF, meat percentage, meat ten-
derness, smell intensity and BFT. Testing procedure
follows Knott & Haley (2000) extended from two to
five dimensional models, considering the following
configurations of null hypotheses.

(1) Comparing the unrestricted model to models as-
suming a QTL affecting a single trait

H0 : q=[q1 0 0 0 0]T, with the corresponding model
labelled as M(10000)

H0 : q=[0 q2 0 0 0]T, with the corresponding model
labelled as M(01000)

H0 : q=[0 0 q3 0 0]T, with the corresponding model
labelled as M(00100)

H0 : q=[0 0 0 q4 0]T, with the corresponding model
labelled as M(00010)

H0 : q=[0 0 0 0 q5]
T, with the corresponding model

labelled as M(00001)
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Fig. 2. Likelihood-ratio test profiles for the comparison of M(11111) with each of five single-trait QTL models. The
horizontal lines correspond to the 0.05 probability of type I error, with the solid line referring to a chromosomewise
level corrected for the effective number of marker intervals and the dashed line to an uncorrected, nominal level. Dots
represent relative marker positions. M(10000) is concerned with IMF; M(01000) is concerned with meat percentage;
M(00100) is concerned with meat tenderness ; M(00010) is concerned with smell intensity; M(00001) is concerned
with BFT.
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(2) Comparing the unrestricted model to models as-
suming a QTL affecting four traits

H0 : q=[0 q2 q3 q4 q5]
T, with the corresponding

model labelled as M(01111)
H0 : q=[q1 0 q3 q4 q5]

T, with the corresponding
model labelled as M(10111)

H0 : q=[q1 q2 0 q4 q5]
T, with the corresponding

model labelled as M(11011)
H0 : q=[q1 q2 q3 0 q5]

T, with the corresponding
model labelled as M(11101)

H0 : q=[q1 q2 q3 q4 0]T, with the corresponding
model labelled as M(11110)

Following Cheverud (2001), the Bonferroni cor-
rection was used to approximate the chromosomewise
significance level (a) :

a*=1x(1xa)1=M*

where a* represents the nominal type I error rate and
M* is the effective number of marker intervals tested.
Practically, M* corresponds to the actual number of
intervals corrected for their intercorrelation, which is
expressed by the variance of eigenvalues of the interval

correlation matrix. Unlike Cheverud (2001) but fol-
lowing Jiang & Zeng (1995), a marker interval, not a
marker itself, was considered here as an independent
testing unit.

For the bivariate two-QTL model, the null hy-
pothesis of interest is that both traits are affected by the
sameQTL and is given byH0 : hIMF=hBFT, where hIMF

and hBFT represent positions of QTLs affecting IMF
and BFT, respectively, expressed in cM from the
leftmost marker. It was tested by assessing a joint
confidence interval (CI) for both parameters. A joint
rectangular CI results from the intersection of CIs
corresponding to both QTL positions obtained using a
standard method

ĥtza=2sĥ,

where ĥ represents the parameter in question, za=2 is the
standard normal deviate corresponding to a/2 type I
error, and sĥ is the standard deviation of ĥ, estimated
based on the curvature of the likelihood surface
around itsmaximum followingMeyer&Hill (1992; see
for example Szyda et al., 2002). Although straight-
forward to calculate, it ignores the covariance between
hIMF and hBFT. The exact elliptical CI that would
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Fig. 3. Likelihood-ratio test profiles for the comparison of M(11111) with each of five four-trait QTL models.
The horizontal lines correspond to the 0.05 probability of type I error, with the solid line referring to a chromosomewise
level corrected for the effective number of marker intervals and the dashed line to an uncorrected, nominal level.
Dots represent relative marker positions. M(01111) is concerned with IMF; M(10111) is concerned with meat
percentage; M(11011) is concerned with meat tenderness ; M(11101) is concerned with smell intensity ; M(11110) is
concerned with BFT.
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account for the covariance is difficult to determine
algebraically. The information about quality of ap-
proximation of an exact, elliptical CI through the
rectangular CI is contained in the parameter (co)
variance matrix, so that the square root of its deter-
minant amounts to the area of the rectangular CI,
which corresponds to the elliptical CI (Draper &
Smith, 1998). If both areas are similar, the elliptical CI
can bewell represented by the two-dimensional surface
of the likelihood level corresponding to the area
covered by the rectangle.

(v) Estimation

The restrictedmaximum likelihood (REML) approach
is applied for the simultaneous estimation of model
parameters denoting both, effects and variance com-
ponents. The corresponding log-likelihood function
(lnL) is given by

lnL=x0�5(nxr) ln(2p)

x0�5(lnjRj+lnjGjxlnjCj
+yTRx1yxyTRx1X*bxyTRx1Za),
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Fig. 5. Rectangular and elliptical 95% confidence intervals for QTL position based on the two-dimensional likelihood
surface. Circles mark the diagonal line corresponding to the identical estimates of QTL position for IMF and BFT.
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where n is the number of records, r is the rank ofX* (the
design matrix for b) and C is the coefficient matrix of
the mixed-model equations. All the model parameters
were estimated at each putativeQTL location, building
a likelihood profile along the chromosome. The
evaluation of REML and parameter estimation in-
volves implementation of the PEST/VCE package
(Neumaier & Groeneveld, 1998). Values of REML
provided by the software are not directly comparable
between different models, which poses a problem for
hypotheses testing. In PEST/VCE, computed REML
values lack the first term of a full REML and are
shifted by a constant depending on the dimension of
a model. This procedure alters the level (but not the
shape) of the likelihood surface between models dif-
fering in parameterization. Although the first likeli-
hood term can be evaluated algebraically, the exact
numerical evaluation of the constant is not possible
(A. Neumaier, personal communication). Conse-
quently, for the purpose of our study an empirical
approach was adopted, in which each model’s REML
was evaluated for 100 data sets simulated with the size
and structure identical to the real data set, but as-
suming no QTLs. The average REML out of such 100
evaluations is an estimate of the constant.

3. Results

(i) Correlation estimates

Polygenic and residual variances and correlations be-
tween considered traits estimated under the full model
and corresponding to the highest REML value along
the chromosome are given in Table 1. The polygenic
correlations vary between 0.97 formeat tenderness and
IMF, and 0.13 for IMF and smell intensity. The cor-
responding residuals are less correlated, with the
weakest correlation of x0.01 for IMF and meat per-
centage, and for IMF and BFT, and the strongest
correlation of x0.65 for smell intensity and BFT.
Owing to the relatively small sample size, the estimates
are subject to large standard errors, but the sign of
polygenic correlations reveals trait physiological
background.

(ii) QTL mapping

The comparison of the unrestricted and single-trait
QTL models is shown in Fig. 2. The likelihood-ratio
test profiles corresponding to models M(01000),
M(00100), M(00010) and M(00001) all show very
similar shapes along the chromosome. The highest
prevalence of the full model over the four above
models is observed for marker interval SW1355–
SW1823, for which the test statistic exceeds the nomi-
nal 0.05 probability of type I error (although it does

not reach the chromosomewise threshold). To the
contrary, the likelihood-ratio test profile related to
the comparison of the full model to M(10000) has a
distinct shape that shows no significant differences in
fit between the compared models.

The likelihood ratio test profiles summarizing dif-
ferences in fit between the full model M(11111) and
each of the four-trait QTL models M(01111),
M(10111), M(11011), M(11101) and M(11110) are
given in Fig. 3. Again, the likelihood profile corre-
sponding to M(01111) shows a distinct shape with
chromosomewise significant prevalence of M(11111)
observed within the region marked by SW1355–
SW1823. Considering the nominal type I error rate,
M(11110) also appears to be significantly worse than
the full model within the two intervals SW1057–S0087
and S0228–SW322. The other models appear not to fit
significantly worse. The effective number of marker
intervals used to obtain the chromosomewise signifi-
cance level is 5.85.

From a commercial pig-breeding point of view, it is
especially important to determine whether a QTL that
significantly affects IMF also has a significant effect
on BFT. This was done through a bivariate two-QTL
analysis. The resulting likelihood surface is presented
in Fig. 4. The rectangular and elliptical 95% CIs for
the QTL position corresponding to the surface (Fig. 5)
show 0.99991 correspondence, which mainly results
from low correlation of 0.014 between estimates of
position along the IMF and the BFT axes. The ellip-
tical CI does not contain any of the diagonal points
indicating the same positions for QTL for IMF and
BFT.

4. Discussion

The original results of QTL detection for meat-quality
traits for this data set, based on univariate models,
reported four putative QTLs or a single QTL affecting
four traits mapped to SSC6 (Grindflek et al., 2001).
Furthermore,Grindflek et al. (2001) foundno evidence
of QTLs for BFT, which is a valuable result for
breeding practice but contradicts some previous find-
ings, in which QTLs for both, IMF and BFT were
reported in this region of SSC6 (Óvilo et al., 2000).

Applying multivariate modelling to the data en-
abled us to exclude previous results for IMF, meat
tenderness, meat percentage and smell intensity as
being affected by a single pleiotropic QTL. This
conclusion can be drawn from a comparison of
models M(11111) and M(10000). As shown in Fig. 2,
M(10000) assumes that a QTL affecting IMF does
not have a significantly worse fit than the five-trait
pleiotropic QTLmodel, meaning that it is sufficient for
statistical description of the data. However, none of
the other single-trait QTL models fitted is adequate.
Furthermore, as shown in Fig. 3, even if QTL effects

Multivariate QTL mapping for meat quality in swine 71

https://doi.org/10.1017/S0016672302006043 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672302006043


are fitted for meat tenderness, meat percentage, smell
intensity and BFT, such a model does not reflect the
observed phenotypic variation as long as it lacks a
QTL effect on IMF. Based on the significance pattern
of likelihood profiles, it is also evident that no separate,
linked QTLs for meat tenderness, meat percentage,
smell intensity and BFT are expected in the region
flanked by SW1355 and SW1823. In the current study,
an additional analysis was made to dissect the genetic
background between IMF and BFT. Both the shape of
the likelihood surface (which shows enhanced likeli-
hood along the whole length of the axis corresponding
to BFT) and the elliptical area of 95% CI for QTL
position (which does not contain the diagonal with
equal position estimates for BFT and IMF) indicate
that the QTL affecting IMF has no effect on BFT.
Summarizing, three out of four QTLs indicated by the
univariate analyses appear to be false positives.Results
based on a multivariate model show that the QTL
located on SSC6 in the region marked by SW1355 and
SW1823 only affects IMF. The observed discrepancy
between the univariate fixed-effectsmodel ofGrindflek
et al. (2001) and multivariate mixed-inheritance model
QTL mapping shows that precorrection of parental
effects applied by Grindflek et al. (2001) to the data
before using univariate models fails to remove the
polygenic background of the trait variation properly.
Reanalyses of these data by the univariate approach
without precorrection of the data confirms that a QTL
effect is only apparent for IMF (results not shown).

A single-trait mixed-inheritance model very similar
to the model of Szyda et al. (2000), which we now
extend to the multivariate case, was recently presented
by Nagamine & Haley (2001). Although the two
models are almost identical in parameterization, they
differ considerably in estimation and hypothesis test-
ing. The estimation procedure used by Nagamine &
Haley (2001) is based on the assumption that the
polygenic (co)variance is independent of the QTL
position tested and thus uses the same estimates
throughout the whole chromosome. The convergence
of these estimates is then achieved by iterations over
the whole chromosome. Here, a standard approach
is used in which all the parameters are estimated sim-
ultaneously at each putative QTL location along
the chromosome. Pérez-Enciso & Varona (2000)
take an intermediate way by modelling (co)variances
conditionally on the available marker information (i.e.
separately for each chromosome segment). Hypothesis
testing is based on theF statistics inNagamine&Haley
(2001) and on l (the likelihood-ratio test) here. The
advantage of using the F test is that the empirical
evaluation of the numerical constant of REML is not
needed. However, a test involving only one of model
parameters (s2

e) is likely to provide biased results when
ŝ2
e is biased. Thus, using l involving values of REML

based on all the model parameters seems to be more

robust approach to inaccurate or biased estimation.
More research is needed to justify the above con-
siderations.

It is important to stress that our model is a pleio-
tropic QTL model, and so inferences concerning the
presence of linked QTLs are not based on formal
testing and can only be restricted to the regions of
clear significance pattern of differences in fit between
alternative models. Based on a stepwise selection pro-
cedure, Zeng (1994) used additional markers as
cofactors and Hackett et al. (2001) fitted an infini-
tesimal model of all possible QTL locations. Fur-
thermore, Jiang & Zeng (1995) followed by Caliński
et al. (2000) fitted two-QTL models by introducing
recombination parameter between flanking markers
and two (instead of one) putative linked QTL pos-
itions. These approaches are capable of identifying
linked QTLs within multivariate framework but they
lack the polygenic component of genetic variation.
Also the analysis of correlated traits based on principal
components applied to interval mapping by Mangin
et al. (1998) provides much flexibility in terms of hy-
potheses testing. However, as pointed byHackett et al.
(2001), inferences based on principal components
might result in the detection of spurious QTLs.

We thank Friedrich Teuscher for helpful discussions.
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