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ON EXTREME RUINOUS BEHAVIOUR
OF LÉVY INSURANCE RISK PROCESSES
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Abstract

In this short note we show how new fluctuation identities and their associated asymptotics,
given in Vigon (2002), Klüppelberg et al. (2004) and Doney and Kyprianou (2006),
provide the basis for establishing, in an elementary way, asymptotic overshoot and
undershoot distribitions for a general class of Lévy insurance risk processes. The results
bring the earlier conclusions of Asmussen and Klüppelberg (1996) for the Cramér–
Lundberg process into greater generality.
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1. Lévy processes and the structure of insurance claims

Recall that the Cramér–Lundberg model corresponds to a Lévy process

XCL = {XCL
t : t ≥ 0}

with characteristic exponent given by

�CL(θ) = − log
∫

R

eiθx P(XCL
1 ∈ dx) = −icθ + λ

∫
(0,∞)

(1 − eiθx)F (dx),

for θ ∈ R such that limt↑∞XCL
t = ∞. In other words,XCL is a compound Poisson process with

arrival rate λ > 0 and negative jumps, corresponding to claims, having common distribution
function F with finite mean µ, as well as a drift c > 0, corresponding to a steady income due
to premiums, which necessarily satisfies c − λµ > 0. Suppose instead that we work with a
general spectrally negative Lévy process, that is, a Lévy process

XSN = {XSN
t : t ≥ 0}

that drifts to infinity with Lévy measure� satisfying�(0,∞) = 0. Such processes have been
considered recently by Huzak et al. (2004a), (2004b) and Klüppelberg et al. (2004) in the context
of insurance risk models. In this case, the Lévy–Itô decomposition offers an interpretation for
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large-scale insurance companies as follows. The characteristic exponent may be written in the
form

�SN(θ) = − log
∫

R

eiθx P(XSN
1 ∈ dx)

= { 1
2σ

2θ2} +
{
−iθc +

∫
(−∞,−1)

(1 − eiθx)�(dx)

}

+
{∫

(−1,0)
(1 − eiθx + iθx)�(dx)

}
, (1)

for θ ∈ R; necessarily σ 2 ≥ 0 and the Lévy measure,�, satisfies
∫
(−∞,0)(1 ∧ x2)�(dx) < ∞.

The requirement that X drifts to infinity implies that c − ∫
(−∞,−1) |x|�(dx) > 0. Note that

when�(−∞, 0) = ∞ the processXSN enjoys a countably infinite number of jumps over each
finite time horizon. We may understand the third bracket in (1) as a Lévy process representing
a countably infinite number of arbitrarily small claims compensated by a deterministic positive
drift (which may be infinite in the case that

∫
(−1,0) |x|�(dx) = ∞) corresponding to the

accumulation of premiums over an infinite number of contracts. Roughly speaking, the way
in which claims occur is such that, in any arbitrarily small period of time dt , a claim of size
|x| is made independently with probability �(dx) dt + o(dt). The insurance company thus
counterbalances such claims by ensuring that it collects premiums in such a way that, in any dt ,
|x|�(dx) dt of its income is devoted to the compensation of claims of size |x|. We may
understand the second bracket in (1) as coming from large claims which occur occasionally and
are compensated against by a steady income at rate c > 0 as in the Cramér–Lundberg model.
Here ‘large’ is taken to mean claims of size one or more. Finally, we may see the first bracket
in (1) as a stochastic pertubation of the system of claims and premium income.

Since the first and third brackets in (1) correspond to martingales, the company may guarantee
that its revenues drift to infinity over an infinite time horizon by assuming that the latter behaviour
applies to the compensated process of large claims corresponding to the second bracket in (1).

2. Extreme ruinous behaviour

In this short note our objective is to show that, thanks to the recent results of Vigon (2002),
Klüppelberg et al. (2004), and Doney and Kyprianou (2006), conclusions to be found in
Asmussen and Klüppelberg (1996) concerning the extreme ruinous behaviour under assump-
tions of subexponentiality in the jump distribution of the classic Cramér–Lundberg model can
be extended effortlessly to the case of a general spectrally negative process. In the usual way we
turn the problem around and consider the first passage of the dual process above a fixed barrier.
In that case we deal with the process X = {Xt : t ≥ 0} such that, under P, X has the same law
as −XSN. Note in particular that now limt↑∞Xt = −∞ and, hence, from the discussion in
Section 1 we necessarily have −∞ < E(X1) < 0. We shall denote the Lévy measure of X by
�X.

Recall that a distribution function F supported on [0,∞) is subexponential if F(x) :=
1 − F(x) > 0 for each x ≥ 0 and, furthermore, the tail of the two-fold convolution satisfies

lim
x↑∞

F ∗2(x)

F (x)
= 2.

The definition of subexponentiality can be extended to any measure with positive support
which is finite on (x0,∞) for some x0 ≥ 0 (for example a Lévy measure) by normalizing it to
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a probability measure. There is a very broad literature concerning subexponential distributions
and their applications. We refer to Embrechts et al. (1997, Chapter 1 and Appendix A3) or
Goldie and Klüppelberg (1998) for overviews.

A classic result due to Embrechts et al. (1979) shows that if F is an infinitely divisible
distribution on [0,∞), then F is subexponential if and only if �F is subexponential, where
�F is the Lévy measure appearing in the Lévy–Khinchin decomposition associated with F .
Furthermore, in that case, �F (x) ∼ F(x) as x ↑ ∞.

In our two main results below the conditions onX shall be sufficient to deduce that the Lévy
measure of the ascending ladder process,�H , belongs to the subexponential class. In that case,
Lemma 3.5 of Klüppelberg et al. (2004) shows that the probability of ruin has the asymptotic
behaviour

lim
x↑∞

P(σ+
x < ∞)

�H (x)
= 1

| E(X1)| , (2)

where σ+
x = inf{t > 0 : Xt > x} and �H(x) = �H(x,∞).

2.1. Regularly varying tails

Let R(α) be the class of functions which are regularly varying with index α. That is, we say
that f ∈ R(α) if f is a measurable and positive function on (0,∞) and, for all λ > 0,

lim
x↑∞

f (xλ)

f (x)
= λα

(cf. Embrechts et al. (1997, Appendix A3)).

Theorem 1. Suppose that X is any spectrally positive Lévy process which drifts to −∞, and
suppose that �X(·) ∈ R(−α−1) for some α ∈ (0,∞). Then the following asymptotic bivariate
law holds as x → ∞: (−Xσ+

x −
a(x)

,
Xσ+

x
− x

a(x)

)
→ (Vα, Tα) (3)

in P(· | σ+
x < ∞)-distribution in R × R+, where a(x) = x/α and the pair (Vα, Tα) are

dependent Pareto random variables satisfying

P(Vα > x, Tα > y) =
(

1 + x + y

α

)−α
, x, y > 0.

Proof. Let U(dx) be the potential measure of the ascending ladder height process
{Ht : t ≥ 0}, where Ht = X

L−1
t

for t < L∞ and {Lt : t ≥ 0} is the Markov local time spent
at zero of the process {sups≤t Xs − Xt : t ≥ 0}. Hence, U(dx) = E(

∫ ∞
0 1{Ht∈ dx} dt), where

1{·} is the indicator function. We write U(x) = U([0, x]). Then it is also known that U(x)
is the continuous function identifiable by its Laplace transform

∫ ∞
0 e−βxU(x) dx = 1/ψ(β)

for β > 0, where ψ(β) = log E(e−βX1). It is also known (cf. Klüppelberg et al. (2004,
Remark 4.3)) that U(∞) = 1/| E(X1)|.

As a special case of the quintuple law given in Theorem 3 of Doney and Kyprianou (2006),
we may now write, for u∗, v∗ > 0,

P(Xσ+
x

− x > u∗, x −Xσ+
x − > v∗) =

∫ x

0
U(x − dy)

∫
[v∗∨y,∞)

dz
∫

[u∗,∞)

�X(du+ z).
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Consequently, setting v∗ = x + a(x)v and u∗ = a(x)u and taking into account the relation
between �H and �X established by Vigon (2002), namely

�H(u) =
∫ ∞

u

�X(z) dz, u > 0, (4)

we have

P

(
Xσ+

x
− x

a(x)
> u,

−Xσ+
x −

a(x)
> v

)
= U(x)�H (x + a(x)(v + u)).

The assumption that�X(·) ∈ R(−1−α) and the relation (4) imply (by Karamata’s theorem; see
Embrechts et al. (1997, Section A3)) that the integrated tail �H(x) is in R(−α). In particular,
this means that �H belongs to the subexponential class. We now have

lim
x↑∞ P

(
Xσ+

x
− x

a(x)
> u,

−Xσ+
x −

a(x)
> v

∣∣∣∣ σ+
x < ∞

)

= lim
x↑∞ | E(X1)|U(x)�H (x + a(x)(v + u))

�H (x)
(5)

=
(

1 + v + u

α

)−α
,

where we have appealed to (2) and regular variation in the first equality and second equality,
respectively. This is consistent with the statement of the theorem.

2.2. Maximum domain of attraction of the Gumbel distribution

Recall that a distribution function F is in the maximal domain of attraction of the Gumbel
distribution if and only if there exists a positive differentiable function a(·) satisfying a′(x) → 0
such that

lim
x↑∞

F(x + a(x)u)

F (x)
= e−u,

for all u > 0 (see, e.g. Embrechts et al. (1997, Theorems 3.3.26 and 3.3.27)). A possible choice
of a is

a(x) =
∫ ∞

x

F (z)

F (x)
dz,

where a is unique only up to asymptotic equivalence. Recall that for F infinitely divisible with
Lévy measure �F we know that F(x) ∼ �F (x) as x ↑ ∞. As any maximum domain of
attraction is closed with respect to tail equivalence we may also say that �F is in the maximal
domain of attraction of a Gumbel distribution.

Theorem 2. Suppose that X is any spectrally positive Lévy process which drifts to −∞, and
suppose that �X is in the maximum domain of attraction of the Gumbel distribution. Then the
asymptotic bivariate law (3) holds as x → ∞, where a(x) ∼ ∫ ∞

x
�X(z) dz/�X(x) as x → ∞

and the pair (Vα, Tα) are dependent exponential random variables satisfying

P(Vα > x, Tα > y) = e−(x+y), x, y > 0.

Proof. Following the previous proof, we pick up at (5). The assumption on�X implies that
a′(x) → 0 as x → ∞ and

�X(x + a(x)(v + u))

�X(x)
→ e−(v+u), x → ∞.
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The proof is complete once it is shown that a similar relation holds for�H(x) = ∫ ∞
x
�X(y) dy.

To show that this is indeed the case, we use l’Hôpital’s rule:

lim
x→∞

�H(x + a(x)(v + u))

�H (x)
= lim
x→∞

�X(x + a(x)(v + u))(1 + a′(x))
�X(x)

= e−(v+u)

as a′(x) → 0.

3. Concluding remark

Note that further results follow from the limiting bivariate law in Asmussen and Klüppelberg
(1996) (for example their Corollary 1.5), which, given the conclusions of Theorems 1 and 2,
have direct analogues within the current context, with identical proofs.
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