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ON THE UNIQUENESS OF THE COEFFICIENT RING 
IN A GROUP RING 

ISABELLE ADJAERO AND EUGENE SPIEGEL 

1. Introduction and notation. Let R\ and R2 be commutative rings with 
identities, G a group and R\G and R2G the group ring of G over R\ and R2 

respectively. The problem that motivates this work is to determine what 
relations exist between R\ and R2 if R\G and R2G are isomorphic. For 
example, is the coefficient ring R\ an invariant of R\G1 This is not true in 
general as the following example shows. Let H be a group and 

oo 

G = © Ha with Ha ~ H. 
a= 1 

If R\ is a commutative ring with identity and R2 = R\H, then 

RlG ~ R^H © G) ~ R\H(G) ~ R2G, 
but R\ needn't be isomorphic to R2. 

Several authors have investigated the problem when G = < x > , the 
infinite cyclic group, partly because of its closeness to R[x], the ring of 
polynomials over R. An exposition of many of the known results on the 
problem appear as Chapter IV in [13]. Even in this special case the results 
have been fragmentary. By imposing conditions on R\ and on G several 
cases of the problem are treated extending many of the known results. 

In the following we will always assume all coefficient rings are 
commutative with identity. If « G RG with a = 2g<=G «(g)g^ a(g) e ^ 
we write 

supp a = [g G G\ a(g) ¥- 0}, 

the augmentation map RG —» R sending a —> 2 «(g) will be denoted by 8R 

and have kernel A#(G) or 8(G). If H is a normal subgroup of G, and we 
extend the natural map G —» G/H to a map RG —> R(G/H), this new map 
has kernel A/?(G, / / ) . A#(G, / / ) is generated by {l-/z| h e / / } . For the 
group G, Gr denotes its commutator subgroup and 0(G) the set of orders 
of all finite subgroups. The ring R will have Jacobson radical J(R), Nill 
radical N(R), characteristic ch(jR), and units U(R). 
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GROUP RINGS 655 

As usual, Z denotes the integers, Q the rationals, Z„ either the ring of 
integers modulo n or a cyclic group with n elements and f,/ a primitive Dth 

root of unity. 

2. Reduction to abelian groups. 

LEMMA 2.1. (Coleman) Le/ 7 /?<? <3A? /'<fez/ of RG. Then the residue class 
algebra RG/1 is commutative <̂> A(G, G') Q I. 

THEOREM 2.2. Let R\ and R2 be commutative rings with unity and G a 
group. Then 

RXG ^ R2G => R}(G/G') ~ R2{G/G). 

Proof. Let a:R\G —> R2G be the given isomorphism. For / = 1, 2 let 

J} = {/ < RjG: RjG/I is commutative}. 

By Lemma 2.1, A# (G, Gr) is the unique minimal ideal in Jr 

Then 

tf,G _ R2G 

A*,(G, G') ~ a ( A ^ ( C , G')) 

implying 

a(A^,(G, GO ) => A^(G, G'). 

By considering a - 1 , we see 

a(A^(G, GO) = A^(G/G0-

Hence 

R\G RiG 
RX{G/G') ~ - ~ = ~ Ri(G/G'). 

1V } A,(G, GO A2(G, GO 
COROLLARY 2.3. 7/ G is a group with G' = G, then 

R\G — R2G =$ R\ — R2. 

Throughout the following we will assume that all groups are abelian. 

3. Abelian ^-groups. 

Definition. An element a e R is regular if « is not a zero divisor in 7?. 

PROPOSITION 3.1. Let R be a ring of characteristic pe. Then n e Z , /7 w 
ft6>/ regular in R <=> n is a multiple of p. 
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Proof. Suppose n is a multiple of p. Say n = prt:(t,p) = 1. If r = e, then 
n = pr fft = 0 in R. 1-/7 = 0 and n is a zero divisor in R. So A? is not 
regular. U r < e, n = pe~rprt = 0. Conversely, suppose n is not a multiple 
of/;. So (n,p) = 1 = (fupe). Thus 3 s, g e Z:ns + g / / = I => ̂ y = 1 in /?. 
So /? is a unit in R. 

L E M M A 3.2. (Cornell [8]). Let G be an abelian group and R a 
commutative ring with J(R) = 0. Suppose that all elements oj 0 ( G ) are 
regular in R. Then J(RG) = 0. 

L E M M A 3.3. (Passman [21]). Let G be an abelian group and R a 
commutative ring with N(R) = 0. If all elements of 0 ( G ) are regular in R, 
then N(RG) = 0. 

PROPOSITION 3.4. Let R be a commutative ring of characteristic pc and 
G an abelian group. If Sp denotes the p-Sylow subgroup of G, then 
R/J(R)(G/Sp) is semisimple. 

Proof. R/J(R) is commutative and semisimple. If n e &(G/Sp), n is not 
a multiple of /?, and so by 3.1 it is regular in R/J(R). The result now 
follows from 3.2. 

L E M M A 3.4. If G is a p-group and R a ring with J(R) = 0 andp = 0 in 
/?, then J(RG) = A(G). 

Proof. Since G is an abelian/?-group and R is of characteristic/?, A(G) is 
nil as it is generated by nilopotent elements. Thus A(G) Q J(RG). 

Let a e J(RG), and r e R. There exists /} <E RG such that 8R(fi) = r. 
\-a/3 G U(RG). So 

8R(\ - aj8) = 1 - M « ) r e £/(/*). 

But r arbitrary implies 

8(a) e ./(/?) and L(/*G) Q ker «^ = A(G). 

L E M M A 3.5. Le/ R be a ring, I an ideal of R, G a group and II a normal 
subgroup of G. Let the natural epimorphisms T] and TT be given by 

RG ^ R(G/H) - ^ R/I(G/H). 

Then Ker 7777 = AR(G, H) + IG. 

Proof. Clearly ker TJ + IG Q ker TTT). Let a e ker 777) with a = 2 a ( g ) g-

Write 

G = U / / • 7nj(a) = 2 wrj(a(g)g) = 0 
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i.e., 

A 

2 a(g) g = 0 = 2 2 (̂g7) g/ = 0 

for some finite set g h g2 • • • gk of the g/s. Thus 

2 «g ^ /, i = I, . . ., k. 

Write 

s, = 2 «g and /? = 2 ^g, ^ /(/. 

Then 

a = (a - 0) + /S 

i)(a - /?) = rj(a) - TJ(/J) 

A 

= S a ( g ) g - 2 S/g/ 
/ = l 

2 ( 2 « J gi - 2 5/g/ = o. 
/=1 V e / / a 7 

A 

Thus a <E ker rj + IG and the result follows. 

THEOREM 3.6. Let G be an abelian group, Sp its p-Sylow subgroup and R 
a ring of characteristic p. 

(a) N(RG) = N(R)G + AR(G, Sp); 
(b) J(RG) c J(R)G + A^(G, S^) w/Y/z equality if G is torsion or ifJ(R) 

— N(R) (e.g. if R is artinian). 

Proof. N(R)G + A#(<7, Sp) is generated by nilpotent elements, hence 
contained in N(RG). Putting R = R/N(R) and G = G/Sp, we have by 
(3.5) 

RG/(N(R)G + Afl(G, ^ ) ) - AG. 

But by (3.3) 

0 = N(RG) = N(RG/(N(R)G + A^(G, S,)) 
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and (a) follows. Similarly, as / ( (R/J(R) )G = 0 by (3.2), it follows again 
using 3.5 that 

J(R)G c (J(R)G + àR(G,Sp)). 

If J(R) = N(R), equality follows from (a). When G is torsion equality 
follows since J(R)G c J(RG). 

COROLLARY 3.7. Let Rj be a ring of characteristic a power of p, and let Gl 

be an abelian group with p-Sylow subgroup Sj for i = 1, 2. Put R, = 
Rj/N(Ri) and G, = Gt/Sh i = 1, 2. Then R]G] ~ R2G2 => R]G] ^ 
R jG 2. 

4. Finite Abelian G. 

LEMMA 4.1. Let E and F be fields of characteristics p or 0 such that F ~ 
E(£„) and E ~ F(f,). Then E ~ F. 

Proof E ~ F(St) ^ E(£m £,). Hence f„, $t e E and F ~ £tf„) = & 

Definition. If £ and F are fields put E ^ F if F ~ E(ÇU) for some /?. By 
4.1 this defines a partial ordering on the isomorphism classes of fields. 

THEOREM 4.2. Let F\ and F2 be fields and G\ and G2 torsion abelian 
groups. Then 

F\G\ ~ F2G2 => F\ ~ F2. 

Proof. The residue class fields of Ffij are all cyclotomic extensions of Fh 

so Fj is characterized, up to isomorphism, as the unique minimal element, 
in the partial ordering of fields defined above, among these. 

We can generalize this result as follows: 

LEMMA 4.3. Let I be an ideal in the noetherian ring R, R = R/I and G a 
finitely generated abelian group. Suppose RG ~ RG then 7 = 0 and R = 
R. 

Proof. Let cj>:RG —» RG be the given isomorphism. Extend the natural 
map R -» R/I to p:RG -> RG. From [8], p. 658, RG is Noetherian and thus 
the surjective map 

f=4>~lo p:RG-+ RG 

is an injection. Hence 1 = 0. 

THEOREM 4.4. Suppose FG ~ RG where F is afield, R a ring and G a 
finite abelian group. Then F ~ R. 
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Proof. Case (i): characteristic F\ o(G). Then FG and RG are regular. So 
R is regular and V« 0(G). n is a unit in R. ([8]). Thus RG = A(G) © A* 
where A* = Ann. (A(G) ) and R = A* ([8]). As #G is semisimple and G is 
finite abelian, 

k 

RG = © F„ 
/ = 1 

F, fields cyclotomic over F. i? is a direct summand of RG, 

R = (B Eh t < k. 
i= 1 

Now EnG ~ FG ®F En as F-algebras since 

FG ®F En = (F © = . . . © F) © F E„ = A(FJ with A = o(G) 

as F-modules. Hence FG ®F En ~ EnG. Thus 

tfG = © (Efi) = © (FG ® Ei) 
i=\ / = 1 f 

= ,§,(M-94 
Thus RG has //c components. But RG ~ FG which has exactly k simple 
components. Thus 7 = 1 , i.e., i? = Et is a field. So by 4.2, F ~ R. 

Case (ii): char F = p and/? | 6>(G). Let 5/7 be the/?-Sylow subgroup of G. 
From (3.7) we have 

^(G/Sp)^-^-(G/Sp) and p\o(G/Sp). 

From case (i) F — R/N(R). Thus RG ~ FG ~ R/N(R)G. As FG 
is Noetherian then # is, too, and so Lemma 4.3 implies N(R) = 0, i.e., 
F ~ R. 

If v4 is a commutative ring with 1 and a is a finite set of minimal ideals 
of A we define an equivalence relation on a by Ih I2 e a are equivalent if 
/] ~ I2 as rings. Write a / ~ = D^. When A is semi simple artinian, then a 
consists of fields and we make DA into a partially ordered set by F] < F 2 

if and only if F2 ~ F j (^ ) for some positive integer k. F, denotes the 
equivalence class of F, e Q. 

THEOREM 4.5. Let R be a finite direct sum of fields, G a finite group and 
S a ring. Suppose RG c^ SG. Then R ~ S. 
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Prooj. Case (i): RG is semisimple. RG semi simple implies SG is also, R 
regular implies RG and thus SG is regular. So if n e 0(G), /? is a unit in S 
and S is a direct summand of SG ~ RG ([8]). We now see that S a finite 
direct sum of fields. 

Let R = F{ © . . . © F„, 5 = F, 0 . . . © Fm with F, and F ; fields. 
Proceed by induction on n. Un = 1, then F}G ~ SG and F\ ~ 5 from 
Theorem 4.3. 

Suppose /? > 1 and the theorem is true for n — 1. As RG is semi simple 
so is FjG and EfG for all / and 7. 

In RG we consider the set Ji\ of minimal ideals and the associated 
partially ordered set DR(r Similarly we consider DS(r Let F be a minimal 
element in DR(r Then o(F) is a minimal element in DSCr For let o(F) = 
F/(ft) and suppose there exists F,(ft) < F7(ft). i.e., 

F;(ft) - Ft(ft)(ft) with ft « £,(£/)-

Hence 

F ~ cT ' (^(f t , £•) ) - ^ (f )(?;) for some k. 

But F ^ FA(ft since otherwise ft. e F and ft G F, (ft). Hence 

F ^ a ^ ; ^ , ft) ) ~ FA(ft(ft) for some A". 

But F ^ Fk(£) since otherwise ft. e F and ft G £,(ft). Hence F^fft < F 
contradicting the minimality of F. 

Since F is minimal in DRCj, F i s isomorphic to a field in /?, i.e.. F ~ F,-
for some /'. (Fin RG implies F = FA(ft) for some k. But F minimal implies 
ft G F/, and Fis isomorphic to an ideal in 7?.) As o(F) = K has K minimal 
in S, K ^ Ej for somey. Write R = Fk © /?,, 5 = F, © S\. Then 

/?G ^ FA.G © RXG ~ SG ~ EjG © S\G. 

But F/vG, by a rearrangement of the original isomorphism, if necessary 
(RG and S G have the same number of single components, similarly for 
FkG and FjG), we can assume R\G ~ S\G. But R\ contains n-\ minimal 
ideals and so by induction R\ ~ S\. Hence R ~ S. 

Case 2: RG not semi simple. For p a prime, let 

R'(p) = {x G R\ px = 0} and S\p) = {* e S| pjc = 0}. 

S"(/?) is an ideal in S and 

{x e #G| /7jc = 0} = R'{p)G, 

{x e SG\ px = 0} - S"(/?)G 
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then R'(p)G ~ S'(p)G. 

If P is the /?-Sylow subgroup of (7, by (3.7) we have that 

R'(p)(G/P)^ jf'(,(
P\.(G/P). 

N(s'{p)) 

Apply case (1) to conclude 

1 n(S'(p)) 

But as in the proof of the previous theorem, we have that S'(p) is 
Noetherian and so by Lemma 4.3, R'{p) ^ S\p). 

Let p\, P2i---,Pk t>e the distinct primes dividing o(G), and let E/?i 

denote the identity in R'iPi) or S'(pi). Write 

e = Epi+...+ Epk. 

Then e is an idempotent, and 

RG ~ ( (1 - e) R@ eR)G - ( (1 - e)S ® eS)G. 

Hence 

By case (1), again (1 - e)R — (1 - e)S and thus # ~ S. 

5. Torsion free groups. 

THEOREM 5.1. Let R he a regular ring, G a group with torsion subgroup T 
and suppose that for n <E ®(T), n is a unit in R. Then RT is the unique 
maximal regular ring of RG with lRG. 

Proof Case 1: G torsion free. Let L be a regular subring of RG with \RG 

e L and let a e L. As L is regular there exist ft y e L with 

orfi = a and (1 — a)2y = 1 — a. 

Let /> be a prime ideal of /*. Then in R/PG, â(âjî - T) = 0 and 
(T~^)( (T^^)y - T) = 0. 

But R/PG is an integral domain and so either 

a) â = 0 or 1 — a = 0 

or 

b) âfi = T and (1 - a) y = T. 
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If a) holds then a <E PG or 1 — a e PG while if b) holds we must 
have â = ~ch and 1 — a = ug for c û <E U(R/P) and /?, g G G. Then 
1 — eh = u~g implying h = g = c and â = ~c = 0, i.e., a — c G PG. In any 
case there exists c e 7? with a — c e PG. Write a = 2 a(g)g. Then 

a - c = a ( l ) - c + 2 «(g)g e ^G-

But P is an arbitrary prime ideal so that a{g) for g ¥= 1 is nilpotent. Thus 
a(g) = 0 if g ¥= 1 and a = a(\). Hence L Q R. 

Case 2: General G Again let L be a regular subring of RG with \R(f e L 
and let a e L. Find /?, y G L with a2yS = a and (1 — a)2y = \ — a. Let / / 
be the subgroup of G generated by Supp(a) U Supp(/?) U Supp(y). Since 
H is finitely generated, the torsion subgroup H* of II is a direct summand 
of / / . say H = II* 0 W with W torsion free. We have 

a, & y e /*// - RII*(W). 

Since / ? / /* is regular by case 1, a, /?, y G RH* a RT. Hence L c RT. 

C O R O L L A R Y 5.2. L<?/ /?! and R2 be regular. If o:R\G —* R2G is an 

isomorphism then o(R\T) = R2T. If in particular, G is torsion free, then 

o(R\) = R2-

C O R O L L A R Y 5.3. Let Rx and R2 be artinian and G torsion free. Then R\G 
= R2G implies 

Ri _ R2 

J(Rù ~~ JW2Ï 

Proof Let 

i)i\RiG -> — G 

be the natural maps for / = 1, 2. As Rj is artinian, J(Rj) is nilpotent and 

J(Rj)G Q J(RjG). But Rj/J(Rj) G is semi-simple so 

J(Rfi) Q ker J]I = J(Rt)G. 

Thus 

J(Ri) J{RtG) 

and the result follows by 5.2. 
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We do not know if Ru R2 artinian G torsion free and R{G ~ R2G 
implies R\ ~ R2. 

Definition. A ring is called reduced if its nil radical is 0. 

L E M M A 5.4. Suppose R is a ring without non-trivial idempotents and G is 
a torsion free group. Then 

U(RG) = U(R) X (1 + N(R) • AR(G)) X G. 

Ij, in particular R is reduced, then U(RG) = U(R)G. 

Proof. U(RG) = U{R) X V where 

V = {v G 2 egg G U(RG)\ 2eg= I eg G R}. 

If R is an integral domain, V = G. Hence, if P is a prime ideal of R 

egeh = Sgheg mod P 

where 8gll is the Krondeker delta function. Taking the intersection of all 
prime ideals gives this congurence modulo N(R). But orthogonal 
idempotents lift modulo the nil ideal N(R). As R has only trivial 
idempotents, we must have 

v = gw with g G G and w = 1 mod (N(R)(RGAR(G) ) ). 

Because 

N(R)(RGAR(G)) = N(R)AR(G), 

we conclude w G 1 + N(R)AR(G) which implies the lemma. 

PROPOSITION 5.5. Let R be a reduced ring with no non-trivial idempotents 
and G a torsion free abelian group. Then any local subring of RG, containing 
\RC, is contained in R. 

Proof. Let L be a local subring of RG containing \RG. If a G L, 1 — a G 
L, and either a is a unit or 1 — a is a unit. We can assume a is a unit. By 
Lemma 5 A, a = wg with w G # , g G G. Also a + # ~ ] or 1 — (# + a~ ' ) is 
a unit. If 1 - (a + tf_1) = v g2 with v G £/(#), #2 G G then 

1 - wg - w"1 g™1 - vg2 

which implies g = g~x = gi = e and a= u, u G U(R). Similarly if (a + 
a~]) is a unit. Thus L Q R. 
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COROLLARY 5.6. If I is a local reduced ring, R a ring and G a torsion free 
abelian group then IG ^ RG implies o(I) Q R. 

Proof N(RG) = N(R)G, so that R is reduced. IG has no non trivial 
idempotents (see e.g. [25], p. 40) and so R does not. The result now follows 
from Proposition 5.5. 

COROLLARY 5.7. Let R\ and R2 be local rings G\, G2 torsion free abelian 
groups and R}G ~ R2G. Then R^/N^Ri) ^ R2/N2(R2). 

Proof Let o:R\G\ —> R2G2 be the given isomorphism. Write Nj = N(Rt). 
Then 

/*iG _ R\G _ R2G _ R2G 

7VVG ~ N(R{G) ~ N(R2G) = N(R2)G 

-•R] r ~ Rl r o:— C/i — — G?. 
yV, N2

 2 

But Rj/Nj is local reduced. By Corollary 5.6 

d(R,/N,) ç R2/N2. 

Similarly 

â"1 (R2/N2) ç RX/N. 

Hence R{/N} ^ R2/N2. 

THEOREM 5.8. Let R be a reduced ring with no non trivial idempotents, 
S a ring and G a torsion free abelian group. Suppose RG ^ SG and o(R) Q 
S. Then there exist subgroups H, K of G such that 

(\)G^H 
(ii) G = HK (internal direct sum) 

(hi) S = o(RK). 

Proof As 

0 - N(R)G = N(RG) = o~\N(SG)) = o~l(N(S)G), 

N(S) = 0. If e G SG and e2 = e, a~\e) G RG and a~\e) G R ([24]). 
Thus <T~ ](e) = 0 or 1 and e = 0 or 1, and S is a reduced ring with no non 
trivial idempotents. If g G G, o\g) = Ughg with Ug G U(R), hg G G 
from Lemma 5.4. i.e., 

g = o{Ug)o{hg\ o(Ug) G o(R) c 5. 

Let ag = o(Ug
]) then ag is such that o~\agg) = hg G G. Thus if g G G 
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there exists an ag G o(R) such that o (agg) = hg G G. Let 

hr = {h G G:a ' (a) = /z for some a G a ( # ) g G G } . 

H is a subgroup of G and a(/7) G o(R)G implying o(RH) Q o(R)G 

Let 

K = (g G G:a(g) G S 1 C = S } . 

Â  is a subgroup of G. Clearly H n K = {\}. Let g G G and a(g) = ug\ 
(Lemma 5.4), g = o~ x(u)o~ \g\). Write o~ l(u) = vg2, a~ '(gi) = wgi with 
v, w G £/(/?), g2, g3 G G. So g = vg2wg3 and vw = 1. As g2 = gg3 , 

= wgia(wa ^ g j ) ) 

= wgi^(w)gi 
= uo(w) G f/(S), 

and g2 G A\ 

g3 = w~l a~ ' (g i ) = va _ 1 (g i ) = o ^ ' K v ^ i ) 

and g3 G / / . 

This shows G is the direct sum of H and K establishing (ii). o(RH) Q 

o(R)G while o~\o(R)G) Q RH implying o(RH) = a(/*)G. Then 

o\RH:RH-> o(R)G 

implies H ~ G via â(/z) = g if a(/z) = ag. This shows (i). o(RK) Q S. 

SG = o(RG) = o(R(KH)) = o((RK)H) Q o(RK)G Q SG. 

This shows SG = o(RK)G. If s G S, S = 2 «,-g, with at G a(/MO, g, G G. 
But each a, G 5. So s = a\ with gl = e and s = o(RK). 

C O R O L L A R Y 5.9. //* F is a field, S a ring and G a torsion free abelian 
group then FG cz. SG <=> there exist subgroups H, K of G with G ^ II © K, 
H ~ G and S ^ o(FK). 

Proof If the right hand side holds, 

FG ~ F(K © H) ~ F/C(//) - 57/ - SG. 

Conversely, from 5.6, o(F) c S. Theorem 5.8 now implies the result. 

Similarly using 5.6 and 5.8, it follows that 

C O R O L L A R Y 5.10. If R is a local reduced ring, S a ring and G a torsion 
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free abelian group then FG ~ S G <=> there exist subgroups II and K of G with 
H © K ^ G II ~ G and S = o(RK). 

COROLLARY 5.11. If S is a ring, G a torsion jree abelian group then ZG 
~ SG <=> there exist subgroups II and K of G with H © K ~ G, Il ~ G and 
S = o(ZK). 

THEOREM 5.12. Let 

R = 0 F, 
I = 1 

be a direct sum of fields, S a ring and G a torsion free abelian group. Then 
RG ~ S G if and only if there exist subrings S\< S?, . • • , Sn of S, subgroups 
//, , Ku H2, K2, . . . , HnKn of G with 

(i) s = s} © s 2 © . . . © sn 
(ii) G ~ //,-, 1 = 1,2, . . . ,w 

(iii) G — //, © Kh 1 = 1, . . . , w 
(iv) S, - F,-*,, 

Proof (<= ) This follows as in Corollary 5.9. (=>). Let 

#G = © F,G -^ 5G 
/ = 1 

be the given isomorphism. Since G is torsion free every idempotent of RG 
belongs to R. T p' />< ^ . . . . , <?„ be the orthogonal primitive idempotents of 
/? numbered so that etR = Fr Then {o(e{) = fh i = 1, . . . , n} is the 
unique set of orthogonal primitive idempotents in 5. Let S, = f,S. Then 

a^-G) ^ o(ejRG) ^ /-SG = S/G, / = 1, . . . , n. 

From Corollary 5.9, there exist subgroups Hh Kt of G with //,- ~ G, G ^ 
If © AT/ and S, = a (F ,^ ) . Then 

^G = a(F, G © . . . © FWG) = a ^ G) © . . . © a(F„G) 
= ^iG © . . . © SnG 
~ (S, © . . . © SW)G Ç SG. 

So 5G = (S, © . . . © Sn)G and as Sj © . . . © Sn Q S we have 

Si © . . . © Stl = S. 

6. Mixed groups. In this section, we give some applications and 
extensions of the previous theorems to mixed groups. 
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PROPOSITION 6.1. Let R and S be finite direct sums of fields, G a group 
with RG, and S G semi-simple. If RG ^ S G then RT ~ ST where T denotes 
the torsion subgroup of G. 

Proof Let R = © Ft with Ft a field. Then FjT is regular (FtG is regular if 
and only if G is locally finite and has no element of order/? if char F = p. 
See e.g. [23]). So if n \ \T\, n is a unit in Ft for all /. From Theorem 5.1 RTis 
the maximal subring of RG with 1 ^ . Similarly for ST and RT ~ ST. 

P R O P O S I T I O N 6.2. Let R\ and R2 be perfect rings of characteristics p, Sp the 
p-Sylow subgroup of group G and R\ G ~ R2 G. Then 

R\ Ri 
— (G/SD) ~ — — (G/Sn). 

Proof. (For the definition of perfect ring see [26], p . 127.) Since Rt is 
perfect, J(Rj) is T nilpotent and hence nil. From Corollary 3.6, 

J(RiG) = A(G, Sp) + J(Rj)G and 

R,G R, 
(G/Sp). J (RiG) J(Rj) P) 

Since RXG ~ R2G implies R\G/J\RXG) ~ R2G/J(R2G) we have the 
result. 

C O R O L L A R Y 6.3. Let F\ and F2 be fields of characteristic p, Sp the 
p-Sylow subgroup, and T the torsion subgroup, of the group G. Then 

FXG ^ F2G => F}(T/Sp) ^ F2(T/Sp). 

Proof By Proposition 6.2, FX{G/Sp) ^ F2(G/Sp) with FX(G/Sp) 
semi-simple. As T/Sp is the torsion subgroup of G/Sp, Corollary 7.2 gives 
our conclusion. 

T H E O R E M 6.4. Let Fh F2 be fields and G\, G2 groups with FXG\ ~ F2G2. 

Then F\ ~ F2. 

Proof. If F\ and F2 are fields of characteristic p with p a prime or zero, 

then, using (6.3) we have 

FX(TX/Spx) ~ F2(T2/Spi). 

From Theorem 4.2, the result now follows. 

Theorem 6.4 is not valid if F} is a field and F2 is the finite sum of fields 
as the following example shows. 
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Example. Let 
oo 

G = © Z3. 

Then G ^ Z3 © G and 

QG - Q(Z3)G 

^ (Q + Q(f3) )G 
^ QG © Q(f3)G 
^ QG © Q(£3)G © Q(f3)G 

^ (Q © Q(?3) ) © Q(?3)C 

If /? = Q © Q(f3) © Q(f3), then Q and /* are each finite direct sums of 
fields and R is not isomorphic to QH for any subgroup H of G. In fact, R 
is not isomorphic to a group ring, over Q, for any group, as R =£ QZ5 and 
dim fl/Q = 5. 

THEOREM 6.5. Le/ G &e a« abelian group with finite torsion group T. Let 
R be a finite sum of fields and S a ring. Suppose RG ^ SG. 

(a) If S is artinian, then R ~ S/N(S). 
(b) If G is finitely generated, then R ~ S. 

Proof. As T is finite, we can find a torsion free subgroup G\ with G ~ 

r x G, 

/?(r)G, ^ #G - SG ~S(T)G}. 

Case (1): RG semi-simple. Then RT is semi-simple and thus a finite sum 
of fields RT = Fx © . . . © Fk. By Theorem 5.12 there exist subrings, 
Si, S2, . . . , SA. of S and subgroups //„ Kt of Gi(/' = / , . . . , / : ) such that 

//, © AT/ - G], //, - G,, Si ^ F7-(^-) and 

Si © . . . © Sk = S. 

If G is finitely generated, then G\ is free abelian of finite rank. Since rank 
(///) + rank (Kf) = rank (GO and rank (//,-) = rank (G/), we have /C, = 
{1}, / = 1, . . . , k. So S,; ~ Fj and S 7 ~ RT. By Theorem 4.5, we now have 
R ~ S. 

If S, and hence Sh is artinian, as Sf ~ Fj(Kj), Kt must be finite ([8]) and 
thus Kj is again {1}. i.e., RT ~ ST. By Theorem 4.5 we have in either case 
R ~ S. 

Case (ii): 7?G is not semi-simple. Letp\,p2, . . ./fy- be the distinct primes 
dividing o(T). Let 
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R\Pi) = {x ^ R\ fix = 0} and 

S'(Pi) = {x e S | Plx = 0}. 

S'(pj) is an ideal of S and R\pt)G ^ S'(pi)G. Let P, be the /?,-Sylow 
subgroup of G. Since o(Pz) < oo, we can write G in the form G ~ Pf X G7. 
then, from (3.7) 

R'(Pi)Gi c- 5 ( / ? / ) (G//P/) v " ' ' N(S'(Pi))
K ' l) 

and from case (1) we conclude 

R(Pi) ~ . 

If G is finitely generated, then R\pt)G is noetherian. We have a surjective 
homomorphism 

) L L ~ G -> R\Pi)G -> S'(/?,)G 

with kernel N{S\pt) )Gr From Lemma 4.3, N{S\pt) ) = 0. 
Continue, as in the proof of Theorem 4.5, to conclude R ~ S in this 

case. 

COROLLARY 6.6. Let G be an abelian group with finite torsion group T. 
Let R and S be finite sums of fields. IfRG ^ S G then R ~ S. 

COROLLARY 6.7. Let G be an abelian group with finite torsion group T. 
Suppose R is a finite sum of fields and S an artinian ring. If RG is 
semi-simple and RG ^ S G then R ~ S. 

Proof This has been shown in the proof of Theorem 6.5. 

7. Integral group rings. 

LEMMA 7.1. Let G be an abelian group with torsion subgroup T and R a 
ring. Suppose ZG c^ RG, then 

(i)u(R) n 0(G) = {1}; 
(ii) if n e 0(G), n is regular in RG; 

(iii) a (ZT) Q RT; 
(iv) if R is an integral domain and x is a torsion element in U(R), then 

x = ± 1. 
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Proof, (i) If « G U(R) n ©(G), then there exists a n r e i ? with nr = 1. 
Then a~\nr) = na~\r) = 1. Write o~\r) = 2 nlgn n, G Z. So 1 = 
2 wfl/g/. If gj = 1, we have «wj and ««/ = 0 for /' ^ 1. As A? > 1, /? = 

"1 = 1. 
(ii) Suppose n is not regular in RG. Then there is an r ^ 0 in RG with nr 

= 0. a-,(A?r) = no~](r) = 0. If a - 1 ( r ) = 2 fl/g/, 2 fl«/g/ = 0 and nn, = 
0 for all /'. Thus n{ = 0 for all / and a _ 1 ( r ) = 0, or r = 0, a 
contradiction. 

(iii) Let t <E T with f = 1. From (ii) « is regular in /EG. Write a(/) = a, 
so that a" = 1. From [17], Proposition 5, a e JR7, and a(T) â /?7. Hence 
a (ZI ) = # 7 . 

(iv) Suppose x" = 1. If o~](x) = a, then a <E Z(T) by Theorem 5.1. 
Since a G ZT, a" = 1, we have that a = ± t for some / G r (see, e.g. 
[12]). Suppose, o~\a) = /. Then /" = 1 implies 

( f - l ) ( l + t + t2 + . . . + t"~l) = 0 

with 1 + / + t2 + . . . + tn~~l # 0. Similarly 

(1 - a)(l + a + a2 + . . . + an~]) = 0 

with either 1 — a = 0 or 1 + # + a2 + . . . + a"™1 = 0 (R is an integral 
domain). But 1 + / + t2 + . . . + tn~x ¥* 0 implies 

(1 + t + t2 + . . . + fw_1) = 1 + a + tf2 + . . . + an~x * 0 

guaranteeing a = 1. Similarly if o~](a) = ~ t, then a _ 1 ( — A) = rand — # 
= 1 or a = - 1 . Hence t(U(R)) = ± 1 . 

THEOREM 7.2. Le/ G be a torsion group, and R a ring. Then ZG ~ RG if 
and only if there exist subgroups H, K of G with 

(i) H ^ G 
(ii) H 0 K ~ G 

(iii) /* - ZA:. 

Proof If subgroups //, A' exist satisfying (i), (ii), (iii), then ZG ~ RG as 
in Corollary 5.9. 

Conversely, suppose o.ZG —> /?G is the given isomorphism. If * e ± G, 
a - ^.x) G ± G. Note that we cannot have o~ \g\) = h and o~\g2) = ~ h 
f° r gb g2 G G. So let 

/ / = {h €= G| a _ 1 (g) = ± A for some g e G}. 

https://doi.org/10.4153/CJM-1983-037-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-037-0


GROUP RINGS 671 

Then H is a subgroup of G and H ~ G, since o(ZH) Q ZG and o \ZG) 
Q ZH implying o\ZH\ZH —» ZG is an isomorphism. By [25], Corollary 
2.10, G ~ H. This shows (i). 

Let 

K = (g G (7| a(g) G /?}. 

AT is a subgroup of G and o(ZK) Q i?. 
We prove (ii) by showing that G is the internal direct sum of // and K. 

Clearly// n # = {1}. Let 

L = {g G G\ o(g) = uh for some h G G, M G /(£/(/?) ) }. 

L is a subgroup of G and //, K are subgroups of L. Let g G L. Then o(g) 
= uh for some h G G and w G t(U(R) ), and 

a~\uh) = a~1(w)a~~,(/i) = g. 

But 

a -1(w) = ± k, k ^ K and 

a - 1(/ i) = ± /2,, /?i G / / 

implying a~\u) = k and o~\h) = h\ o ra _ , (w) = —/: and a_ ,(/z) = —/z 
and g = A:/z i. Thus L = //AT (direct sum), and we must check that 
L = G. 

Let Sp denote a /?-Sylow subgroup of G. Define 

Sup G = {/? G Z| /?a prime and S^ ¥= 1}, 

Inv /? = {p G Z| /? a prime and/? G £/(/?) } 

and 

Zd R = [p <E Z\ p a prime and p is a zero divisor in R). 

From Lemma 1.1 

Sup G n Inv /? = 0 and Sup G n Zd # = 0. 

Thus from [17], p. 494, Sp = Vp where Vp denotes the p component of 
U(RG). 

Let g ^ G. Then o(g) = u • a, with w G [/(/*), a, G £/(#G) ([17]) and 
a" = 1 for some n. Then 

a, G F X . . . X Vpk = S X . . . X S c G 
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for some finite k. i.e., a.\ e G. Thus o(g) e U(R) • G. As g is of finite 
order a(g) = « g , « e £/(#), g <= G, then M <E t(U(R) ). Thus g e L. This 
shows L = G and establishes (ii). 

Finally 

#G = R(KH) ~ o(ZKH) ~ o(ZK)o(H) ~ o(ZK)G Q RG 

and so /*G - a(ZK)G. Thus 7? = a(Z/0. 

Modifications of Theorem 7.2 can be given if G is not torsion. 
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