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Summary. It is shown that every spherically symmetric metric can
be transformed into the isotropic form. As illustration an example is
given.

Max Wyman has in Mathematical Reviews, 10 (1949), 579, reviewed a
paper by Bertil Qvist and the author1 and in the review declared that:

" I t should be noted that the authors state that every spherically
symmetric metric can be written in the so-called isotropic form. This
assertion is incorrect as it is based on a proof given by Tolman [Relativity,
Thermodynamics and Cosmology (Oxford, 1934), p. 240] which is wrong.
The right-hand side of formula (94. 7) as given by Tolman is not a perfect
differential when A is a function of t."

In view of the above remark I venture to put forward a few observations.
Einstein and Straus have stated2 that " A general centrally-symmetric

field can be brought into the (conformally Euclidean, not necessarily static)
form

ds2 = —e»8ikdxidxk+e"dt2 i,k=l, 2, 3, (1)

where JX and v are functions of r and t ".
This transformation of a general spherically symmetric metric into the

isotropic form can be performed in the following way.
As is known, every spherically symmetric metric may be written in

the standard form

ds2 = e'dt2~r2 (<W2+sin2 0cty2)-ex dr2, (2)

where v and A are certain functions of r and t alone.

Paul Kustaanheimo and Bertil Qviat, " A note on some general solutions of tbe
Einstein field equations in a spherically symmetric world ", Soc. Sc. Fenn. Comm. Phys.-
Math. XIII, No. 16 (1948).

2 Albert Einstein and Ernst G. Straus, " The Influence of the Expansion of Space on
the Gravitation Fields Surrounding the Individual Stars ", Reviews of Modem Phytics,
Vol. 17, Nos. 2 and 3 (1945), 121.
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We make in (2) the differential substitution

df = Adr-\-Bdt, (3)

(ft = Cdr+Bdt, (4)

where A, B, C and D are for the present arbitrary functions of r and tt

which have to satisfy only the integrabihty conditions

dA-M (5)

dCdD

Since by (3) and (4)

, _Ddr—Bdt At _ — Gdr+Adt
AD-BC '

we have from (2)

ds2 =

,_„ -eAC-#BD - ,, ...
^ 2 ~ 2 , A n i>n\% d¥dt- ( ? )(AD-BC)2 (AD-BC)

The expression (7) is of the form (1) if

e*AC—*BD = Q,

-=- AD— 4- BG = — Ve.KD2—er r r

or
A r-i/,x n

T= ^rp-TTci' ( 8 )

^ = _ ^ £ £ = . (9)

Since (3) is a total differential only when also

dr A , . B ,.— = — dr-\- — dtr r r

is a total differential, we may use instead of (5) the equivalent condition

dt f dr r

Then we get, according to (8) and (9),

3 r-^e'G
dt \ZeKD2—e*C2 dr

(10)
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The equation (10) really contains only one unknown function, the
ratio C/D. Putting R = C/D and carrying out the differentiations in
(10), we get

at dr V dr r I

Tt *~* h *) **+ (^ Tr eK~ek Tr 6*+ Te^) R

^ e x = 0, . (11)

which is of the general form

P(r, t, R) -£+Q(r, t)^-8{r, t, R) = 0

and has an infinite number of solutions in all cases considered in the theory
of relativity.

After taking any one of the solutions of (11) as the ratio R = C/D, it
is always possible to find a function D which satisfies (6), an equation that
may be written

where R = C/D is a known function of r and t. Finally, from (8) and (9)
we get Ajf and Bjr, which, together with C and D, when substituted into
(3) and (4), give the transformation

~ = ̂ dr+Mdt, dt=Cdr+Ddt.r r r
By means of this transformation, (2) changes into the isotropic form

If in particular the metric (2) is static or quasistatic, i.e. if A is a function
of r alone, we may immediately take GjD = 0 as a solution of (10), and then
D = 1 as a solution of (6).

The transformation (3)... (4) now takes the form

dr .. dr ,- ,
— — eiK—, dt — dt,
r r

which is given in Tolman, op. cit., p. 240, formula (94. 7).
As an application we transform the metric

^ y dr2 (13)

into isotropic form.
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The metric (13) is representable in the standard form (2), by choosing

A = 21nr— Int, (14)

i>=2Lnr— 2 kit. (15)

The equation (11) thus takes the form

dR dR

the general solution of which is

t), (16)

where F( ) is an arbitrary function of one variable. We may in particular
choose F( ) to be identically zero. Then we have

and so (6) takes the form

r_d_D = ±D
2 dt dr '

one solution being

D = 4t-t*. (19)

The transformation (3)... (4) thus has the form

dr 2dr—rfr1dt

di= (4:t—r2)(-$rdr+dt),

t=*(4t-r2)2,

transforming the metric (13) into the isotropic form

or ds2 = ai3f\^ T dt2-— VM ta,n2§]nr[dr2+r2(d62+sin2$d<j>2)].

ASTRONOMICAL OBSBBVATOBY,

HJELSINKI, FINLAND.
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