ON THE UNIQUENESS OF THE COEFFICIENT RING IN A GROUP RING

ISABELLE ADJAERO AND EUGENE SPIEGEL

1. Introduction and notation. Let R_{1} and R_{2} be commutative rings with identities, G a group and $R_{1} G$ and $R_{2} G$ the group ring of G over R_{1} and R_{2} respectively. The problem that motivates this work is to determine what relations exist between R_{1} and R_{2} if $R_{1} G$ and $R_{2} G$ are isomorphic. For example, is the coefficient ring R_{1} an invariant of $R_{1} G$? This is not true in general as the following example shows. Let H be a group and

$$
G=\bigoplus_{\alpha=1}^{\infty} H_{\alpha} \quad \text { with } \quad H_{\alpha} \simeq H
$$

If R_{1} is a commutative ring with identity and $R_{2}=R_{1} H$, then

$$
R_{1} G \simeq R_{1}(H \oplus G) \simeq R_{1} H(G) \simeq R_{2} G
$$

but R_{1} needn't be isomorphic to R_{2}.
Several authors have investigated the problem when $G=\langle x\rangle$, the infinite cyclic group, partly because of its closeness to $R[x]$, the ring of polynomials over R. An exposition of many of the known results on the problem appear as Chapter IV in [13]. Even in this special case the results have been fragmentary. By imposing conditions on R_{1} and on G several cases of the problem are treated extending many of the known results.

In the following we will always assume all coefficient rings are commutative with identity. If $\alpha \in R G$ with $\alpha=\sum_{g \in G} \alpha(g) g, \alpha(g) \in R$, we write

$$
\operatorname{supp} \alpha=\{g \in G \mid \quad \alpha(g) \neq 0\}
$$

the augmentation map $R G \rightarrow R$ sending $\alpha \rightarrow \sum \alpha(g)$ will be denoted by δ_{R} and have kernel $\Delta_{R}(G)$ or $\delta(G)$. If H is a normal subgroup of G, and we extend the natural map $G \rightarrow G / H$ to a map $R G \rightarrow R(G / H)$, this new map has kernel $\Delta_{R}(G, H) . \Delta_{R}(G, H)$ is generated by $\{1-h \mid \quad h \in H\}$. For the group G, G^{\prime} denotes its commutator subgroup and $\Theta(G)$ the set of orders of all finite subgroups. The ring R will have Jacobson radical $J(R)$, Nill radical $N(R)$, characteristic $\operatorname{ch}(R)$, and units $U(R)$.

As usual, \mathbf{Z} denotes the integers, \mathbf{Q} the rationals, \mathbf{Z}_{n} either the ring of integers modulo n or a cyclic group with n elements and ζ_{d} a primitive $D^{t /}$ root of unity.

2. Reduction to abelian groups.

Lemma 2.1. (Coleman) Let I be an ideal of $R G$. Then the residue class algebra $R G / I$ is commutative $\Leftrightarrow \Delta\left(G, G^{\prime}\right) \subseteq I$.

THEOREM 2.2. Let R_{1} and R_{2} be commutative rings with unity and G a group. Then

$$
R_{1} G \simeq R_{2} G \Rightarrow R_{1}\left(G / G^{\prime}\right) \simeq R_{2}\left(G / G^{\prime}\right)
$$

Proof. Let $\sigma: R_{1} G \rightarrow R_{2} G$ be the given isomorphism. For $i=1,2$ let

$$
\mathscr{I}_{i}=\left\{I \leq R_{i} G: \quad R_{i} G / I \text { is commutative }\right\} .
$$

By Lemma 2.1, $\Delta_{R_{i}}\left(G, G^{\prime}\right)$ is the unique minimal ideal in $\mathscr{\mathscr { F }}_{i}$.
Then

$$
\frac{R_{1} G}{\Delta_{R_{1}}\left(G, G^{\prime}\right)} \simeq \frac{R_{2} G}{\sigma\left(\Delta_{R_{1}}\left(G, G^{\prime}\right)\right)}
$$

implying

$$
\sigma\left(\Delta_{R_{1}}\left(G, G^{\prime}\right)\right) \supseteq \Delta_{R_{2}}\left(G, G^{\prime}\right)
$$

By considering σ^{-1}, we see

$$
\sigma\left(\Delta_{R_{1}}\left(G, G^{\prime}\right)\right)=\Delta_{R}\left(G / G^{\prime}\right)
$$

Hence

$$
R_{1}\left(G / G^{\prime}\right) \simeq \frac{R_{1} G}{\Delta_{1}\left(G, G^{\prime}\right)} \simeq \frac{R_{2} G}{\Delta_{2}\left(G, G^{\prime}\right)} \simeq R_{2}\left(G / G^{\prime}\right)
$$

Corollary 2.3. If G is a group with $G^{\prime}=G$, then

$$
R_{1} G \simeq R_{2} G \Rightarrow R_{1} \simeq R_{2}
$$

Throughout the following we will assume that all groups are abelian.

3. Abelian p-groups.

Definition. An element $a \in R$ is regular if a is not a zero divisor in R.
Proposition 3.1. Let R be a ring of characteristic p^{e}. Then $n \in \mathbf{Z}^{+}, n$ is not regular in $R \Leftrightarrow n$ is a multiple of p.

Proof. Suppose n is a multiple of p. Say $n=p^{r} t:(t, p)=1$. If $r \geqq e$, then $n=p^{r-e} p^{e} t=0$ in $R . \quad 1 \cdot n=0$ and n is a zero divisor in R. So n is not regular. If $r<e, n=p^{e-r} p^{r} t=0$. Conversely, suppose n is not a multiple of p. So $(n, p)=1=\left(n, p^{e}\right)$. Thus $\exists s, q \in \mathbf{Z}: n s+q p^{e}=1 \Rightarrow n s=1$ in R. So n is a unit in R.

Lemma 3.2. (Cornell [8]). Let G be an abelian group and R a commutative ring with $J(R)=0$. Suppose that all elements of $\Theta(G)$ are regular in R. Then $J(R G)=0$.

Lemma 3.3. (Passman [21]). Let G be an abelian group and R a commutative ring with $N(R)=0$. If all elements of $\Theta(G)$ are regular in R, then $N(R G)=0$.

Proposition 3.4. Let R be a commutative ring of characteristic p^{c} and G an abelian group. If S_{p} denotes the p-Sylow subgroup of G, then $R / J(R)\left(G / S_{p}\right)$ is semisimple.

Proof. $R / J(R)$ is commutative and semisimple. If $n \in \Theta\left(G / S_{p}\right), n$ is not a multiple of p, and so by 3.1 it is regular in $R / J(R)$. The result now follows from 3.2.

Lemma 3.4. If G is a p-group and R a ring with $J(R)=0$ and $p=0$ in R, then $J(R G)=\Delta(G)$.

Proof. Since G is an abelian p-group and R is of characteristic $p, \Delta(G)$ is nil as it is generated by nilopotent elements. Thus $\Delta(G) \subseteq J(R G)$.

Let $\alpha \in J(R G)$, and $r \in R$. There exists $\beta \in R G$ such that $\delta_{R}(\beta)=r$. $1-\alpha \beta \in U(R G)$. So

$$
\delta_{R}(1-\alpha \beta)=1-\delta_{R}(\alpha) r \in U(R) .
$$

But r arbitrary implies

$$
\delta(\alpha) \in J(R) \quad \text { and } \quad J(R G) \subseteq \operatorname{ker} \delta_{R}=\Delta(G)
$$

Lemma 3.5. Let R be a ring, I an ideal of R, G a group and H a normal subgroup of G. Let the natural epimorphisms η and π be given by

$$
R G \xrightarrow{\eta} R(G / H) \xrightarrow{\pi} R / I(G / H)
$$

Then Ker $\pi \eta=\Delta_{R}(G, H)+I G$.
Proof. Clearly ker $\eta+I G \subseteq \operatorname{ker} \pi \eta$. Let $\alpha \in \operatorname{ker} \pi \eta$ with $\alpha=\sum \alpha(g) g$. Write

$$
G=\underset{i \in I}{\cup} H_{g_{i}} \cdot \pi \eta(\alpha)=\sum \pi \eta(\alpha(g) g)=0
$$

i.e.,

$$
\overline{\sum \alpha(g)} \bar{g}=0=\sum_{i=1}^{k} \sum_{g^{\prime} \in H g_{i}} \overline{\alpha\left(g^{\prime}\right)} \bar{g}_{i}=0
$$

for some finite set $g_{1}, g_{2} \ldots g_{k}$ of the g_{i} 's. Thus

$$
\sum_{g \in H g_{i}} \alpha_{g} \in I, \quad i=l, \ldots, k
$$

Write

$$
s_{i}=\sum_{g \in H g_{i}} \alpha_{g} \quad \text { and } \quad \beta=\sum s_{i} g_{i} \in I G
$$

Then

$$
\begin{aligned}
& \alpha=(\alpha-\beta)+\beta \\
& \begin{aligned}
\eta(\alpha-\beta) & =\eta(\alpha)-\eta(\beta) \\
& =\sum \alpha(g) \bar{g}-\sum_{i=1}^{k} s_{i} \bar{g}_{i} \\
& =\sum_{i=1}^{k}\left(\sum_{g \in H g_{i}} \alpha_{g}\right) \bar{g}_{i}-\sum s_{i} \bar{g}_{i}=0
\end{aligned}
\end{aligned}
$$

Thus $\alpha \in \operatorname{ker} \eta+I G$ and the result follows.
Theorem 3.6. Let G be an abelian group, S_{p} its p-Sylow subgroup and R a ring of characteristic p.
(a) $N(R G)=N(R) G+\Delta_{R}\left(G, S_{p}\right)$;
(b) $J(R G) \subset J(R) G+\Delta_{R}\left(G, S_{p}\right)$ with equality if G is torsion or if $J(R)$ $=N(R)$ (e.g. if R is artinian).

Proof. $N(R) G+\Delta_{R}\left(G, S_{p}\right)$ is generated by nilpotent elements, hence contained in $N(R G)$. Putting $\bar{R}=R / N(R)$ and $\bar{G}=G / S_{p}$, we have by (3.5)

$$
R G /\left(N(R) G+\Delta_{R}\left(G, S_{p}\right)\right) \simeq \overline{R G}
$$

But by (3.3)

$$
0=N(\overline{R G})=N\left(R G /\left(N(R) G+\Delta_{R}\left(G, S_{p}\right)\right)\right.
$$

and (a) follows. Similarly, as $J((R / J(R)) \bar{G}=0$ by (3.2), it follows again using 3.5 that

$$
J(R) G \subset\left(J(R) G+\Delta_{R}\left(G, S_{p}\right)\right)
$$

If $J(R)=N(R)$, equality follows from (a). When G is torsion equality follows since $J(R) G \subset J(R G)$.

Corollary 3.7. Let R_{i} be a ring of characteristic a power of p, and let G_{i} be an abelian group with p-Sylow subgroup S_{i} for $i=1,2$. Put $\bar{R}_{i}=$ $R_{i} / N\left(R_{i}\right)$ and $\bar{G}_{i}=G_{i} / S_{i}, i=1$, 2. Then $R_{1} G_{1} \simeq R_{2} G_{2} \Rightarrow \bar{R}_{1} \bar{G}_{1} \simeq$ $\bar{R}_{2} \bar{G}_{2}$.

4. Finite Abelian G.

Lemma 4.1. Let E and F be fields of characteristics p or 0 such that $F \simeq$ $E\left(\zeta_{n}\right)$ and $E \simeq F\left(\zeta_{t}\right)$. Then $E \simeq F$.

Proof. $E \simeq F\left(\zeta_{t}\right) \simeq E\left(\zeta_{n}, \zeta_{t}\right)$. Hence $\zeta_{n}, \zeta_{t} \in E$ and $F \simeq E\left(\zeta_{n}\right)=E$.
Definition. If E and F are fields put $E \leqq F$ if $F \simeq E\left(\zeta_{n}\right)$ for some n. By 4.1 this defines a partial ordering on the isomorphism classes of fields.

Theorem 4.2. Let F_{1} and F_{2} be fields and G_{1} and G_{2} torsion abelian groups. Then

$$
F_{1} G_{1} \simeq F_{2} G_{2} \Rightarrow F_{1} \simeq F_{2}
$$

Proof. The residue class fields of $F_{i} G_{i}$ are all cyclotomic extensions of F_{i}, so F_{i} is characterized, up to isomorphism, as the unique minimal element, in the partial ordering of fields defined above, among these.

We can generalize this result as follows:
Lemma 4.3. Let I be an ideal in the noetherian ring $R, \bar{R}=R / I$ and G a finitely generated abelian group. Suppose $R G \simeq \bar{R} G$ then $I=0$ and $\bar{R}=$ R.

Proof. Let $\phi: R G \rightarrow \bar{R} G$ be the given isomorphism. Extend the natural $\operatorname{map} R \rightarrow R / I$ to $\rho: R G \rightarrow \bar{R} G$. From [8], p. 658, $R G$ is Noetherian and thus the surjective map

$$
f=\phi^{-1} \circ \rho: R G \rightarrow R G
$$

is an injection. Hence $I=0$.
Theorem 4.4. Suppose $F G \simeq R G$ where F is a field, R a ring and G a finite abelian group. Then $F \simeq R$.

Proof. Case (i): characteristic $F \nmid o(G)$. Then $F G$ and $R G$ are regular. So R is regular and $\forall n \Theta(G) . n$ is a unit in R. ([8]). Thus $R G=\Delta(G) \oplus \Delta^{*}$ where $\Delta^{*}=$ Ann. $(\Delta(G))$ and $R=\Delta^{*}([8])$. As $R G$ is semisimple and G is finite abelian,

$$
R G=\bigoplus_{i=1}^{k} E_{i}
$$

E_{i} fields cyclotomic over $F . R$ is a direct summand of $R G$,

$$
R=\bigoplus_{i=1}^{t} E_{i}, \quad t<k
$$

Now $E_{n} G \simeq F G \bigotimes_{F} E_{n}$ as F-algebras since

$$
F G \bigotimes_{F} E_{n}=\left(F \oplus_{=} \ldots \oplus F\right) \oplus_{F} E_{n} \cong \lambda\left(E_{n}\right) \text { with } \lambda=o(G)
$$

as F-modules. Hence $F G \bigotimes_{F} E_{n} \simeq E_{n} G$. Thus

$$
\begin{aligned}
R G & =\bigoplus_{i=1}^{t}\left(E_{i} G\right)=\bigoplus_{i=1}^{t}\left(F G \bigotimes_{F} E_{i}\right) \\
& =\bigoplus_{i=1}^{t}\left(\bigoplus_{j=1}^{k} E_{j} \bigotimes_{F} E_{i}\right)
\end{aligned}
$$

Thus $R G$ has $t k$ components. But $R G \simeq F G$ which has exactly k simple components. Thus $t=1$, i.e., $R=E_{i}$ is a field. So by $4.2, F \simeq R$.

Case (ii): char $F=p$ and $p \mid o(G)$. Let $S p$ be the p-Sylow subgroup of G. From (3.7) we have

$$
F(G / S p) \simeq \frac{R}{N(R)}(G / S p) \quad \text { and } \quad p \nmid o(G / S p)
$$

From case (i) $F \simeq R / N(R)$. Thus $R G \simeq F G \simeq R / N(R) G$. As $F G$ is Noetherian then R is, too, and so Lemma 4.3 implies $N(R)=0$, i.e., $F \simeq R$.

If A is a commutative ring with 1 and \mathfrak{a} is a finite set of minimal ideals of A we define an equivalence relation on a by $I_{1}, I_{2} \in \mathfrak{a}$ are equivalent if $I_{1} \simeq I_{2}$ as rings. Write $\mathfrak{a} / \sim=D_{A}$. When A is semi simple artinian, then a consists of fields and we make D_{A} into a partially ordered set by $\bar{F}_{1} \leq \bar{F}_{2}$ if and only if $F_{2} \simeq F_{1}\left(\zeta_{k}\right)$ for some positive integer k. \bar{F}_{i} denotes the equivalence class of $F_{i} \in$ a.

Theorem 4.5. Let R be a finite direct sum of fields, G a finite group and S a ring. Suppose $R G \simeq S G$. Then $R \simeq S$.

Proof. Case (i): $R G$ is semisimple. $R G$ semi simple implies $S G$ is also, R regular implies $R G$ and thus $S G$ is regular. So if $n \in \Theta(G), n$ is a unit in S and S is a direct summand of $S G \simeq R G([8])$. We now see that S a finite direct sum of fields.

Let $R=F_{1} \oplus \ldots \oplus F_{n}, S=E_{1} \oplus \ldots \oplus E_{m}$ with F_{i} and E_{j} fields. Proceed by induction on n. If $n=1$, then $F_{1} G \simeq S G$ and $F_{1} \simeq S$ from Theorem 4.3.

Suppose $n>1$ and the theorem is true for $n-1$. As $R G$ is semi simple so is $F_{i} G$ and $E_{j} G$ for all i and j.

In $R G$ we consider the set \mathscr{M}_{1} of minimal ideals and the associated partially ordered set $D_{R G}$. Similarly we consider $D_{S G}$. Let \bar{F} be a minimal element in $D_{R G}$. Then $\overline{\sigma(F)}$ is a minimal element in $D_{S G}$. For let $\sigma(F)=$ $E_{j}\left(\zeta_{d}\right)$ and suppose there exists $\overline{E_{l}\left(\zeta_{l}\right)}<\overline{E_{l}\left(\zeta_{d}\right)}$. i.e.,

$$
E_{j}\left(\zeta_{d}\right) \simeq E_{t}\left(\zeta_{l}\right)\left(\zeta_{r}\right) \quad \text { with } \zeta_{r} \notin E_{l}\left(\zeta_{l}\right)
$$

Hence

$$
F \simeq \sigma^{-1}\left(E_{t}\left(\zeta_{k}, \zeta_{r}\right)\right) \simeq F_{k}(\zeta)\left(\zeta_{r}^{\prime}\right) \text { for some } k
$$

But $F \neq F_{h}(\zeta)$ since otherwise $\zeta_{r}^{\prime} \in F$ and $\zeta_{r} \in E_{t}\left(\zeta_{l}\right)$. Hence

$$
F \simeq \sigma^{-1}\left(E_{t}\left(\zeta_{k}, \zeta_{r}\right)\right) \simeq F_{k}\left(\zeta_{)}\right)\left(\zeta_{r}^{\prime}\right) \quad \text { for some } k
$$

But $F \neq F_{k}(\zeta)$ since otherwise $\zeta_{r}^{\prime} \in F$ and $\zeta_{r} \in E_{l}\left(\zeta_{l}\right)$. Hence $\overline{F_{k}(\zeta)}<\bar{F}$ contradicting the minimality of \bar{F}.

Since \bar{F} is minimal in $D_{R G}, F$ is isomorphic to a field in R, i.e., $F \simeq F_{i}$ for some i. (F in $R G$ implies $F=F_{k}\left(\xi_{d}\right)$ for some k. But \bar{F} minimal implies $\zeta_{d} \in F_{l}$ and F is isomorphic to an ideal in R.) As $\sigma(F)=K$ has \bar{K} minimal in $S, \bar{K} \simeq E_{j}$ for some j. Write $R=F_{k} \oplus R_{1}, S=E_{j} \oplus S_{1}$. Then

$$
R G \simeq F_{k} G \oplus R_{1} G \simeq S G \simeq E_{j} G \oplus S_{1} G
$$

But $F_{k} G$, by a rearrangement of the original isomorphism, if necessary ($R G$ and $S G$ have the same number of single components, similarly for $F_{k} G$ and $E_{j} G$), we can assume $R_{1} G \simeq S_{1} G$. But R_{1} contains n-l minimal ideals and so by induction $R_{1} \simeq S_{1}$. Hence $R \simeq S$.

Case 2: $R G$ not semi simple. For p a prime, let

$$
R^{\prime}(p)=\{x \in R \mid \quad p x=0\} \quad \text { and } \quad S^{\prime}(p)=\{x \in S \mid \quad p x=0\}
$$

$S^{\prime}(p)$ is an ideal in S and

$$
\begin{aligned}
& \{x \in R G \mid \quad p x=0\}=R^{\prime}(p) G \\
& \{x \in S G \mid \quad p x=0\}=S^{\prime}(p) G
\end{aligned}
$$

then $R^{\prime}(p) G \simeq S^{\prime}(p) G$.
If P is the p-Sylow subgroup of G, by (3.7) we have that

$$
R^{\prime}(p)(G / P) \simeq \frac{S^{\prime}(p)}{N\left(s^{\prime}(p)\right)}(G / P)
$$

Apply case (1) to conclude

$$
R^{\prime}(p) \simeq \frac{S^{\prime}(p)}{n\left(S^{\prime}(p)\right)}
$$

But as in the proof of the previous theorem, we have that $S^{\prime}(p)$ is Noetherian and so by Lemma 4.3, $R^{\prime}(p) \simeq S^{\prime}(p)$.

Let $p_{1}, p_{2}, \ldots, p_{k}$ be the distinct primes dividing $o(G)$, and let $E_{p_{1}}$ denote the identity in $R^{\prime}\left(p_{i}\right)$ or $S^{\prime}\left(p_{i}\right)$. Write

$$
e=E_{p_{1}}+\ldots+E_{p_{k}} .
$$

Then e is an idempotent, and

$$
R G \simeq((1-e) R \oplus e R) G \simeq((1-e) S \oplus e S) G
$$

Hence

$$
((1-e) R) G \simeq \frac{R G}{(e R) G} \simeq \frac{S G}{(e S) G} \simeq((1-e) S) G
$$

By case (1), again $(1-e) R \simeq(1-e) S$ and thus $R \simeq S$.

5. Torsion free groups.

Theorem 5.1. Let R be a regular ring, G a group with torsion subgroup T and suppose that for $n \in \Theta(T), n$ is a unit in R. Then $R T$ is the unique maximal regular ring of $R G$ with $1_{R G}$.

Proof. Case 1: G torsion free. Let L be a regular subring of $R G$ with $1_{R G}$ $\in L$ and let $\alpha \in L$. As L is regular there exist $\beta, \gamma \in L$ with $\alpha^{2} \beta=\alpha \quad$ and $\quad(1-\alpha)^{2} \gamma=1-\alpha$.
Let P be a prime ideal of R. Then in $R / P G, \bar{\alpha}(\bar{\alpha} \bar{\beta}-\overline{1})=0$ and $(\overline{1-\alpha})((\overline{1-\alpha}) \bar{\gamma}-\overline{1})=0$.

But $R / P G$ is an integral domain and so either
a) $\bar{\alpha}=0 \quad$ or $\quad \overline{1-\alpha}=0$
or
b) $\bar{\alpha} \bar{\beta}=\overline{1} \quad$ and $(\overline{1-\alpha}) \bar{\gamma}=\overline{1}$.

If a) holds then $\alpha \in P G$ or $1-\alpha \in P G$ while if b) holds we must have $\bar{\alpha}=\bar{c} h$ and $\overline{1-\alpha}=u g$ for $\bar{c} \bar{u} \in U(R / P)$ and $h, g \in G$. Then $\overline{1-c h}=\bar{u} g$ implying $h=g=c$ and $\bar{\alpha}=\bar{c}=0$, i.e., $\alpha-c \in P G$. In any case there exists $c \in R$ with $\alpha-c \in P G$. Write $\alpha=\sum \alpha(g) g$. Then

$$
\alpha-c=\alpha(1)-c+\sum_{g \neq 1} \alpha(g) g \in P G .
$$

But P is an arbitrary prime ideal so that $\alpha(g)$ for $g \neq 1$ is nilpotent. Thus $\alpha(g)=0$ if $g \neq 1$ and $\alpha=\alpha(1)$. Hence $L \subseteq R$.

Case 2: General G. Again let L be a regular subring of $R G$ with $1_{R(i} \in L$ and let $\alpha \in L$. Find $\beta, \gamma \in L$ with $\alpha^{2} \beta=\alpha$ and $(1-\alpha)^{2} \gamma=1-\alpha$. Let H be the subgroup of G generated by $\operatorname{Supp}(\alpha) \cup \operatorname{Supp}(\beta) \cup \operatorname{Supp}(\gamma)$. Since H is finitely generated, the torsion subgroup H^{*} of H is a direct summand of H, say $H=H^{*} \oplus W$ with W torsion free. We have

$$
\alpha, \beta, \gamma \in R H \simeq R H^{*}(W)
$$

Since $R H^{*}$ is regular by case $1, \alpha, \beta, \gamma \in R H^{*} \subset R T$. Hence $L \subset R T$.
Corollary 5.2. Let R_{1} and R_{2} be regular. If $\sigma: R_{1} G \rightarrow R_{2} G$ is an isomorphism then $\sigma\left(R_{1} T\right)=R_{2} T$. If in particular, G is torsion free, then $\sigma\left(R_{1}\right)=R_{2}$.

Corollary 5.3. Let R_{1} and R_{2} be artinian and G torsion free. Then $R_{1} G$ $=R_{2} G$ implies

$$
\frac{\mathrm{R}_{1}}{J\left(R_{1}\right)} \simeq \frac{R_{2}}{J\left(R_{2}\right)}
$$

Proof. Let

$$
\eta_{i}: R_{i} G \rightarrow \frac{R_{i}}{J\left(R_{i}\right)} G
$$

be the natural maps for $i=1$, 2. As R_{i} is artinian, $J\left(R_{i}\right)$ is nilpotent and $J\left(R_{i}\right) G \subseteq J\left(R_{i} G\right)$. But $R_{i} / J\left(R_{i}\right) G$ is semi-simple so

$$
J\left(R_{i} G\right) \subseteq \operatorname{ker} \eta_{i}=J\left(R_{i}\right) G
$$

Thus

$$
\frac{R_{i}}{J\left(R_{i}\right)} G \simeq \frac{R_{i} G}{J\left(R_{i} G\right)}
$$

and the result follows by 5.2.

We do not know if R_{1}, R_{2} artinian G torsion free and $R_{1} G \simeq R_{2} G$ implies $R_{1} \simeq R_{2}$.

Definition. A ring is called reduced if its nil radical is 0 .
Lemma 5.4. Suppose R is a ring without non-trivial idempotents and G is a torsion free group. Then

$$
U(R G)=U(R) \times\left(1+N(R) \cdot \Delta_{R}(G)\right) \times G
$$

If, in particular R is reduced, then $U(R G)=U(R) G$.
Proof. $U(R G)=U(R) \times V$ where

$$
V=\left\{v \in \sum e_{g} g \in U(R G) \mid \sum e_{g}=1 e_{g} \in R\right\}
$$

If R is an integral domain, $V=G$. Hence, if P is a prime ideal of R

$$
e_{g} e_{h} \equiv \delta_{g . h} e_{g} \bmod P
$$

where $\delta_{g . h}$ is the Krondeker delta function. Taking the intersection of all prime ideals gives this congurence modulo $N(R)$. But orthogonal idempotents lift modulo the nil ideal $N(R)$. As R has only trivial idempotents, we must have

$$
v=g w \text { with } g \in G \quad \text { and } \quad w \equiv 1 \bmod \left(N(R)\left(R G \Delta_{\mathrm{R}}(G)\right)\right) .
$$

Because

$$
N(R)\left(R G \Delta_{R}(G)\right)=N(R) \Delta_{R}(G),
$$

we conclude $w \in 1+N(R) \Delta_{R}(G)$ which implies the lemma.
Proposition 5.5. Let R be a reduced ring with no non-trivial idempotents and G a torsion free abelian group. Then any local subring of $R G$, containing $1_{R G}$, is contained in R.

Proof. Let L be a local subring of $R G$ containing $1_{R G}$. If $a \in L, 1-a \in$ L, and either a is a unit or $1-a$ is a unit. We can assume a is a unit. By Lemma 5.4, $a=u g$ with $u \in R, g \in G$. Also $a+a^{-1}$ or $1-\left(a+a^{-1}\right)$ is a unit. If $1-\left(a+a^{-1}\right)=v g_{2}$ with $v \in U(R), g_{2} \in G$ then

$$
1-u g-u^{-1} g^{-1}=v g_{2}
$$

which implies $g=g^{-1}=g_{2}=e$ and $a=u, u \in U(R)$. Similarly if $(a+$ a^{-1}) is a unit. Thus $L \subseteq R$.

Corollary 5.6. If I is a local reduced ring, R a ring and G a torsion free abelian group then $I G \stackrel{\text { g }}{\simeq} R G$ implies $\sigma(I) \subseteq R$.

Proof. $N(R G)=N(R) G$, so that R is reduced. $I G$ has no non trivial idempotents (see e.g. [25], p. 40) and so R does not. The result now follows from Proposition 5.5.

Corollary 5.7. Let R_{1} and R_{2} be local rings G_{1}, G_{2} torsion free abelian groups and $R_{1} G \simeq R_{2} G$. Then $R_{1} / N_{1}\left(R_{1}\right) \simeq R_{2} / N_{2}\left(R_{2}\right)$.

Proof. Let $\sigma: R_{1} G_{1} \rightarrow R_{2} G_{2}$ be the given isomorphism. Write $N_{i}=N\left(R_{i}\right)$. Then

$$
\begin{aligned}
& \frac{R_{1} G}{N_{1} G}=\frac{R_{1} G}{N\left(R_{1} G\right)} \simeq \frac{R_{2} G}{N\left(R_{2} G\right)}=\frac{R_{2} G}{N\left(R_{2}\right) G} \text { and } \\
& \bar{\sigma}: \frac{R_{1}}{N_{1}} G_{1} \simeq \frac{R_{2}}{N_{2}} G_{2}
\end{aligned}
$$

But R_{i} / N_{i} is local reduced. By Corollary 5.6

$$
\bar{\sigma}\left(R_{i} / N_{i}\right) \subseteq R_{2} / N_{2}
$$

Similarly

$$
\bar{\sigma}^{-1}\left(R_{2} / N_{2}\right) \subseteq R_{1} / N .
$$

Hence $R_{1} / N_{1} \simeq R_{2} / N_{2}$.
Theorem 5.8. Let R be a reduced ring with no non trivial idempotents, S a ring and G a torsion free abelian group. Suppose $R G \stackrel{\sigma}{\sim} S G$ and $\sigma(R) \subseteq$ S. Then there exist subgroups H, K of G such that
(i) $G \simeq H$
(ii) $G=H K$ (internal direct sum)
(iii) $S=\sigma(R K)$.

Proof. As

$$
0=N(R) G=N(R G)=\sigma^{-1}(N(S G))=\sigma^{-1}(N(S) G),
$$

$N(S)=0$. If $e \in S G$ and $e^{2}=e, \sigma^{-1}(e) \in R G$ and $\sigma^{-1}(e) \in R([24])$. Thus $\sigma^{-1}(e)=0$ or 1 and $e=0$ or 1 , and S is a reduced ring with no non trivial idempotents. If $g \in G, \sigma^{-1}(g)=U_{g} h_{g}$ with $U_{g} \in U(R), h_{g} \in G$ from Lemma 5.4. i.e.,

$$
g=\sigma\left(U_{g}\right) \sigma\left(h_{g}\right), \quad \sigma\left(U_{g}\right) \in \sigma(R) \subset S .
$$

Let $\alpha_{g}=\sigma\left(U_{g}{ }^{-1}\right)$ then α_{g} is such that $\sigma^{-1}\left(\alpha_{g} g\right)=h_{g} \in G$. Thus if $g \in G$
there exists an $\alpha_{g} \in \sigma(R)$ such that $\sigma^{-1}\left(\alpha_{g} g\right)=h_{g} \in G$. Let

$$
H=\left\{h \in G: \sigma^{-1}(\alpha)=h \text { for some } \alpha \in \sigma(R) g \in G\right\}
$$

H is a subgroup of G and $\sigma(H) \subseteq \sigma(R) G$ implying $\sigma(R H) \subseteq \sigma(R) G$.

Let

$$
K=\left\{g \in G: \sigma(g) \in S 1_{G}=S\right\}
$$

K is a subgroup of G. Clearly $H \cap K=\{1\}$. Let $g \in G$ and $\sigma(g)=u g_{1}$ (Lemma 5.4), $g=\sigma^{-1}(u) \sigma^{-1}\left(g_{1}\right)$. Write $\sigma^{-1}(u)=v g_{2}, \sigma^{-1}\left(g_{1}\right)=w g_{3}$ with $v, w \in U(R), g_{2}, g_{3} \in G$. So $g=v g_{2} w g_{3}$ and $v w=1$. As $g_{2}=g g_{3}^{-1}$,

$$
\begin{aligned}
\sigma\left(g_{2}\right) & =u g_{1} \sigma\left(g_{3}^{-1}\right) \\
& =u g_{1} \sigma\left(w \sigma^{-1}\left(g_{1}^{-1}\right)\right) \\
& =u g_{1} \sigma(w) g_{1}^{-1} \\
& =u \sigma(w) \in U(S)
\end{aligned}
$$

and $g_{2} \in K$,

$$
g_{3}=w^{-1} \sigma^{-1}\left(g_{1}\right)=v \sigma^{-1}\left(g_{1}\right)=\sigma^{-1}\left(\sigma(v) g_{1}\right)
$$

and $g_{3} \in H$.
This shows G is the direct sum of H and K establishing (ii). $\sigma(R H) \subseteq$ $\sigma(R) G$ while $\sigma^{-1}(\sigma(R) G) \subseteq R H$ implying $\sigma(R H)=\sigma(R) G$. Then

$$
\left.\sigma\right|_{R H}: R H \rightarrow \sigma(R) G
$$

implies $H \simeq G$ via $\bar{\sigma}(h)=g$ if $\sigma(h)=\alpha g$. This shows (i). $\sigma(R K) \subseteq S$.

$$
S G=\sigma(R G)=\sigma(R(K H))=\sigma((R K) H) \subseteq \sigma(R K) G \subseteq S G
$$

This shows $S G=\sigma(R K) G$. If $s \in S, S=\sum \alpha_{i} g_{i}$ with $\alpha_{i} \in \sigma(R K), g_{i} \in G$.
But each $\alpha_{i} \in S$. So $s=\alpha_{1}$ with $g_{1}=e$ and $s=\sigma(R K)$.
Corollary 5.9. If F is a field, S a ring and G a torsion free abelian group then $F G \simeq S G \Leftrightarrow$ there exist subgroups H, K of G with $G \simeq H \oplus K$, $H \simeq G$ and $S \simeq \sigma(F K)$.

Proof. If the right hand side holds,

$$
F G \simeq F(K \oplus H) \simeq F K(H) \simeq S H \simeq S G
$$

Conversely, from 5.6, $\sigma(F) \subset S$. Theorem 5.8 now implies the result.
Similarly using 5.6 and 5.8 , it follows that
Corollary 5.10. If R is a local reduced ring, S a ring and G a torsion
free abelian group then $F G \simeq S G \Leftrightarrow$ there exist subgroups H and K of G with $H \oplus K \simeq G H \simeq G$ and $S=\sigma(R K)$.

Corollary 5.11. If S is a ring, G a torsion free abelian group then $Z G$ $\simeq S G \Leftrightarrow$ there exist subgroups H and K of G with $H \oplus K \simeq G, H \simeq G$ and $S=\sigma(Z K)$.

Theorem 5.12. Let

$$
R=\bigoplus_{i=1}^{n} F_{i}
$$

be a direct sum of fields, S a ring and G a torsion free abelian group. Then $R G \simeq S G$ if and only if there exist subrings $S_{1}, S_{2}, \ldots, S_{n}$ of S, subgroups $H_{1}, K_{1}, H_{2}, K_{2}, \ldots, H_{n} K_{n}$ of G with
(i) $S=S_{1} \oplus S_{2} \oplus \ldots \oplus S_{n}$
(ii) $G \simeq H_{i}, \quad i=1,2, \ldots, n$
(iii) $G \simeq H_{i} \oplus K_{i}, \quad i=1, \ldots, n$
(iv) $S_{i} \simeq F_{i} K_{i}$.

Proof. (\Leftarrow) This follows as in Corollary 5.9. (\Rightarrow). Let

$$
R G=\bigoplus_{i=1}^{n} F_{i} G \xrightarrow{\sigma} S G
$$

be the given isomorphism. Since G is torsion free every idempotent of $R G$ belongs to R. I at $o_{:}, \rho_{7} \ldots, e_{n}$ be the orthogonal primitive idempotents of R numbered so that $e_{i} R=F_{i}$. Then $\left\{\sigma\left(e_{i}\right)=f_{i}, i=1, \ldots, n\right\}$ is the unique set of orthogonal primitive idempotents in S. Let $S_{i}=f_{i} S$. Then

$$
\sigma\left(F_{i} G\right) \simeq \sigma\left(e_{i} R G\right) \simeq f_{i} S G=S_{i} G, \quad i=1, \ldots, n
$$

From Corollary 5.9, there exist subgroups H_{i}, K_{i} of G with $H_{i} \simeq G, G \simeq$ $H_{i} \oplus K_{i}$ and $S_{i}=\sigma\left(F_{i} K_{i}\right)$. Then

$$
\begin{aligned}
S G & =\sigma\left(F_{1} G \oplus \ldots \oplus F_{n} G\right)=\sigma\left(F_{1} G\right) \oplus \ldots \oplus \sigma\left(F_{n} G\right) \\
& =S_{1} G \oplus \ldots \oplus S_{n} G \\
& \simeq\left(S_{1} \oplus \ldots \oplus S_{n}\right) G \subseteq S G
\end{aligned}
$$

So $S G=\left(S_{1} \oplus \ldots \oplus S_{n}\right) G$ and as $S_{1} \oplus \ldots \oplus S_{n} \subseteq S$ we have

$$
S_{1} \oplus \ldots \oplus S_{n}=S
$$

6. Mixed groups. In this section, we give some applications and extensions of the previous theorems to mixed groups.

Proposition 6.1. Let R and S be finite direct sums of fields, G a group with $R G$, and $S G$ semi-simple. If $R G \simeq S G$ then $R T \simeq S T$ where T denotes the torsion subgroup of G.

Proof. Let $R=\oplus F_{i}$ with F_{i} a field. Then $F_{i} T$ is regular ($F_{i} G$ is regular if and only if G is locally finite and has no element of order p if char $F=p$. See e.g. [23]). So if $n\left||T|, n\right.$ is a unit in F_{i} for all i. From Theorem 5.1 $R T$ is the maximal subring of $R G$ with $1_{R G}$. Similarly for $S T$ and $R T \simeq S T$.

Proposition 6.2. Let R_{1} and R_{2} be perfect rings of characteristics p, S_{p} the p-Sylow subgroup of group G and $R_{1} G \simeq R_{2} G$. Then

$$
\frac{R_{1}}{J\left(R_{1}\right)}\left(G / S_{p}\right) \simeq \frac{R_{2}}{J\left(R_{2}\right)}\left(G / S_{p}\right)
$$

Proof. (For the definition of perfect ring see [26], p. 127.) Since R_{i} is perfect, $J\left(R_{i}\right)$ is T nilpotent and hence nil. From Corollary 3.6,

$$
\begin{aligned}
J\left(R_{i} G\right) & =\Delta\left(G, S_{p}\right)+J\left(R_{i}\right) G \text { and } \\
\frac{R_{i} G}{J\left(R_{i} G\right)} & \simeq \frac{R_{i}}{J\left(R_{i}\right)}\left(G / S_{p}\right)
\end{aligned}
$$

Since $R_{1} G \simeq R_{2} G$ implies $R_{1} G / J\left(R_{1} G\right) \simeq R_{2} G / J\left(R_{2} G\right)$ we have the result.

Corollary 6.3. Let F_{1} and F_{2} be fields of characteristic p, S_{p} the p-Sylow subgroup, and T the torsion subgroup, of the group G. Then

$$
F_{1} G \simeq F_{2} G \Rightarrow F_{1}\left(T / S_{p}\right) \simeq F_{2}\left(T / S_{p}\right)
$$

Proof. By Proposition 6.2, $F_{1}\left(G / S_{p}\right) \simeq F_{2}\left(G / S_{p}\right)$ with $F_{1}\left(G / S_{p}\right)$ semi-simple. As T / S_{p} is the torsion subgroup of G / S_{p}, Corollary 7.2 gives our conclusion.

THEOREM 6.4. Let F_{1}, F_{2} be fields and G_{1}, G_{2} groups with $F_{1} G_{1} \simeq F_{2} G_{2}$. Then $F_{1} \simeq F_{2}$.

Proof. If F_{1} and F_{2} are fields of characteristic p with p a prime or zero, then, using (6.3) we have

$$
F_{1}\left(T_{1} / S_{p_{1}}\right) \simeq F_{2}\left(T_{2} / S_{p_{2}}\right)
$$

From Theorem 4.2, the result now follows.
Theorem 6.4 is not valid if F_{1} is a field and F_{2} is the finite sum of fields as the following example shows.

Example. Let

$$
G=\bigoplus_{i=1}^{\infty} \mathbf{Z}_{3}
$$

Then $G \simeq \mathbf{Z}_{3} \oplus G$ and

$$
\begin{aligned}
\mathbf{Q} G & \simeq \mathbf{Q}\left(\mathbf{Z}_{3}\right) G \\
& \left.\simeq \mathbf{Q}+\mathbf{Q}\left(\zeta_{3}\right)\right) G \\
& \simeq \mathbf{Q} G \oplus \mathbf{Q}\left(\zeta_{3}\right) G \\
& \simeq \mathbf{Q} G \oplus \mathbf{Q}\left(\zeta_{3}\right) G \oplus \mathbf{Q}\left(\zeta_{3}\right) G \\
& \left.\simeq \mathbf{Q} \oplus \mathbf{Q}\left(\zeta_{3}\right)\right) \oplus \mathbf{Q}\left(\zeta_{3}\right) G
\end{aligned}
$$

If $R=\mathbf{Q} \oplus \mathbf{Q}\left(\zeta_{3}\right) \oplus \mathbf{Q}\left(\zeta_{3}\right)$, then \mathbf{Q} and R are each finite direct sums of fields and R is not isomorphic to $\mathbf{Q} H$ for any subgroup H of G. In fact, R is not isomorphic to a group ring, over \mathbf{Q}, for any group, as $R \neq \mathbf{Q Z}_{5}$ and $\operatorname{dim} R / \mathbf{Q}=5$.

Theorem 6.5. Let G be an abelian group with finite torsion group T. Let R be a finite sum of fields and S a ring. Suppose $R G \simeq S G$.
(a) If S is artinian, then $R \simeq S / N(S)$.
(b) If G is finitely generated, then $R \simeq S$.

Proof. As T is finite, we can find a torsion free subgroup G_{1} with $G \simeq$ $T \times G_{1}$

$$
R(T) G_{1} \simeq R G \simeq S G \simeq S(T) G_{1}
$$

Case (1): $R G$ semi-simple. Then $R T$ is semi-simple and thus a finite sum of fields $R T=F_{1} \oplus \ldots \oplus F_{k}$. By Theorem 5.12 there exist subrings, $S_{1}, S_{2}, \ldots, S_{k}$ of S and subgroups H_{i}, K_{i} of $G_{1}(i=l, \ldots, k)$ such that

$$
\begin{aligned}
& H_{i} \oplus K_{i} \simeq G_{1}, \quad H_{i} \simeq G_{1}, \quad S_{i} \simeq F_{i}\left(K_{i}\right) \quad \text { and } \\
& S_{1} \oplus \ldots \oplus S_{k}=S
\end{aligned}
$$

If G is finitely generated, then G_{1} is free abelian of finite rank. Since rank $\left(H_{i}\right)+\operatorname{rank}\left(K_{i}\right)=\operatorname{rank}\left(G_{1}\right)$ and $\operatorname{rank}\left(H_{i}\right)=\operatorname{rank}\left(G_{i}\right)$, we have $K_{i}=$ $\{1\}, i=1, \ldots, k$. So $S_{i} \simeq F_{i}$ and $S T \simeq R T$. By Theorem 4.5, we now have $R \simeq S$.

If S, and hence S_{i}, is artinian, as $S_{i} \simeq F_{i}\left(K_{i}\right), K_{i}$ must be finite ([8]) and thus K_{i} is again $\{1\}$. i.e., $R T \simeq S T$. By Theorem 4.5 we have in either case $R \simeq S$.

Case (ii): $R G$ is not semi-simple. Let $p_{1}, p_{2}, \ldots p_{k}$ be the distinct primes dividing $o(T)$. Let

$$
\begin{aligned}
R^{\prime}\left(p_{i}\right) & =\left\{x \in R \mid \quad p_{i} x=0\right\} \quad \text { and } \\
S^{\prime}\left(p_{i}\right) & =\left\{x \in S \mid \quad p_{i} x=0\right\} .
\end{aligned}
$$

$S^{\prime}\left(p_{i}\right)$ is an ideal of S and $R^{\prime}\left(p_{i}\right) G \simeq S^{\prime}\left(p_{i}\right) G$. Let P_{i} be the p_{i}-Sylow subgroup of G. Since $o\left(P_{i}\right)<\infty$, we can write G in the form $G \simeq P_{i} \times G_{i}$. then, from (3.7)

$$
R^{\prime}\left(p_{i}\right) G_{i} \simeq \frac{S^{\prime}\left(p_{i}\right)}{N\left(S^{\prime}\left(p_{i}\right)\right)}\left(G_{i} / P_{i}\right)
$$

and from case (1) we conclude

$$
R^{\prime}\left(p_{i}\right) \simeq \frac{S^{\prime}\left(p_{i}\right)}{N\left(S^{\prime}\left(p_{i}\right)\right)}
$$

If G is finitely generated, then $R^{\prime}\left(p_{i}\right) G$ is noetherian. We have a surjective homomorphism

$$
\frac{S^{\prime}\left(p_{i}\right)}{N\left(S^{\prime}\left(p_{i}\right)\right)} G \rightarrow R^{\prime}\left(p_{i}\right) G \rightarrow S^{\prime}\left(p_{i}\right) G
$$

with kernel $N\left(S^{\prime}\left(p_{i}\right)\right) G_{i}$. From Lemma 4.3, $N\left(S^{\prime}\left(p_{i}\right)\right)=0$.
Continue, as in the proof of Theorem 4.5, to conclude $R \simeq S$ in this case.

Corollary 6.6. Let G be an abelian group with finite torsion group T. Let R and S be finite sums of fields. If $R G \simeq S G$ then $R \simeq S$.

Corollary 6.7. Let G be an abelian group with finite torsion group T. Suppose R is a finite sum of fields and S an artinian ring. If $R G$ is semi-simple and $R G \simeq S G$ then $R \simeq S$.

Proof. This has been shown in the proof of Theorem 6.5.

7. Integral group rings.

Lemma 7.1. Let G be an abelian group with torsion subgroup T and R a ring. Suppose $Z G \simeq R G$, then
(i) $u(R) \cap \Theta(G)=\{1\}$;
(ii) if $n \in \Theta(G)$, n is regular in $R G$;
(iii) $\sigma(Z T) \subseteq R T$;
(iv) if R is an integral domain and x is a torsion element in $U(R)$, then $x= \pm 1$.

Proof. (i) If $n \in U(R) \cap \Theta(G)$, then there exists an $r \in R$ with $n r=1$. Then $\sigma^{-1}(n r)=n \sigma^{-1}(r)=1$. Write $\sigma^{-1}(r)=\sum n_{i} g_{i}, n_{i} \in \mathbf{Z}$. So $1=$ $\sum n n_{i} g_{i}$. If $g_{i}=1$, we have $n n_{1}$ and $n n_{i}=0$ for $i \neq 1$. As $n \geq 1, n=$ $n_{1}=1$.
(ii) Suppose n is not regular in $R G$. Then there is an $r \neq 0$ in $R G$ with $n r$ $=0 . \quad \sigma^{-1}(n r)=n \sigma^{-1}(r)=0$. If $\sigma^{-1}(r)=\sum n_{i} g_{i}, \sum n n_{i} g_{i}=0$ and $n n_{i}=$ 0 for all i. Thus $n_{i}=0$ for all i and $\sigma^{-1}(r)=0$, or $r=0$, a contradiction.
(iii) Let $t \in T$ with $t^{n}=1$. From (ii) n is regular in $R G$. Write $\sigma(t)=\alpha$, so that $\alpha^{n}=1$. From [17], Proposition 5, $\alpha \in R T$, and $\sigma(T) \leqq R T$. Hence $\sigma(Z T) \leqq R T$.
(iv) Suppose $x^{n}=1$. If $\sigma^{-1}(x)=\alpha$, then $\alpha \in \mathbf{Z}(T)$ by Theorem 5.1. Since $\alpha \in \mathbf{Z} T, \alpha^{n}=1$, we have that $\alpha= \pm t$ for some $t \in T$ (see, e.g. [12]). Suppose, $\sigma^{-1}(a)=t$. Then $t^{n}=1$ implies

$$
(t-1)\left(1+t+t^{2}+\ldots+t^{n-1}\right)=0
$$

with $1+t+t^{2}+\ldots+t^{n-1} \neq 0$. Similarly

$$
(1-a)\left(1+a+a^{2}+\ldots+a^{n-1}\right)=0
$$

with either $1-a=0$ or $1+a+a^{2}+\ldots+a^{n-1}=0$ (R is an integral domain). But $1+t+t^{2}+\ldots+t^{n-1} \neq 0$ implies

$$
\left(1+t+t^{2}+\ldots+t^{n-1}\right)=1+a+a^{2}+\ldots+a^{n-1} \neq 0
$$

guaranteeing $a=1$. Similarly if $\sigma^{-1}(a)=-t$, then $\sigma^{-1}(-a)=t$ and $-a$ $=1$ or $a=-1$. Hence $t(U(R))= \pm 1$.

THEOREM 7.2. Let G be a torsion group, and R a ring. Then $Z G \simeq R G$ if and only if there exist subgroups H, K of G with
(i) $H \simeq G$
(ii) $H \oplus K \simeq G$
(iii) $R \simeq Z K$.

Proof. If subgroups H, K exist satisfying (i), (ii), (iii), then $Z G \simeq R G$ as in Corollary 5.9.

Conversely, suppose $\sigma: Z G \rightarrow R G$ is the given isomorphism. If $x \in \pm G$, $\sigma^{-1}(x) \in \pm G$. Note that we cannot have $\sigma^{-1}\left(g_{1}\right)=h$ and $\sigma^{-1}\left(g_{2}\right)=-h$ for $g_{1}, g_{2} \in G$. So let

$$
H=\left\{h \in G \mid \quad \sigma^{-1}(g)= \pm h \text { for some } g \in G\right\}
$$

Then H is a subgroup of G and $H \simeq G$, since $\sigma(Z H) \subseteq Z G$ and $\sigma^{-1}(Z G)$ $\subseteq Z H$ implying $\left.\sigma\right|_{Z H}: Z H \rightarrow Z G$ is an isomorphism. By [25], Corollary 2.10, $G \simeq H$. This shows (i).

Let

$$
K=\{g \in G \mid \quad \sigma(g) \in R\}
$$

K is a subgroup of G and $\sigma(Z K) \subseteq R$.
We prove (ii) by showing that G is the internal direct sum of H and K. Clearly $H \cap K=\{1\}$. Let

$$
L=\{g \in G \mid \quad \sigma(g)=u h \text { for some } h \in G, u \in t(U(R))\}
$$

L is a subgroup of G and H, K are subgroups of L. Let $g \in L$. Then $\sigma(g)$ $=u h$ for some $h \in G$ and $u \in t(U(R))$, and

$$
\sigma^{-1}(u h)=\sigma^{-1}(u) \sigma^{-1}(h)=g .
$$

But

$$
\begin{aligned}
\sigma^{-1}(u) & = \pm k, k \in K \text { and } \\
\sigma^{-1}(h) & = \pm h_{1}, h_{1} \in H
\end{aligned}
$$

implying $\sigma^{-1}(u)=k$ and $\sigma^{-1}(h)=h_{1}$ or $\sigma^{-1}(u)=-k$ and $\sigma^{-1}(h)=-h$ and $g=k h_{1}$. Thus $L=H K$ (direct sum), and we must check that $L=G$.

Let S_{p} denote a p-Sylow subgroup of G. Define
Sup $G=\left\{p \in Z \mid \quad p\right.$ a prime and $\left.S_{p} \neq 1\right\}$,
$\operatorname{Inv} R=\{p \in Z \mid \quad p$ a prime and $p \in U(R)\}$
and
$\mathrm{Zd} R=\{p \in Z \mid \quad p$ a prime and p is a zero divisor in $R\}$.
From Lemma 1.1
Sup $G \cap \operatorname{Inv} R=\emptyset \quad$ and $\quad \operatorname{Sup} G \cap \mathrm{Zd} R=\emptyset$.
Thus from [17], p. 494, $S^{p}=V_{p}$ where V_{p} denotes the p component of $U(R G)$.

Let $g \in G$. Then $\sigma(g)=u \cdot \alpha_{1}$ with $u \in U(R), \alpha_{1} \in U(R G)$ ([17]) and $\alpha_{1}^{n}=1$ for some n. Then

$$
\alpha_{1} \in V_{p_{1}} \times \ldots \times V_{p_{k}}=S_{p_{1}} \times \ldots \times S_{p_{k}} \subset G
$$

for some finite k. i.e., $\alpha_{\mid} \in G$. Thus $\sigma(g) \in U(R) \cdot G$. As g is of finite order $\sigma(g)=u \bar{g}, u \in U(R), \bar{g} \in G$, then $u \in t(U(R))$. Thus $g \in L$. This shows $L=G$ and establishes (ii).

Finally

$$
R G=R(K H) \simeq \sigma(Z K H) \simeq \sigma(Z K) \sigma(H) \simeq \sigma(Z K) G \subseteq R G
$$

and so $R G=\sigma(Z K) G$. Thus $R=\sigma(Z K)$.
Modifications of Theorem 7.2 can be given if G is not torsion.

References

1. I. Adjaero, Uniqueness of the coefficient ring and related problems in group rings, (PH.I). Thesis) University of Connecticut (1980).
2. T. Akasaki, Idempotent ideals in integral group rings, J. Algebra 23 (1972), 343-346.
3. J. M. Batman and D. B. Coleman, Group algebras with nilpotent unit groups, Proc. Amer. Math. Soc. 19 (1968). 448-449.
4. W. D. Burgess, On semi-perfect group rings, Can. Math. Bull. I2 (1969), 645-652.
5. G. H. Cliff and S. K. Sehgal, On the trace of an idempotent in a group ring. Proc. Amer. Math. Soc. 6? (1977), 11-14.
6. D. B. Coleman, Finite groups with isomorphic group algebras. Trans. Amer. Math. Soc. 10.5 (1962), 1-8.
7. - On group rings, Can. J. Math. 22 (1970). 249-254.
8. I. G. Connell, On the group ring, Can. J. Math. 15 (1963), 650-685.
9. E. Formanck, Idempotents in Noetherian group rings, Can. J. Math. 25 (1973), 366-369.
10. L. Grunenfelder and M. M. Parmenter, Isomorphic group rings with non-isomorphic coefficient rings, Can. Math. Bull. (to appear).
11. C. R. Hampton and D. S. Passman, On the semisimplicity of group rings of solvable groups. Transactions of the Amer. Math. Soc. 173 (1972), 289-300).
12. G. Higman, The units of group rings, Proc. London Math. J. 46 (1940), 231-248.
13. M. Hochester, Non-uniqueness of coefficient rings in a polynomial ring, Proc. Amer. Math. Soc. 34 (1972), 81-82.
14. W. T. Hungerford, Algebra (Holt Rinehart and Winston, 1974).
15. D. C. Lantz, R-automorphisms of $R G$ for G abelian torsion free, Proc. amer. Math. Soc. ol (1976), 1-6.
16. W. May, Group algebras over finitely generated rings. J. of Alg. 39 (1976), 483-511.
17. -Isomorphism of group algebras, J. of Alg. 40 (1976), 10-18.
18. M. M. Parmenter, Isomorphic group rings, Can. Math. Bull. 18 (1975), 567-576.
19. - Coefficient rings of isomorphic group rings. Bol. Soc. Bras. Mat. 7 (1976), 59-63.
20. M. M. Parmenter and S. K. Sehgal, Uniqueness of the coefficient ring in some group rings, Can. Math. Bull. I6 (1973), 551-555.
21. D. S. Passman, Nil ideals in group rings, Mich. Math. J. 9 (1962), 375-384.
22. - Radicals of group rings, Comm. in Alg. 2 (1974). 295-305.
23. -The algebraic structure of group rings (John Wiley \& Sons, New York, 1977).
24. W. Rudin and H. Schneider, Idempotents in group rings, Duke Math. J. 31 (1964). 585-602.
25. S. K. Sehgal, Topics in group. rings (Marcel Dekker, Inc., New York \& Basel, 1978).
26. Units in commutative integral group rings, Math. J. Okayama Univ. 14 (1970), 135-138.

University of Nigeria - Nsukka,
Ahambra State, Nigeria;
University of Connecticut,
Storrs, Connecticut

