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On Surfaces in Three Dimensional Contact
Manifolds

Paul W. Y. Lee

Abstract. In this paper, we introduce two quantities defined on a surface in a contact manifold. The
first one is called degree of transversality (DOT), which measures the transversality between the tan-
gent spaces of a surface and the contact planes. The second quantity, called curvature of transver-
sality (COT), is designed to give a comparison principle for DOT along characteristic curves under
bounds on COT. In particular, this gives estimates on lengths of characteristic curves, assuming COT
is bounded below by a positive constant.

We show that surfaces with constant COT exist, and we classify all graphs in the Heisenberg group
with vanishing COT. This is accomplished by showing that the equation for graphs with zero COT can
be decomposed into two first order PDEs, one of which is the backward invisicid Burgers’ equation.
Finally we show that the p-minimal graph equation in the Heisenberg group also has such a decompo-
sition. Moreover, we can use this decomposition to write down an explicit formula of a solution near
a regular point.

1 Introduction

Motivated by isoperimetric problems in three-dimensional contact manifolds or
pseudo-hermitian geometry, surfaces in these manifolds have received increasing at-
tention in recent years (e.g., [5–7,10,13]). These surfaces are foliated by curves called
characteristic curves, which play a very important role in the understanding of sub-
manifold geometry in these spaces. Recall that the tangent spaces of a surface inter-
sect transversely with the three dimensional contact planes at generic points. This
defines a line field on the surface, and the leaves of the corresponding foliation are
the characteristic curves. In this paper, we study these curves from the point of view
of comparison geometry. We introduce two quantities that are closely related to these
characteristic curves. The first quantity is called degree of transversality (DOT), and
measures how transverse the intersections are between the tangent spaces of the sur-
face and the contact planes. In particular, DOT is infinite at a point if the tangent
plane coincides with the contact plane there. Such a point is called singular.

It was pointed out by the referee that DOT should be closely related to the imag-
inary curvature introduced by [3, 4]. In fact, in Proposition 2.1 we show that DOT
and the imaginary curvature coincide up to a sign. Imaginary curvature is a quan-
tity defined on a surface in the simplest subriemannian manifold, the Heisenberg
group. It was used in [3] to study the subriemannian analogue of focal points of a
surface and in [4] to study the horizontal Hessian of the subriemannian distance in
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the Heisenberg group. In [2], motivated by the earlier work [1], a version of subrie-
mannian Hessian was introduced. One can generalize the above-mentioned results
to all three dimensional Sasakian manifolds using DOT, and this will be reported in
a forthcoming work.

Next, we introduce the second quantity, called curvature of transversality (COT),
which gives a comparison principle for DOT along characteristic curves. This com-
parison principle is similar to the one for Ricci curvature, which compares Jacobi
fields along geodesics. In particular, we show that characteristic curves must hit two
singular points if COT is bounded below by a positive constant and they hit at most
one singular point if COT is bounded above by a negative constant. All these are
accomplished in Section 2.

The next natural question is whether there are surfaces with constant COT. In
Section 3, we show that the answer to this question is positive. The main result of
this paper is the classification of graphs in the Heisenberg group with vanishing COT.
This is done in Section 4.

The second order PDE (4.2) satisfied by graphs with vanishing COT in the Heisen-
berg group is very similar to the p-minimal graph equation studied in [5, 9, 11, 12].
Recall that a surface is minimal if the mean curvature vanishes everywhere. The
Bernstein theorem says that the graph of a function in R2 is a minimal surface in R3

if and only if the function is linear. In the subriemannian case, there is an analogue of
the mean curvature called p-mean curvature and a surface is p-minimal if p-mean
curvature vanishes. The graph of a function f in R2 is a p-minimal surface in the
Heisenberg group if it satisfies the p-minimal graph equation (5.1). The following
families of global solutions to the p-minimal graph equation were found in [12]:

(1.1)
f (x, y) = ax + by + c,

f (x, y) = −abx2 + (a2 − b2)xy + aby2 + g(−bx + ay),

where a, b, c are constants and g : R → R is any C2 function.
The subriemannian version of Bernstein’s theorem proved by [5, 9] says that any

C2 solution of the p-minimal graph equation is given by (1.1).
In this paper, we show that the PDE (4.2) satisfied by graphs with vanishing COT

in the Heisenberg group and the p-minimal graph equation (5.1) can be split into two
first order PDE; one of them is the inviscid Burgers’ equation. By using the method of
characteristics, we obtain an explicit formula for any local solution to the equations
near a regular point. Using this local solution of the p-minimal graph equation, we
recover the global solutions (1.1) in a simple way. All of these will be accomplished
in the last two sections of the paper.

2 Submanifolds in Contact Geometry

In this section, we recall and introduce several notions regarding submanifolds in
contact geometry that are needed in this paper. Let us start with some basic notions
in contact geometry. Recall that a three dimensional manifold M is contact if there
is a 1-form α0, called a contact form, such that dα0 is non-degenerate (i.e., the map
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v 7→ dα0(v, · ) is a bijection). The kernel of the contact form α0 defines a distribution
∆ (a vector subbundle of the tangent bundle). Note that if α0 is a contact form, then
so is fα0 where f is a nonzero function on M. If we fix a smoothly varying inner
product 〈 · , · 〉, called a subriemannian metric, on the distribution ∆, then there is
a unique contact form α0 such that the restriction of the non-degenerate form dα0

to the distribution ∆ coincides with the volume form induced by the subrieman-
nian metric (i.e., dα0(v1, v2) = 1, where {v1, v2} is orthonormal with respect to the
subriemannian metric). We also define a vector field v0, called the Reeb field, by the
conditions α0(v0) = 1 and dα0(v0, · ) = 0.

Let N be a submanifold. A point x on N is regular if TxN and ∆x intersect trans-
versely. Otherwise it is called singular. For each regular point x on the submanifold
N, we can pick an adapted frame {v1, v2} around x. This is a pair of vector fields
v1 and v2 of the ambient manifold M that satisfy three conditions. First, they form
an orthonormal basis of the distribution ∆ with respect to the given subriemannian
metric. Second, the first vector field v1 is contained in the line field TN ∩∆. Third,
they are oriented by the condition dα0(v1, v2) = 1. Note that if v1, v2 is such a frame,
then −v1,−v2 is the only other choice. The integral curves of v1 are tangent to the
line field TN ∩∆, and they are called characteristic curves.

Next, we introduce the degree of transversality (DOT) mentioned in the introduc-
tion. For this, let us fix a characteristic curve γ. For each point x on the characteristic
curve, we fix an adapted frame v1, v2. Since x is a regular point, v2 is not contained in
the tangent bundle TN of the submanifold N. Therefore, there is a function a such
that v0 − av2 is contained in TN. We call the function a defined along the charac-
teristic curve the degree of transversality (DOT). Note that a approaches ±∞ as the
points on the characteristic curve approaches a singular point. Note also that DOT
depends only on the orientation of the characteristic curve. If we pick the opposite
orientation, then−v1,−v2 is another adapted frame, and DOT is given by−a in this
case. In particular, |a| is well defined on the set of all regular points.

Next, we give a simple expression for |a|.

Proposition 2.1 Assume that N is given by a level of a smooth function g and let
∇Hg be the horizontal gradient defined by∇Hg = (v1g)v1 + (v2g)v2. Then |a| satisfies
|a| = |v0g|/|∇Hg|.

Proof By the assumptions, both v1 and v0− av2 are contained in the tangent bundle
TN. Therefore, v1g = v0g − av2g = 0. Hence, |a| = |v0g|/|v2g| = |v0g|/|∇Hg|.

In the Heisenberg group, the quantity v0g/|∇Hg| is the imaginary curvature in-
troduced in [3, 4]. Proposition 2.1 shows a close relation between this and DOT.

The curvature of transversality (COT) is defined by r = v1a − a2. Note that COT
is defined on the set of all regular points of N, not just along a characteristic curve.

By design, if γ( · ) is a characteristic curve, then the following equation holds:

d

dt
a(γ(t)) = a(γ(t))2 + r(γ(t)).

Therefore, DOT and COT satisfy the following comparison principle.
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Proposition 2.2 Let γ be a characteristic curve of v1. Assume that r(γ(t)) ≤ k(t)
(resp. ≥,<,>) and let c(t) be the solution of ċ(t) = c(t)2 + k2(t) with c(0) = a(γ(0)).
Then

a(γ(t)) ≤ c(t) (resp. ≥, <, >) for all t ≥ 0,

and
a(γ(t)) ≥ c(t) (resp. ≤, >, <) for all t ≥ 0.

Proof The difference d(t) := a(γ(t))− c(t) satisfies

ḋ = ȧ− ċ

≤ a(γ)2 − c2 (resp. ≥, <, >)

= (a(γ) + c) d.

Therefore, by Gronwall’s inequality, a(γ(t)) ≤ c(t) (resp. ≥, <, >) for all t ≥ 0.
Similar arguments show that a(γ(t)) ≥ c(t) (resp.≤, >, <) if t < 0.

When COT is constant, DOT can be computed explicitly (see section 3 for exam-
ples of surfaces with constant COT). If we combine this with Proposition 2.2, then
we obtain the following.

Proposition 2.3 Let γ be a characteristic curve tangent to the vector field v1. Assume
that r(γ(t)) ≤ k (resp.≥, <, >) for some constant k. Then the following holds:

a(t) ≤ (resp. ≥, <, >)



√
k(cos(t

√
k)a(γ(0))+

√
k sin(t

√
k))

− sin(t
√

k)a(γ(0))+
√

k cos(t
√

k)
if k > 0,

a(γ(0))
1−a(γ(0))t if k = 0,
√
−k(cosh(t

√
−k)a(γ(0))−

√
−k sinh(t

√
−k))

− sinh(t
√
−k)a(γ(0))+

√
−k cosh(t

√
−k)

if k < 0.

As a consequence, we have the following results on the singular set.

Corollary 2.4 Let γ be a characteristic curve of v1.

• If r(γ(t)) ≤ k ≤ 0 for all time t and |a(γ(0))| ≤
√
−k, then there is no singular

point along γ.
• If r(γ(t)) ≤ k ≤ 0 for all time t and |a(γ(0))| >

√
−k, then there is at most one

singular point along γ.

Let t−∞ < 0 and t∞ > 0 be the time such that γ(t−∞) and γ(t∞) are singular
points.

• If r(γ(t)) ≥ k ≥ 0 for all time t ≥ 0, then

t∞ ≤


1√

k
cot−1

(
a(γ(0))√

k

)
if k > 0,

1√
−k

coth−1(a(γ(0))
√
−k) if k < 0,a(γ(0)) >

√
−k,

1
a(γ(0)) if k = 0, a(γ(0)) > 0.

Moreover, equality holds only if r(γ(t)) = k for all t ≥ 0.
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• If r(γ(t)) ≥ k for all time t ≤ 0, then

t−∞ ≤


− π√

k
+ 1√

k
cot−1

(
a(γ(0))√

k

)
if k > 0,

1√
−k

coth−1(a(γ(0))
√
−k) if k < 0, a(γ(0)) < −

√
−k,

1
a(γ(0)) if k = 0, a(γ(0)) < 0.

Moreover, equality holds only if r(γ(t)) = k for all t ≤ 0.
• If r(γ(t)) ≥ k > 0 for all time t, then there are two singular points along γ and the

length of the characteristic curve γ is at most π/
√

k. Moreover, equality holds only if
r(γ(t)) = k for all t.

• In particular, if r ≥ k > 0 on the submanifold N and the singular set is bounded,
then N is compact.

3 Examples of Submanifolds with Constant COT

In this section, we show that surfaces with constant COT exist. Let us first give
another characterization of COT. Let N be a given submanifold of a three dimen-
sional contact manifold. Let v1, v2 be an adapted frame and v0 be the Reeb field. Let
ak

i j : N → R be the structure constants defined by

(3.1) [vi , v j] =

2∑
k=0

ak
i jvk,

where i, j = 0, 1, 2.

Proposition 3.1 Under the notations introduced above, COT is given by

r = −a2
01 − aa2

12.

Proof We consider the dual version of (3.1),

dαk = −
∑

0≤i< j≤2

ak
i jαi ∧ α j .

By the definition of adapted frame, we have−a0
12 = dα0(v1, v2) = 1. Therefore,

dα0 = α1 ∧ α2 − a0
01α0 ∧ α1 − a0

02α0 ∧ α2.

By the definition of the Reeb field v0, we also have dα0(v0, · ) = 0 and so a0
01 =

a0
02 = 0.

The two vector fields v1 and v0−av2 are tangent to the submanifold N. Therefore,
the bracket

[v1, v0 − av2]

= −a1
01v1 − a2

01v2 − (v1a)v2 − a(−v0 + a1
12v1 + a2

12v2)

= −(a1
01 + aa1

12)v1 + a(v0 − av2) + (a2 − a2
01 − (v1a)− aa2

12)v2
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is also tangent to N. Hence, [v1, v0 − av2] is a linear combination of v1 and v0 − av2,
and the following holds on N:

r = v1a− a2 = −a2
01 − aa2

12.

Using Proposition 3.1, it is not hard to construct examples with constant COT.
Recall that SU (2), the special unitary group, consists of 2× 2 matrices with complex
coefficients and determinant 1. The Lie algebra su(2) consists of skew Hermitian
matrices with trace zero. The following two elements in su(2)

v1 =

(
0 1/2
−1/2 0

)
, v2 =

(
0 i/2

i/2 0

)
define a subriemannian structure on SU (2). The distribution is given by the span of
the two left-invariant vector fields corresponding to v1 and v2. The subriemannian
metric is the one which satisfies 〈vi , v j〉 = δi j , i = 1, 2. The Reeb field v0, in this case,
is given by

v0 =

(
−i/2 0

0 i/2

)
.

Let N be a surface that is foliated by the integral curves of the left invariant vector
field defined by v1. Then v1, v2 is an adapted frame, and we have a2

12 = 0 and a2
01 =

−1. Therefore, by Proposition 3.1, r ≡ 1 on N.
A specific example is given by the image of the following map:

(θ1, θ2) 7→
(

cos(θ1/2) sin(θ1/2)
− sin(θ1/2) cos(θ1/2)

)(
cos(θ2/2) i sin(θ2/2)
i sin(θ2/2) cos(θ2/2)

)
.

By rescaling the subriemannian structure, we can obtain examples with any positive
constant COT.

For surfaces with constant negative COT, we consider the special linear group
SL(2), the set of all 2 × 2 matrices with real coefficients and determinant 1. The
Lie algebra sl(2) is the set of all 2× 2 real matrices with trace zero. The left invariant
vector fields of the following two elements in sl(2)

v1 =

(
1/2 0

0 −1/2

)
, v2 =

(
0 1/2

1/2 0

)
span a distribution ∆ on SL(2). The subriemannian metric on SL(2) is defined by
〈vi , v j〉 = δi j , i = 1, 2. The Reeb field in this case is v0, where

v0 =

(
0 −1/2

1/2 0

)
.

Similar to the case in SU (2), surfaces N foliated by integral curves of v1 will have
constant COT. Since a2

12 = 0 and a2
01 = 1, N will have COT equal to−1.

For surfaces with constant zero COT, see Section 4.
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4 Graphs with Vanishing COT in the Heisenberg Group

In this section, we consider graphs over the xy-plane in the Heisenberg group. Recall
that the Heisenberg group is a subriemannian manifold on R3 with distribution ∆
spanned by two vector fields u1 = ∂x− 1

2 y∂z and u2 = ∂y + 1
2 x∂z. The subriemannian

metric is defined by declaring that u1 and u2 are orthonormal.
Let f : U → R be a function defined on a domain U and let N be the graph of f

(4.1) N =
{

(x, y, f (x, y)) ∈ R3|x, y ∈ R
}
.

In this case, the Reeb field v0 is−∂z, and we can choose the adapted frame by

v1 =
(x − 2 fy)∂x + (y + 2 fx)∂y + (x fx + y fy)∂z√

(x − 2 fy)2 + (y + 2 fx)2

and

v2 =
(−y − 2 fx)∂x + (x − 2 fy)∂y + 1

2 (y2 + 2y fx + x2 − 2x fy)∂z√
(x − 2 fy)2 + (y + 2 fx)2

.

A computation using the definition of DOT and COT shows that

a = − 2√
(x − 2 fy)2 + (y + 2 fx)2

and

r =
4(x − 2 fy)(y + 2 fx)( fy y − fxx) + 2(1− 2 fxy)(y + 2 fx)2

((x − 2 fy)2 + (y + 2 fx)2)2

+
2(x − 2 fy)2(1 + 2 fxy)

((x − 2 fy)2 + (y + 2 fx)2)2
.

In this section, we consider the following equation, satisfied by graphs with zero
COT in the Heisenberg group:

(4.2) 2(x−2 fy)(y +2 fx)( fy y− fxx)+(1−2 fxy)(y +2 fx)2 +(x−2 fy)2(1+2 fxy) = 0.

A point (x0, y0) is regular if and only if DOT is finite. So either x − 2 fy 6= 0 or
y + 2 fx 6= 0. A computation shows the following proposition.

Proposition 4.1 Let U be an open set where x − 2 fy 6= 0 (resp. y + 2 fx 6= 0). Let f
be a C2 solution of equation (4.2) on U . Then

g(x, y) =
y + 2 fx

x − 2 fy

(
resp. h(x, y) =

x − 2 fy

y + 2 fx

)
is a solution of the backward inviscid Burgers’ equation

(4.3) gy = ggx

(
resp. hx = hhy

)
.
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Proposition 4.1 shows that the equation (4.2) splits (near a regular point) into two
first order PDEs, one of which is the backward inviscid Burgers’ equation. Therefore,
all solutions of (4.2) can be found near a regular point by first solving (4.3) by the
method of characteristics (see, for instance, [8]), then substituting the resulting so-
lution g (resp. h) into

y + 2 fx = (x − 2 fy)g (resp. x − 2 fy = (y + 2 fx)h)

and applying the method of characteristics again to obtain a solution f of (4.2). Next
we apply this observation to the proof of the main result. First, we have the following
result on the singular set of any solution of (4.2). From now on, we denote a singular
point (x0, y0, f (x0, y0)) on the graph N simply by (x0, y0).

Proposition 4.2 Let f be a (local) C2 solution of (4.2) and let N be the graph defined
by (4.1). Then, for each singular point (x0, y0) on N, there is a neighborhood around
(x0, y0) on which the singular set is given by a C1 curve. Moreover, this C1 curve is
defined either by the equation x − 2 fy = 0 or y + 2 fx = 0. In particular, there is no
isolated singular point on N.

Proof First, note that ∂x(x− 2 fy) = 1− 2 fxy and ∂y(y + 2 fx) = 1 + 2 fxy . Therefore,
either x−2 fy = 0 or y +2 fx = 0 is a C1 curve in a neighborhood of (x0, y0). Without
loss of generality, we assume that 1− 2 fxy 6= 0 in a neighborhood of (x0, y0) and we
let Γ be the C1 curve defined by x − 2 fy = 0. The singular set is contained in Γ and
a point in Γ is a singular if and only if y + 2 fx = 0 at that point.

Let (xi , yi) be a sequence of regular points on Γ that converges to (x0, y0) as i goes
to∞. By (4.2), we have(

1− 2 fxy(xi , yi)
)(

yi + 2 fx(xi , yi)
) 2

= 0.

Since yi + 2 fx(xi , yi) 6= 0, we must have 1 − 2 fxy(xi , yi) = 0 for all i. If we let i
goes to∞, then we obtain 1− 2 fxy(x0, y0) = 0, which is a contradiction. Therefore,
there must be a neighborhood of the point (x0, y0) in Γ that consists only of singular
points.

Next, we show that the domain of the function f is foliated by lines where the
functions g and h are constant.

Theorem 4.3 Let f be a C2 (local) solution to the equation (4.2) and let g (resp. h)
be as in Proposition 4.1. Then the domain of f is foliated by lines and the function g
(resp. h) is constant or infinite along these lines. If a point (a, b) satisfies a− fy(a, b) 6= 0
(resp. b + fx(a, b) 6= 0), then the line that passes through the point (a, b) is given by

x = −g(a, b)(y − b) + a (resp. y = −h(a, b)(x − a) + b).

Proof We only prove the statement for g. The proof for h, being very similar, will be
omitted. On the set where x − fy(x, y) 6= 0, we can define a curve γ( · ) by γ̇(t) =
(−g(γ(t)), 1) and γ(0) = (a, b). Since

d

dt
g
(
γ(t)

)
= −gxg + gy = 0,
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it follows that the curve γ is a straight line given by

γ(t) =
(
−g(a, b) t + a, t + b

)
and g is constant along γ.

On the set of regular points where x− fy(x, y) = 0, g is infinite and h is zero. The
same argument as above shows that this set is foliated by horizontal lines. On these
lines, h vanishes and, therefore, g is infinite. Therefore, it remains to consider what
happens around a singular point.

Let (x0, y0) be a singular point. We follow the notations in the proof of Proposi-
tion 4.2 and assume, without loss of generality, that 1− 2 fxy 6= 0 in a neighborhood
U of (x0, y0). We let Γ be the C1 curve defined by x − 2 fy = 0. Let (xi , yi) be a
sequence of point outside Γ that converges to (x0, y0). By (4.2), we must have

g2 +
2( fy y − fxx)g

1− 2 fxy
+

1 + 2 fxy

1− 2 fxy
= 0

along (xi , yi).
If we let i go to∞, then we see that g(xi , yi) can converge to at most two finite

values. On the other hand, we have x0−2 fy(x0, y0) = 0 = y0 + 2 fx(x0, y0). It follows
that

f (x, y) = f (x0, y0)− y0

2
(x − x0) +

x0

2
(y − y0)

+ a1(x − x0)2 + a2(x − x0)(y − y0)

+ a3(y − y0)2 + o
(
|x − x0|2 + |y − y0|2

)
.

(4.4)

If we substitute (4.4) into the definition of g, we obtain

g(x, y) =
4a1(x − x0) + (1 + 2a2)(y − y0) + o(

√
(x − x0)2 + (y − y0)2)

(1− 2a2)(x − x0)− 4a3(y − y0) + o(
√

(x − x0)2 + (y − y0)2)
.

Let m2(y − y0) = m1(x − x0). Then the above equation of g becomes

4a1m2 + (1 + 2a2)m1 + o(1)

(1− 2a2)m2 − 4a3m1 + o(1)
.

It follows that g approaches the same value along any line (since otherwise it will
approach infinitely many values). This gives an extension of g to the whole neighbor-
hood U , and we denote this extension again by g.

By the earlier discussion, the vector field (x, y) 7→ (−g(x, y), 1) is C1 outside the
set Γ, and the integral curves are straight lines. Let us denote the line

(4.5) x = −g(a, b)(y − b) + a

corresponding to the point (a, b) by l(a,b) (Note that l(a,b) still make sense even if (a, b)
is singular). First, let us assume that l(x0,y0) intersects Γ transversely and show that g
is constant on l(x0,y0).
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By the discussion above, it is enough to show that g is constant in a neighborhood
of (x0, y0) inside the line l(x0,y0). Suppose this is not true. Then we can find a sequence
of points (xi , yi) on l(x0,y0) converging to (x0, y0) such that g(xi , yi) 6= g(x0, y0) for
all i. Let us fix j and consider the line l(x j ,y j ). Since l(x0,y0) and l(x j ,y j ) intersect trans-
versely, l(xi ,yi ) and l(x j ,y j ) intersect transversely as well for i large enough. Moreover, we
can assume that the intersections are close to (x j , y j), and so they are contained in U .
By choosing j large enough, we can also assume that the line segment between these
intersections and the points (xi , yi) consist only of regular points. But then, by the
method of characteristics discussed above, g(x j , y j) = g(xi , yi) for all i large enough,
which is a contradiction. It follows that g is constant along l(x0,y0) if it intersects Γ
transversely.

Next, we assume that l(x0,y0) intersects Γ tangentially and there is a sequence of
points (xi , yi) on l(x0,y0) such that the lines l(xi ,yi ) either intersect Γ transversely or do
not intersect it at all for all i. The previous claim shows that g is constant along each
line l(xi ,yi ). Therefore, by using the previous argument, we also see that g is constant
along l(x0,y0) as well in this case.

Finally, it remains to consider the case where l(x,y) is tangent to Γ for all points
(x, y) in a neighborhood of (x0, y0) inside Γ. By the proof of Proposition 4.2, Γ can
be parametrized by the C1 path t 7→ (ϕ(t), t). It follows that ϕ̇(t) = −g(ϕ(t), t). A
computation shows that d

dt g(ϕ(t), t) = 0. Therefore, Γ is everywhere tangent to lines
of the same slope. Therefore, Γ is a straight line and g is constant along Γ.

We call a C2 solution f of equation (4.2) entire if f is defined everywhere on the
xy-plane. As a consequence of the above theorem, the functions g and h are constant
functions if f is entire.

Corollary 4.4 Let f be an entire solution of the equation (4.2). Then the functions g
and h defined in Proposition 4.1 are constants.

Proof If g is different at two points, then the lines corresponding to these two points
given by (4.5) have different slopes. Hence they must intersect. But this contradicts
Theorem 4.3.

Finally we prove the classification result mentioned in the introduction.

Theorem 4.5 Let f be an entire solution of the equation (4.2). Then there are con-
stants c1, c2, and a function F such that the solution f is given locally in a neighborhood
of a regular point by the formula

f (x, y) =

{
c1x2

2c2
− 1

2 xy + F
(
c1x − c2 y

)
if c2 6= 0

1
2 xy + F(x) if c2 = 0.

Proof of Theorem 4.5 It follows from Corollary 4.4 that

c1

(
x − 2 fy(x, y)

)
= c2

(
y + 2 fx(x, y)

)
,

where (c1, c2) 6= (0, 0) is a pair of constants.
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By using the method of characteristics (see [8]), we obtain

f (x, y) =

{
c1x2

2c2
− 1

2 xy + F
(
c1x − c2 y

)
if c2 6= 0,

1
2 xy + F(x) if c2 = 0,

for some function F.

5 On the p-minimal Graph Equation

In this section, we show that the p-minimal graph equation also splits into two first
order PDEs. Moreover, a formula of the solution near a regular point can be written
down explicitly.

Recall that the p-minimal graph equation is given by

(5.1) (x − 2 fy)2 fxx + 2(x − 2 fy)(y + 2 fx) fxy + (y + 2 fx)2 fy y = 0.

Note that the equation above coincides with that in [5] if we set u = −2 f .
A computation gives the following proposition.

Proposition 5.1 Let U be an open set where x − 2 fy 6= 0 (resp. y + 2 fx 6= 0). Let f
be a C2 solution of equation (5.1) on U . Then

g(x, y) =
y + 2 fx

x − 2 fy

(
resp. h(x, y) =

x − 2 fy

y + 2 fx

)
is a solution of the inviscid Burgers’ equation

gx = −ggy (resp. hy = −hhx).

Next, we give a formula for the local solution of (5.1) near a regular point (x0, y0).
Only the case x0 − 2 fy(x0, y0) 6= 0 will be considered. The case y0 + 2 fx(x0, y0) 6= 0,
being very similar, will be omitted.

Theorem 5.2 Let f be a C2 solution of (5.1). Assume that x0−2 fy(x0, y0) 6= 0. Then
the following holds in a neighborhood of (x0, y0):

f (x, y) =
1

2

(
− ỹ(x, y) + x0F

(
ỹ(x, y)

))
(x − x0) + G

(
ỹ(x, y)

)
y = (x − x0)F

(
ỹ(x, y)

)
+ ỹ(x, y)

for some C2 functions F,G : R → R.

Before giving the proof of the theorem, let us recover the global solution (1.1)
from the above formulas for f . For simplicity, we assume that x0 = 0. If we let F be
the constant function F ≡ c, then

f (x, y) =
1

2
(−yx + cx2) + G(y − cx),
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which is the same as the second family in (1.1) (with a 6= 0).
If we let F and G be linear functions F(r) = c1r + c0 and G(r) = d1r + d0, then

f (x, y) =
(
−1

2
x + d1

) y − c0x

c1x + 1
+ d0.

If we set d1 = − 1
2c1

, then we obtain f (x, y) = d1 y − dc0x + d0, which is the same as
the first family in (1.1) (with b 6= 0).

Proof Let us fix a regular point (x0, y0) and consider the Hamiltonian system of the
Hamiltonian H1(x, y, z, p, q) = p + zq:

ẋ = 1, ẏ = z, ṗ = −pq, q̇ = −q2, ż(t) = p + zq

with initial conditions x(0) = x0, y(0) = ȳ, p(0) = −F( ȳ)F ′( ȳ), q(0) = F ′( ȳ), and
z(0) = F( ȳ).

The solution is given by

x(t) = t + x0, y(t) = tF( ȳ) + ȳ, p(t) = −F( ȳ)F ′( ȳ)

1 + tF ′( ȳ)
,

q(t) =
F ′( ȳ)

1 + tF ′( ȳ)
, z(t) = F( ȳ).

Therefore, by the method of characteristics, the solution g is given by

g(x, y) = F
(

ȳ(x, y)
)
, y = (x − x0)F

(
ȳ(x, y)

)
+ ȳ(x, y).

Let H2(x, y, z, p, q) = 1
2 (y+2p)− 1

2 g(x, y)(x−2q) and consider the corresponding
Hamiltonian system

ẋ = 1, ẏ = g(x, y), ṗ =
1

2

(
gx(x, y)(x − 2q) + g(x, y)

)
,

q̇ =
1

2

(
gy(x, y)(x − 2q)− 1

)
, ż = p + qg(x, y)

with initial conditions

x(0) = x0, y(0) = ỹ, q(0) = G ′( ỹ),

p(0) =
1

2

(
− ỹ + g(x0, ỹ)(x0 − 2G ′( ỹ))

)
, and z(0) = G( ỹ).

A computation shows that g(x(t), y(t)) is independent of t . Therefore,

x(t) = t + x0, y(t) = tg(x0, ỹ) + ỹ = tF( ỹ) + ỹ.

Moreover, we have

z̈ =
d

dt

(
p +

1

2
qg(x, y)

)
= 0.
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Since

ż(0) = p(0) + q(0)g(x(0), y(0)) =
1

2

(
− ỹ + x0F( ỹ)

)
,

we also have

z(t) =
1

2

(
− ỹ + x0F( ỹ)

)
t + G( ỹ).

Therefore, the solution f is given by

f (x, y) =
1

2

(
− ỹ(x, y) + x0F

(
ỹ(x, y)

))
(x − x0) + G

(
ỹ(x, y)

)
y = (x − x0)F

(
ỹ(x, y)

)
+ ỹ(x, y).
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