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Abstract. In this paper we present sufficient conditions for all trajectories of the
system

ẋ = 1
a(x)

[h(y) − F(x)], ẏ = −a(x)g(x),

to cross the vertical isocline h(y) = F(x), which is very important in the global
asymptotic stability of the origin, oscillation theory and existence of periodic solutions.
Also we give sufficient conditions for all trajectories which start at a point on the
curve h(y) = F(x), to cross the y-axis which is closely connected with the existence
of homoclinic orbits, stability of the zero solution, oscillation theory and the centre
problem. The obtained results extend and improve some of the authors’ previous
results and some other theorems in the literature.

2000 Mathematics Subject Classification. 34C37, 34D05, 34C05.

1. Introduction. We consider the Liénard-type system

ẋ = 1
a(x)

[h(y) − F(x)], ẏ = −a(x)g(x), (1.1)

where a(x) > 0 for every x ∈ � and h(y) is continuous and strictly increasing on �.
The functions F(x), g(x), a(x) and h(y) satisfy smoothness conditions for uniqueness
of solutions of initial value problems. Also we assume that all solutions of this system
are continuable in the future time. Throughout this paper, we assume that F(0) = 0,
h(±∞) = ±∞,

xg(x) > 0 for x �= 0 and yh(y) > 0 for y �= 0,

which guarantee that the origin is the unique equilibrium of system (1.1). Let h−1(w)
be the inverse function of w = h(y). Notice also that h−1(w) is strictly increasing and
satisfies wh−1(w) > 0 for w �= 0.

System (1.1) and some of its special cases have been widely studied by many
authors, and the results can be found in many books and papers [1–25]. We say that
system (1.1) has property (X+) in the right half-plane (resp. in the left half-plane) if for
every point (x0, y0) with h(y0) > F(x0) and x0 ≥ 0 (resp. h(y0) < F(x0) and x0 ≤ 0), the

https://doi.org/10.1017/S0017089509990036 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990036


606 A. AGHAJANI AND A. MORADIFAM

positive semi-trajectory of (1.1) passing through (x0, y0) crosses the vertical isocline
h(y) = F(x). Also system (1.1) is said to have property (X−) in the right half-plane
(resp. in the left half-plane), if for every point (x0, y0) with h(y0) < F(x0) and x0 ≥ 0
(resp. h(y0) > F(x0) and x0 ≤ 0), the negative semi-trajectory of (1.1) passing through
(x0, y0) crosses the vertical isocline h(y) = F(x).

We say that system (1.1) has property (Y+) in the right half-plane (resp. in the
left half-plane) if for every point P(x0, y0) with F(x0) = h(y0) and x0 > 0 (resp. x0 < 0)
the positive semi-trajectory of (1.1) starting at P intersects the negative y-axis (resp.
positive y-axis). We also say that system (1.1) has property (Y−) in the right half-plane
(resp. in the left half-plane) if for every point P(x0, y0) with F(x0) = h(y0) and x0 > 0
(resp. x0 < 0) the negative semi-trajectory of (1.1) starting at P intersects the positive
y-axis (resp. negative y-axis). Properties (X+) and (X−) have been widely studied by
many authors (see [1–2, 6, 8, 11–12, 21) because they are fundamental concepts in the
existence of periodic solutions, oscillation theory and global asymptotic stability of
the zero solution.

Define

G(x) =
∫ x

0
a2(η)g(η) dη. (1.2)

Recently, in [1] the authors proved the following theorem which includes all previous
sufficient conditions for property (X+) for the classical Liénard system as special cases.

THEOREM A. Assume G(+∞) = +∞. Then system (1.1) with a(x) = 1 and h(y) = y
has property (X+) in the right half-plane if

lim sup
x→+∞

(∫ x

b

(
F(η)g(η)

(2G(η))
3
2

+ g(η)
G(η)

)
dη + F(x)√

2G(x)

)
= +∞, (1.3)

for some b > 0.

Also, in [2] the authors presented an implicit necessary and sufficient condition for
property (X+) in the Liénard plane. Using this condition we derived explicit conditions
and solved the problem of intersection with the vertical isocline in the Liénard plane
completely in some sense. These results answered an old conjecture of Hara and Sugie
[10] as well. The problem is much more difficult for the generalised equation (1.1). In
[8] we have a nice result.

THEOREM B. Assume that h(±∞) = ±∞ and lim supx→+∞ F(x) > −∞. Then
system (1.1) has property (X+) in the right half-plane if and only if

lim sup
x→+∞

[ ∫ x

0

a2(η)g(η)
1 + F−(η)

dη + F(x)
]

= +∞, (1.4)

where F−(x) = max{0,−F(x)}.

On the other hand a necessary and sufficient condition for property (X+) in the
right half-plane is not yet obtained under the assumption

lim
x→+∞ F(x) = −∞.
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In [8] Gyllenberg and Ping generalised the results of Jiang [14] and Yan and Jiang [22]
by the following theorem.

THEOREM C. Assume that h(−∞) = −∞ and limx→+∞ F(x) = −∞. If there exist
β > 1

4 and N1 > 0 such that F(x) < 0 for x ≥ N1, and if for every fixed k ≥ 1 and b ≥ N1,
there exists b̄ > b satisfying∫ x

b

a2(η)g(η)
F(η)

dη ≤ 1
k

h−1(kβF(x)) for x ≥ b̄, (1.5)

then system (1.1) has property (X+) if and only if (1.4) in Theorem B holds.

In [12] one of the authors presented an implicit necessary and sufficient condition
for property (X+) in the generalised Liénard equations and proved very sharp explicit
sufficient and necessary conditions.

Many authors have also investigated property (Y+), and several interesting
sufficient conditions have been given. In [8] Gyllenberg and Ping presented a sufficient
condition for system (1.1) to have property (Y+). Hara and Yoneyama in [7] proved
that if there exists an a > 0 such that F(x) > 0 for 0 < x ≤ a and some α > 1

4 such
that

1
F(x)

∫ x

0

g(η)
F(η)

dη ≥ α, (1.6)

then system (1.1) with a(x) = 1 and h(y) = y has property (Y+) (see also [3, 6, 13, 20]).
Recently authors proved some sufficient and necessary conditions for property (Y+)
in system (1.1), which are very sharp [3].

In this paper we extend Theorem A for the generalised Liénard equation (1.1).
Also, we will use the same idea to prove analogous results for system (1.1) to have
property (Y+). The obtained results include several sufficient conditions presented in
the previous literature as special cases. By some examples we show that our results are
applicable when none of the results presented above are applicable. Similar results can
be formulated for properties (X−) and (Y−).

2. Sufficient conditions for property (X+). In this section we intend to present
some sufficient conditions for system (1.1) to have property (X+) in the right half-
plane. Notice that under the assumption lim supx→+∞ F(x) > −∞, Theorem B gives
a necessary and sufficient condition for system (1.1) to have property (X+) in the right
half-plane. Hence, throughout this section we assume that

lim
x→+∞ F(x) = −∞. (2.1)

The following lemma gives a necessary condition for system (1.1) to have property
(X+).

LEMMA 2.1. Suppose that (2.1) holds. If system (1.1) has property (X+) in the right
half-plane, then ∫ ∞

0

a2(η)g(η)
1 + F−(η)

dη = +∞. (2.2)
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Proof. By (2.1) there exist x0 > 0 and M > 0 such that F(x) ≤ 0, for x ≥ x, and
M ≥ h−1(F(x)), for every x > 0. Since, h(+∞) = +∞, we can choose M′ > M such
that h(y) ≥ Max{1, M}, for every y ≥ M′. Now let n ∈ � and consider the solution
(x(t), y(t)) of (1.1) with (x(0), y(0)) = (x0, M′ + n). Notice that while (x(t), y(t)) lies
in the region {(x, y) ∈ �2 : x ≥ 0 and h(y) > F(x)} we have ẋ > 0 and ẏ < 0. Since,
system (1.1) has property (X+) in the right half-plane, this solution must cross the curve
h(y) = F(x). Thus, there exists a tn > 0 such that y(tn) = M′ and M′ ≤ y(t) ≤ M′ + n,
for 0 ≤ t ≤ tn. Moreover, we have x(t) ≥ x0 for 0 ≤ t ≤ tn. Hence, F(x(t)) ≤ 0 for t > 0
and

h(y(t)) − F(x(t)) ≥ Max{1, M} − F(x(t)) ≥ 1 + F−(x(t)),

for 0 ≤ t ≤ tn. Now we have

n = y(0) − y(tn) =
∫ tn

0

a2(x(η))g(x(η))
h(y(η)) − F(x(η))

ẋ(η) dη

≤
∫ x(tn)

0

a2(η)g(η)
1 + F−(η)

dη <

∫ ∞

0

a2(η)g(η)
1 + F−(η)

dη.

Thus, (2.2) holds and the proof is complete. �

LEMMA 2.2. Suppose that (2.2) holds and (x(x), y(t)) is a solution of (1.1) which
starts at a point (x0, y0) ∈ {(x, y) ∈ �2 : x ≥ 0 and h(y) > F(x)} and does not cross the
curve h(y) = F(x). Then

lim
t→∞ y(t) = −∞.

Proof. Notice that

y(t) − y0 = −
∫ t

0
a(x(η))g(x(η)) dη −

∫ t

0

a2(x(η))g(x(η))
h(y(η)) − F(x(η))

ẋ(η) dη

= −
∫ x(t)

x0

a2(η)g(η)
h(y(η)) − F(η)

dη

≤ −
∫ x(t)

x0

a2(η)g(η)
h(y(0)) + F−(η)

dη → −∞,

as t → +∞. The proof is complete. �

Now suppose that there exists a solution (u(t), v(t)) of (1.1) whose graph remains in
the region {(u, v) : u ≥ 0 and h(v) > F(u)} for all future time. Let (u0, v0) = (u(0), v(0)).
Since, system (1.1) has no critical points in this region and u̇ > 0, we have

u(t) → +∞ as t → +∞;

so, we may assume that u0 is sufficiently large and

u(t) ≥ u0 > 0 for t > 0.
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Now let

χ (t) =
∫ u(t)

b

a2(s)F(s)g(s)

(2G(s)) 3
2

ds + K(v(t))√
2G(u(t))

, (2.3)

where K(y) is a continuously differentiable function such that K ′(y) > 0 and K(y) ≥
h(y), for y < 0, with |y| sufficiently large. Then

χ̇ (t) = u̇(t)
a2(u(t))F(u(t))g(u(t))

(2G(u(t))) 3
2

−2a(u(t))g(u(t))G(u(t))K ′(v(t)) + a2(u(t))g(u(t))K(v(t))u̇(t)

(2G(u(t))) 3
2

.

If (2.2) holds, then by Lemma 2.2 we get

χ̇(t) ≤ −2a(u(t))g(u(t))G(u(t))K ′(v(t)) + a3(u(t))g(u(t))(u̇(t))2

(2G(u(t))) 3
2

≤ −a2(u(t))g(u(t))
√

K ′(v(t))
G(u(t))

u̇(t),

fot t > 0 sufficiently large. Hence,

χ̇(t) ≤ −a2(u(t))g(u(t))
√

K ′(v(t))
G(u(t))

u̇(t), (2.4)

for t > 0 sufficiently large.

THEOREM 2.1. Assume (2.1) and (2.2) hold and h(y) ≤ my, for y < 0, with |y|
sufficiently large and some m > 0. Then system (1.1) has property (X+) in the right
half-plane if

lim sup
x→+∞

(∫ x

b

(
a2(η)F(η)g(η)

(2G(η))
3
2

+
√

ma2(η)g(η)
G(η)

)
dη + F(x)√

2G(x)

)
= +∞, (2.5)

for some b > 0.

Proof. We prove the theorem by contradiction. Suppose that system (1.1) fails to
have property (X+) in the right half-plane. Then there exists a solution (u(t), v(t)) of
(1.1) whose graph remains in the region {(u, v) : u ≥ 0 and h(v) > F(u)} for all future
time. Let K(y) = my. Thus, from (2.4) we have

d
dt

(
χ (t) +

∫ u(t)

b

√
ma2(η)g(η)

G(η)
dη

)
≤ 0. (2.6)

Therefore,

lim sup
t→+∞

(∫ u(t)

b

(
a2(η)F(η)g(η)

(2G(η))
3
2

+
√

ma2(η)g(η)
G(η)

)
dη + h(v(t))√

2G(u(t))

)
< ∞. (2.7)
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Since, h(v(t)) > F(u(t)) and u(t) → +∞ as t → +∞, (2.7) contradicts (2.5). This
contradiction completes the proof. �

COROLLARY 2.1. Assume (2.1) and (2.2) hold and h(y) ≤ my, for y < 0, with |y|
sufficiently large and some m > 0. Then system (1.1) has property (X+) in the right
half-plane if

lim inf
x→+∞

F(x)√
2G(x)

> −∞

and

lim sup
x→+∞

∫ x

b

(
a2(η)F(η)g(η)

(2G(η))
3
2

+
√

ma2(η)g(η)
G(η)

)
dη = +∞,

for some b > 0.

EXAMPLE 2.1. Consider system (1.1) with F(x) = −3
√

mx + 2.2
√

mx sin2(x),
g(x) = x, a(x) = 1 and h(y) = my, with m > 0. We have

lim inf
x→+∞

1
F(x)

∫ x

b

g(ξ )
F(ξ )

dξ ≤ lim
n→+∞

∫ 2nπ

b
1

−3 + 2.2 sin2(x)

−6nmπ
=

∫ 2π

0
1

−3 + 2.2 sin2(x)

−6mπ
<

1
4m

,

for every b > 0. Thus, condition (1.6) is not satisfied and Theorem C is inapplicable;
however,

lim
x→+∞

∫ x

b

(
a2(η)F(η)g(η)

(2G(η))
3
2

+
√

ma2(η)g(η)
G(η)

)
dη

= √
m lim

x→+∞

∫ x

b

−s + 2.2s sin2(s)
s2

ds

= √
m lim

x→+∞

∫ x

b

0.1 − 1.1 cos(2s)
s

ds = +∞,

and therefore, by Corollary 2.1 system (1.1) has property (X+) in the right half-plane.

EXAMPLE 2.2. Consider system (1.1) with F(x) = −k
√

mx + l
√

mx sin2(x), g(x) =
x, a(x) = 1 and h(y) = my with k + l

2 > 2 and m > 0. We have

lim
x→+∞

∫ x

b

(
a2(η)F(η)g(η)

(2G(η))
3
2

+
√

ma2(η)g(η)
G(η)

)
dη

= lim
x→+∞

√
m

∫ x

b

k − 2 + l sin2(s)
s

ds

= lim
x→+∞

√
m

∫ x

b

(k − 2 + l
2 ) − l

2 cos(2s)

s
ds = +∞.

Therefore, by Corollary 2.1 system (1.1) has property (X+) in the right half-plane.

COROLLARY 2.2. Assume (2.1) and (2.2) hold and h(y) ≤ my, for y < 0, with |y|
sufficiently large and some m > 0, and G(+∞) = +∞. Then system (1.1) has property
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(X+) in the right half-plane if

lim inf
x→+∞

F(x)√
2G(x)

> −2
√

m. (2.8)

Proof. Suppose that

lim inf
x→+∞

F(x)√
2G(x)

> λ > −2
√

m;

then there exists a b > 0 such that

F(x) ≥ λ
√

2G(x) for x > b.

Thus, we have

lim sup
x→+∞

∫ x

b

(
a2(η)F(η)g(η)

(2G(η))
3
2

+
√

ma2(η)g(η)
G(η)

)
dη

≥ lim sup
x→+∞

∫ x

b

(
(λ + 2

√
m)a2(η)g(η)

2G(η)

)
dη

= lim sup
x→+∞

λ + 2
√

m
2

(ln G(x) − ln G(b)) = +∞.

Hence, by Corollary 2.1 system (1.1) has property (X+) in the right half-plane. �
REMARK 2.1. For a(x) = 1 and h(y) = y, Corollary 2.2 gives the classical result

of Filippov (condition (1.3)); also Theorem 2.1, Corollary 2.1 and Corollary 2.2 give
Theorem 2.3, Corollary 2.5 and Corollary 2.6 in [1], respectively.

THEOREM 2.2. Assume (2.1) and (2.2) hold, F(x) is differentiable for x > 0, with x
sufficiently large, and h(y) ≤ my for y < 0, with |y| sufficiently large. Then system (1.1)
has property (X+) in the right half-plane if

lim sup
x→+∞

(∫ x

b

F ′(η)√
2G(η)

dη + √
m ln G(x)

)
= +∞, (2.9)

for some b > 0.

Proof. We can write

F(x)√
2G(x)

=
∫ x

b

(
F(η)√
2G(η)

)′
dη + F(b)√

2G(b)

=
∫ x

b

(
F ′(η)√
2G(η)

− a2(η)g(η)F(η)

(
√

2G(η))
3
2

)
dη + F(b)√

2G(b)
.

Therefore, (2.9) is equivalent to (2.5) and the proof is complete. �
EXAMPLE 2.3. Assume G(+∞) = +∞ and m > 0. Consider system (1.1) with

F(x) = −2
√

2mG(x) + K(
√

G(x)),
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where ∫ ∞ K ′(η)
η

dη = ∞, and lim
u→∞ K ′(u) = 0

(for example K(u) = ∫ u
a

dt
ln t , a > 0). Also assume that h(y) ≤ my, for y < 0, with |y|

sufficiently large. Then using L’Hôpital’s rule we get

lim
x→+∞

1
F(x)

∫ x

b

a2(η)g(η)
F(η)

dη = lim
x→+∞

a2(x)g(x)
F ′(x)F(x)

= lim
x→+∞

1(
− 2

√
2m + K(

√
G(x))√

G(x)

)(
− √

2m + K ′(
√

G(x))
2

) = 1
4m

<
β

m
,

for every β > 1/4. Hence, Theorem C is inapplicable to this example. However,

lim sup
x→+∞

∫ x

b

F ′(η)√
2G(η)

dη + √
m ln G(x)

= lim sup
x→+∞

∫ x

b

a2(η)g(η)K ′(
√

G(η))

2
√

2G(η)
dη = lim sup

x→+∞
1√
2

∫ x

b

K ′(η)
η

dη = +∞.

Thus, by Theorem 2.2 system (1.1) has property (X+) in the right half-plane.

LEMMA 2.3. Suppose that F1(x) ≤ F2(x) for x > 0 sufficiently large and system (1.1)
with F1 has property (X+) in the right half-plane; then system (1.1) with F2 has property
(X+) in the right half-plane, too.

Proof. Suppose that system (1.1) with F2 fails to have property (X+) in the right
half-plane. Then there exists a positive semi-trajectory of (1.1) starting at a point
(u0, v0) with u0 > 0 and h(v0) > F1(u0), which does not meet the vertical isocline h(v) =
F2(u). This trajectory can be regarded as the graph of a function v = ψ2(u) which is a
solution of

dy
dx

= −a2(x)g(x)
h(y) − F(x)

.

Let v = ψ1(u) be the graph of the solution of system (1.1) corresponding to F1, such
that (u(0), v(0)) = (u0, v0). We can assume that u0 is sufficiently large; thus, we have

ψ ′
1(u) = −a2(u)g(u)

h(v) − F1(u)
≥ −a2(u)g(u)

h(y) − F2(u)
= ψ ′

2(u), for u ≥ u0.

Hence, ψ1(u) ≥ ψ2(u) > F2(u) ≥ F1(u), for u ≥ u0. Therefore, system (1.1)
corresponding to F1 fails to have property (X+) in the right half-plane. This
contradiction completes the proof. �

The proof of the following theorem follows directly from Lemma 2.3 and the result
of Example 2.3.

THEOREM 2.3. Assume G(+∞) = +∞ and h(y) ≤ my for some m > 0 and y < 0,
with |y| sufficiently large. Moreover,

F(x) ≥ −2
√

2mG(x) + K(
√

G(x)),
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where ∫ ∞ K ′(η)
η

dη = ∞ and lim
u→∞ K ′(u) = 0.

Then system (1.1) has property (X+) in the right half-plane.

COROLLARY 2.3. Assume (2.1) and (2.2) hold and h ∈ C1(−∞, α), for some α ∈ �,
h′(−∞) = +∞ and G(+∞) = +∞. Then system (1.1) has property (X+) in the right
half-plane if

lim inf
x→+∞

F(x)√
2G(x)

> −∞.

Proof. Choose m > 0 sufficiently large such that (2.8) holds. Since, h′(−∞) = +∞,
there exists an M < 0 such that

h′(y) > 2m for y < M < 0;

hence,

h(y) − h(M) = (y − M)h′(ξ ) < 2m(y − M),

where y < ξ < M. Thus,

h(y) < my,

for y < 0, with |y| sufficiently large. Therefore, Corollary 2.2 implies that system (1.1)
has property (X+) in the right half-plane. �

Now consider system (1.1) with h(y) = λ|y|psgn(y). This case has been considered
by many authors [5, 14]. We have the following result for this case.

COROLLARY 2.4. Assume (2.1) and (2.2) hold, h(y) = λ|y|psgn(y), with λ > 0 and
p > 1, and G(+∞) = +∞. Then system (1.1) has property (X+) in the right half-plane
if

lim sup
x→+∞

|F(x)|√
2G(x)

< ∞.

Notice that when h is differentiable, in (2.4) we can let K(y) = h(y). Hence, we have
the following result under the assumption h ∈ C1(−∞, α), for some α ∈ �. The proof
is similar to that of Theorem 2.1; so we omit it.

THEOREM 2.4. Assume (2.1) and (2.2) hold, h ∈ C1(−∞, α), for some α ∈ �,
h(−∞) = −∞ and h′(y) is increasing for y < 0, with |y| sufficiently large. Then system
(1.1) has property (X+) in the right half-plane if

lim sup
x→+∞

(∫ x

b

(
a2(η)F(η)g(η)

(2G(η))
3
2

+
√

h′(h−1(F(η)))a2(η)g(η)
G(η)

)
dη + F(x)√

2G(x)

)
= +∞,

(2.10)
for some b > 0.
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COROLLARY 2.5. Assume (2.1) and (2.2) hold, h ∈ C1(−∞, α), for some α ∈ �,
h(−∞) = −∞, h′(y) is increasing for y < 0, with |y| sufficiently large, and G(+∞) =
+∞. Then system (1.1) has property (X+) in the right half-plane if there exists an α > 0
such that

F(x)

2
√

2G(x)
+

√
h′(h−1(F(η))) > α, (2.11)

for x > 0 sufficiently large.

REMARK 2.2. Notice that if h′(y) is increasing on (−∞, α) for some α ∈ �, then
0 ≤ m = limy→−∞ h′(y) exists. Hence, if m �= 0, we have h(y) ≤ my and h−1(y) ≥ y

m , for
y < 0, |y| sufficiently large. Therefore, when it is difficult to compute h−1(F(x)) we can
replace it in (2.10) and (2.11) by F(x)

m .

COROLLARY 2.6. Assume (2.1) and (2.2) hold, h(y) = λ|y|psgn(y), with λ > 0 and
p ≥ 1. Then system (1.1) has property (X+) in the right half-plane if there exists an
α > 0 such that

F(x)

2
√

2G(x)
> −√

pλ
1
2p (|F(x)|) p−1

2p + α,

for x > 0 sufficiently large.

COROLLARY 2.7. Assume (2.1) and (2.2) hold and h(y) = λ|y|psgn(y), with λ > 0 and
p ≥ 1. Then system (1.1) has property (X+) in the right half-plane if there exists a β > 1
such that

|F(x)| ≤ β(8p)
p

p+1 λ
1

p+1 (G(x))
p

p+1 ,

for x > 0, sufficiently large.

3. Sufficient conditions for property (Y+). In this section we present some
sufficient conditions for system (1.1) to have property (Y+) in the right half-plane.
Throughout this section we assume that there exists a δ > 0,

F(x) > 0 for 0 < x < δ,

because if F(x) has an infinite number of positive zeros clustering at x = 0, then
obviously system (1.1) has property (Y+). Now suppose that there exists a solution
(u(t), v(t)) of (1.1) which starts at a point (u0, v0) with F(u0) = h(v0) and whose graph
remains in the region {(u, v) : u ≥ 0 and h(v) < F(u)} for all future time. Taking the
vector field of (1.1) into account, we see that if the positive semi-trajectory of this
solution crosses the x-axis, then it also meets the negative y-axis. Since u̇ < 0 in this
region, we have

lim
t→∞ u(t) = lim

t→∞ v(t) = 0;

so, we may assume that u0 is sufficiently small and

0 < u(t) ≤ u0 for t > 0.
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Now let

χ (t) =
∫ u(t)

b

a2(s)F(s)g(s)

(2G(s)) 3
2

ds + K(v(t))√
2G(u(t))

, (3.1)

where K(u) ≤ h(u) and K ′(u) ≥ 0 for u > 0 sufficiently small; then

χ̇ (t) = u̇(t)
a2(u(t))F(u(t))g(u(t))

(2G(u(t))) 3
2

ds

−2a(u(t))g(u(t))G(u(t))K ′(v(t)) + a2(u(t))g(u(t))K(v(t))u̇(t)

(2G(u(t))) 3
2

≤ −2a(u(t))g(u(t))G(u(t))K ′(v(t)) + a3(u(t))g(u(t))(u̇(t))2

(2G(u(t))) 3
2

≤ a2(u(t))g(u(t))
√

K ′(v(t))
G(u(t))

u̇(t).

Hence,

χ̇(t) ≤ a2(u(t))g(u(t))
√

K ′(v(t))
G(u(t))

u̇(t), (3.2)

for t > 0 sufficiently large.

THEOREM 3.1. Assume that h is differentiable and h(y) ≥ my, for y > 0 sufficiently
small and some m > 0. Then system (1.1) has property (Y+) in the right half-plane if

lim inf
x→0+

(∫ b

x

(
a2(η)F(η)g(η)

(2G(η))
3
2

−
√

ma2(η)g(η)
G(η)

)
dη

)
= −∞, (3.3)

for some b > 0.

Proof. We prove the theorem by contradiction. Suppose that system (1.1) fails to
have property (Y+) in the right half-plane. Then from (3.2) we have

d
dt

(
χ (t) −

∫ u(t)

b

√
ma2(η)g(η)

G(η)
dη

)
≤ 0, (3.4)

for t > 0 sufficiently large. Therefore,

lim sup
t→0+

(∫ u(t)

b

(
a2(η)F(η)g(η)

(2G(η))
3
2

−
√

ma2(η)g(η)
G(η)

)
dη + h(v(t))√

2G(u(t))

)
< ∞. (3.5)

Since, h(v(t))√
2G(u(t))

> 0 and u(t) → 0 as t → +∞, (3.5) contradicts (3.3). This contradic-

tion completes the proof. �
EXAMPLE 3.1. Consider system (1.1) with F(x) = 2x − x3, g(x) = x, h(y) = y and

a(x) = 1. Then

lim
x→0+

1
F(x)

∫ x

0

g(η)
F(η)

dη = lim
x→0+

∫ x
0

dη

2−η2 dη

2η − η3
= 1

4
.
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Thus, conditions (1.6) and (1.7) are not satisfied. However,

lim inf
x→0+

∫ b

x

(
(2η − η3)η

η3
− 2η

η2

)
dη = lim inf

x→0+

∫ b

x
−1

η
dη = −∞.

Hence, Theorem 3.1 implies that system (1.1) has property (Y+).

The following results can be proved from Theorem 3.1, similar to the results
presented in Section 2.

COROLLARY 3.1. Assume that h(y) ≥ my, for y > 0 sufficiently small and some
m > 0. Then system (1.1) has property (Y+) in the right half-plane if

lim sup
x→0+

F(x)√
2G(x)

< 2
√

m.

COROLLARY 3.2. Assume that h′(0) = +∞. Then system (1.1) has property (Y+) in
the right half-plane if

lim sup
x→0+

F(x)√
2G(x)

< ∞.

THEOREM 3.2. Assume that h′(y) is decreasing for y > 0 sufficiently small. Then
system (1.1) has property (Y+) in the right half-plane if

lim inf
x→0+

(∫ b

x

(
a2(η)F(η)g(η)

(2G(η))
3
2

−
√

h′(h−1(F(x)))a2(η)g(η)
G(η)

)
dη

)
= −∞, (3.6)

for some b > 0.
COROLLARY 3.3. Assume that h′(y) is decreasing for y > 0 sufficiently small. Then

system (1.1) has property (Y+) in the right half-plane if there exists an α < 0 such that

F(x)

2
√

2G(x)
−

√
h′(h−1(F(x))) < α,

for x > 0 sufficiently small.
COROLLARY 3.4. Assume h(y) = λ|y|psgn(y), with λ > 0 and p < 1. Then system

(1.1) has property (Y+) in the right half-plane if there exists an α < 0 such that

F(x)

2
√

2G(x)
<

√
pλ

1
2p (F(x))

p−1
2p + α,

for x > 0 sufficiently small.
COROLLARY 3.5. Assume h(y) = λ|y|psgn(y), with λ > 0 and p < 1. Then system

(1.1) has property (Y+) in the right half-plane if there exists a β < 1 such that

F(x) ≤ β(8p)
p

p+1 λ
1

p+1 (G(x))
p

p+1 ,

for x > 0 sufficiently small.
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