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STABLE INDEX PAIRS
FOR DISCRETE DYNAMICAL SYSTEMS

TOMASZ KACZYNSKI AND MARIAN MROZEK

ABSTRACT. A new shorter proof of the existence of index pairsfor discrete dynam-
ical systems is given. Moreover, the index pairs defined in that proof are stable with
respect to small perturbations of the generating map. The existence of stableindex pairs
was previously known in the case of diffeomorphisms and flows generated by smooth
vector fields but it was an open question in the general discrete case.

1. Introduction. Index pairsconstituteabasictool in theconstruction of the Conley
index, which isatopological invariant used in qualitative studies of dynamical systems.
The original construction of the Conley index by Charles Conley and his students (cf.
[1]) concerned flows but in the recent years it was generalized to discrete dynamical
systems[6, 7] and discrete multivalued systems[2]. This opened the way to many new
applications, in particular to acomputer assisted proof of chaosin the L orenz equations
[3,4,5].

The Conley index is associated with an isolated invariant set, i.e. an invariant set
which is maximal in some its compact neighborhood called an isolating neighborhood.
The construction of the Conley index for a discrete dynamical system consists of two
stepsthat differ by the techniquesemployed. Thefirst step, based on pure set-theoretical
topology, is to construct a pair of subsets (P;, P,) of the isolating neighborhood, called
an index pair. The second step consists in extracting algebraic information from the
topology of the index pair by means of algebraic topology tools and certain purely
algebraic functors.

The fundamental fact in the Conley index theory is that both the isolating neigh-
borhood and the Conley index are preserved under a small perturbation. This is almost
straightforward for isolating neighborhoodsbut required arather complicated proof until
recently, because the index pairs need not be stable under perturbations in general.

In arecent paper [2], the definitions of isolating neighbourhood, index pair, and the
Conley index, together with the proof of homotopy and additivity property of the index,
were generalized for discrete multivalued dynamical systems.

The main motivation of that paper wasto provide atheoretical background of numer-
ical computation used by Mischaikow and Mrozek [3] in their computer assisted proof
of chaosin the Lorenz system, where finitely represented multivalued maps appear as a
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tool for discretisation. However, the consequences of that generalization surpassed the
authors' initial expectations. The multivalued mapping approach not only isaconvenient
model for certain numerics but also permits to simplify certain proofs and to obtain new
results concerning single-valued continuous maps.

Theaim of this short report istwofold: First, we provide a new proof of the existence
of index pairs for continuous maps which is shorter and, as we believe, more intuitive
than the previous ones given in [6] and [2]. Second, the index pairs we get in the proof
are stable under small perturbations of the map generating the dynamical system. The
existence of stable index pairs was previously known in the case of diffeomorphisms
and flows generated by C' vector fields, cf. [7] and [10], but is was an open question
in the case of a general discrete dynamical system (i.e. iterates of a homeomorphism)
and afortiori, in the case of a discrete semidynamical system (i.e. positive iteratives of
a continuous map).

Werefer thereader to [9] for another interesting application of multivalued dynamical
systemsto single-valued ones. It is proved there that, in the case of a dynamical system
on R", there always exist index pairs P = (P, P>) such that P; are finite polyhedra.

2. Basic concepts. Inthis section, werecall from [2] basic definitions.

Let us recal that a mapping F: X — P(Y), where X, Y are metric spaces and
P(Y) is the set of all subsets of Y, is called upper semicontinuous (usc) if F~(A) :=
{x € X: FX)NA # (} is closed for any closed A C Y or, equivdently, if the set
{xe X:F(x) c U}isopenforany openU C Y. If A C X, wedenoteby F(A) the union
U{F(X) : x € A} C Y and not a subset of P (Y). Given a positive integer n, F" denotes
the n-th superposition of F defined recursively by F"(x) := F(F"*(x)). The graph of
Fisthe set G(F) := {(x.y) € X X Y :y € F(X)}. Let us recal that any usc mapping
with compact values has a closed graph and it sends compact sets to compact sets. If
F:X — P(Y)isuscthentheset D(F) := {x € X : F(x) # 0} (called the effective domain
of F) isclosed.

Let now (X, d) be a given locally compact metric space. If A C X, we denote the
boundary of A by bdA, its interior by intA, and we let B.(A) := {x € X : d(x,A) <
e}.e > 0. We denote the sets of al integers, nonnegative integers, and nonpositive
integersby 7, 7*, and Z—, respectively. By an interval we mean aninterval in Z, i.e. an
intersection of aclosed real interval with Z.

DEFINITION 2.1.  An usc mapping F: X x Z — P (X) with compact valuesis called a
discrete multivalued dynamical system (dmds) if the following conditions are satisfied:

(i) Forallxe X, F(x,0)={x};

(i) Foraln.me Zwithnm> 0andall x € X, F(F(x.n).m) = F(x.n +m);
(iii) Foralx,y e X, yeF(x —1) < x<F(y.1).

We use the notation F"(X) := F(x, n). Note that F" coincides with a superposition of
F1: X — P(X) or itsinverse (F1)~*. This justifies that we will call F* the generator of
the dmdsF. We will usually denote the generator simply by F and identify it with the
dmds. Thiswill cause no misunderstanding unless avalue of F is considered but in that
case the meaning will be clear from the number of arguments.
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We do not assume that the values of F are non-empty. Thus, the definition of dmds
extends, to the multivalued case, not only the definition of a discrete dynamical system
f: X x Z — X (generated by a homeomorphism) but also the definition of a discrete
semidynamical system f: X x Z* — X (generated by a continuous map) since one may
define negative-time valuesby theproperty (iii). More precisely, anuscmap F: X — P (X)
with compact valuesgeneratesadmdsif and only if itisproper,i.e. F~(K) is compact for
any compact K C X. If X is compact (and problems are often reduced to that case) then
any continuous map f: X — X generates admds by F(x, 1) = {f(x)}, F(x, —1) = f~1(x),
forx € X.

DEFINITION 2.2. Let | be an interval in Z with 0 € I. A single valued mapping
o:1 — Xisasolution for F throughx € Xif o(n+1) € F(o(n)) fordln.n+1¢el,and
o(0) = x.

Notethat if o:1 — Xisasolution for F then o(n) € F"(U(O)) for al n € | (The proof
is straightforward by induction on mand k, wherel = [—k, m]. k, m € Z*). Theexistence
of asolution through x forces F"(x) to be nonempty for n € I. Note that if f: X — Xis
continuous and proper, and F(x) := B, (F(x)) then the definition of asolution o:Z — X
for F coincides with the definition of aé-pseudo trajectory of f, cf. [8].

Given asubset N C X, we introduce the following notation:

inv* N := {x € N : there exists asolution o: Z* — N for F through x}
inv™ N := {x € N : thereexistsasolution o: Z~ — N for F through x}
invN := {x € N : thereexistsasolution o: Z — N for F through x}

By (i) we have: invN = inv* NN inv~ N. It was proved in [2] that the sets inv(®) N
are compact for any compact N.

Let diamy F := sup{diamF(x) : x € N} and dist(A, B) := min{d(x,y) : X € Ajy €
BL.A.BCX.

DEFINITION 2.3. A compact subset N C Xiscalled
(a) anisolating neighbourhood for F if

(2.1 Bagiamyr(invN) CintN
or equivalently
dist(inv N, bdN) > diamy F
(b) anisolating block for F if
(2.2) Baiam, F (F"(N) "N N F(N)) C intN
or equivalently
dist(F~*(N) "N N F(N). bdN) > diamy F

A straightforward verification showsthat (2.2) implies(2.1), i.e. every isolating block
is an isolating neighbourhood but not necessarily vice versa. The importance of the
notion of isolating block liesin the fact that it may be verified evenif the set inv N is not
known, which is usually the case.

Notice that when F is single valued then diamy F = 0 and conditions (2.1), (2.2)
reduce to standard definitions of the isolating neighbourhood and isolating block.
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DEFINITION 2.4. Let N be an isolating neighbourhood for F. A pair P = (P, P,) of
compact subsets P, C P; C N is called an index pair if the following conditions are
satisfied:

@ FP)NNCP,i=12
(b) F(PL\P2) CN;
(©) invN Cint(Py \ P2)

Thefollowing result was proved in [2]:

THEOREM 2.5. Let F be a dmds, N an isolating neighbourhood for F and W a
neighbourhood of inv N. Then there exists an index pair P for N with P; \ P, C W.

Inthe next section, anew proof of the abovetheorem will be provided in the casewhen
F isgenerated by acontinuous map. We shall need two lemmas from [2] on parametrised
families of dmds. For the sake of completenesswe shall also recall their proofs.

Let A C Rbe acompact interval and F: A x X x Z — P (X) an usc mapping with
compact values such that, for each A € A,F,:X x Z — P(X) given by F(x,n) :=
F(\.x, n) is admds. Given a compact subset N C X and A € A, the sets inv(®) N with
respect to F, are denoted by inv(®)(N. )).

LEMMA 2.6. Let N C X be compact. Then the mappings A — invi(N,A), A —
inv=(N, \), and A — inv(N, \), A € A\, are usc.

PROOF. We prove the assertion for the first mapping, since the other two proofs are
by extending the same argument to negative integers. Supposethat A — inv*(N, )\) is
not usc at A\g € A. Then there exists an open U and a sequence A\, — Ao such that
inv* (N, X\o) C U butinv*(N. \n) AN\ U # ). Let X, € inv*(N, \n)N(N '\ U). SinceN'\ U
is compact, we may assume that X, — x € N\ U. In order to achieve a contradiction,
we have to show that x € inv*(N, \o). Indeed, let 0,:Z" — N be a solution for F)
with 0n(0) = X,. Then on(k) C invi (N, Ap) C N\ U foral k=1,2,.... We construct
asolution o: Z* — N\ U for F, by induction on k. Let o(0) = lim, on(0) = x. Let o(k)
be constructed for a given k, so that o(k) = lim; oy, (K), where {o, (K) }i is a subsequence
of {on(K)}n convergentin N\ U. Passing again to a subsequence, we may assume that
{on (k+1)}; is convergent. Define o(k + 1) to beits limit. Since on(k +1) € F(Aq(K)) for
all n, the closed graph property of F impliesthat o(k + 1) € F()\, a(k)). n

LEMMA 2.7. Let Ao € A and let N be anisolating neighbourhood for F . Then N is
an isolating neighbourhood for F, for all A sufficiently closeto Ag.

ProOOF. By the compactnessof N, the condition (2.2) implies that
BeiamyF, +3- (inv(N. Ao)) C invN

for somee > 0. Since F is usc, F(X) C B.(F),(X)) for al A closeto A and all x € N.
Again by compactness of N,

diamy F, < diamy F>\o +2¢

https://doi.org/10.4153/CMB-1997-053-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-053-2

452 T. KACZYNSKI AND M. MROZEK

forall A closeto Ao. By Lemma2.6inv(N. A) C B.(inv(N. Ao)) for all A closeto Ao and
we get

Baanyf, (IV(N 1)) € Baamyr,v2- (B. (inv(N. Ao)))

= Baiam,Fag+a: (inv(N. Ao))

C intN. .

3. Existenceof stableindex pairs. Another way of stating Lemma2.7 isby saying
that isolating neighbourhoodsare stable with respect to small perturbations of generators
of dmds. That would not be true about index pairs, as pointed out in [7] and the goal of
this paper isto show that there exist oneswhich are stable. L et us start from thefollowing
simple but important observation.

ProPosITION 3.1. Let F:X — P(X) be a generator of a dmds, N an isolating
neighbourhoodfor F, and P an index pair for N and F. If G: X — P (X) isan usc proper
map which is a selector of F, i.e. G(X) C F(x) for all x € X, then N is an isolating
neighbourhood for G, inv(N., G) C inv(N, F) and P also is an index pair for G.

PrROOF. The proof is aroutine verification. ]

THEOREM 3.2. Letf: X — X bea continuous proper map, N an isolating neighbour-
hood for f and W an open neighbourhood of inv N. Then there exists an index pair P for
N with P; \ P, € W whichis stable under small usc perturbations of f, i.e. there exists
£ > O suchthat if G: X — P (X) isan usc proper map with the property

(3.1) G(x) C B-(f(x). forallxe X,

then P alsois anindex pair for G.

ProOOF. Define afamily of dmds on generators by
(3.2 Fr(9) =By (f(9), xeX A>0.

By LemmaZ2.6 and Lemma2.7, there existst > 0 such that N is an isolating neighbour-
hood for F, and inv(N, \) C W provided 0 < \ <. Define

Py :=inv (N, 1)
Py =Py \intinv (N, 7).

Note that P1 \ P2 = inv(N,7) C W. We shall verify below that P := (Py, P) is an index
pair for all F, with0 < A < 7. In particular, itisanindex pair for Fo = {f }. Moreover, if
G: X — P (X) isan usc map satisfying (3.1) for ¢ < 7,7 found above, then G is a selector
of F, for e <\ < 7 and the conclusion follows from Proposition 3.1.

P isanindex pair for F) provided0 < A <

a Fy\(P)NNCP,gi=12
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Letx € P; andlet 0:Z~ — N beasolution for F; through x. If y € F,(P1)) NN C
F,(P))NNtheno:Z~ — N, ¢/(0) ==y, ¢/(n) := o(n+ 1), n < 0, isasolution for F,
throughy. Thusy € P;.

Let now x € P andy € F,(X) "N C F(X) N N. Since we aready know that
y € Py, it remains to show that y ¢ int inv*(N, 7). Suppose the contrary and let B.(y) C
inv*(N,7),e > 0. Since f is continuous, there is § > 0 such that d(FT(x). FT(x’)) <e
provided d(x, X') < §. Let X' € Bs(X), Y € F.(X). Theny € B.(y), so there exists a
solution o: Z* — N for F, through y’. Then o’:Z* — N,¢’(0) := X, o’(n) := o(n — 1),
n > 0, isasolution for F, through X'. Thus Bs(x) C inv*(N,7) which contradicts that
X € Py.

b) Fa(P1\P2) CN:

Thisis straightforward since F, (P \ P,) C F.(P1 \ P,) and P; \ P, C inv(N, 7).

c) inv(N, \) Cint(Py \ Po):

Sinceint (Py \ P2) = int inv(N, ), we need to prove that

(3.3) 0< A <7=invi(N,)\) Cintyinv:(N,7)

continuous, there exists 6 > 0 such that, for any X' € N with d(x,x) < §, we have
d(f(¥.f(x')) <7 — A. Therefore

FA0) =By (f(9) € By (B (f(X)) ) = F.6).

If 0:Z* — N isasolution for F, through x then we define a solution ¢’: Z* — N for F
through X' by ¢’(0) := X' and o’(n) := o(n), n > 1. This shows that B, (inv*(N.))) C
inv*(N,7) and (3.4) follows for inv*(N, A). Let now x € inv—(N,\) andlet 0:Z~ — N
be asolution for F, through x. If X' € B,_,(x) N N then

X € BT,,\(FA(U(—l))> = F,(o(~1)).

therefore we may define a solution ¢’: Z~ — N for F, through x’ by ¢/(0) := x’ and
o’'(n) := o(n).n < 0. This shows that B, _, (inv=(N. X)) C inv=(N.7) and completesthe
proof of (3.4). ]

REMARKS. 1. The arguments in the proof remain correct if we replace a single-
valued map f: X — X by amap F: X — P (X) with compact values which is continuous
(i.e. both usc and Isc or, equivalently, continuous with respect to the Hausdorff distance
between compact sets). That hypothesisiis still more restrictive than the hypothesis of
Theorem 2.6 in[2] but ashorter proof based on adifferent ideamakes stating the theorem
this way worthwhile.

2. The conclusion about the stability of P remainsvalid evenif we consider ageneral
usc proper map F: X — P (X) and

G(x) C B.(F().x € X.
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Indeed, on may define Fy(X) = BA<F(X)) as in (3.2) and use Theorem 2.6 in [2] to
conclude the existence of anindex pair P for F, with 0 < A\ < 7. Then one may refer to
Proposition 3.1, as previously.

3. By the arguments in the proof and by Lemma 2.6, we obtain an additional
information:

inv(N,f) = ) inv(N, ).
A>0

EXAMPLE. Letf:R? — R?beatime-onemap of adownward flow with two stationary
points and a connecting trgjectory asin Figure 1. The set S= inv N consists of the two
stationary points and the connecting interval. We assume that f is downward with a
constant speed v, i.e. f(x,y) = (X, y — V), on outside of some small neighbourhood of S

If F,(x.y) = B,(f(x.y)), then inv*(N. 7) are two cones with “rounded vertices’ ason
Figure 2. The angled of the slope of each conefar from Sisgivenby sinf =7/ v.
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