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ABSTRACT

The correlation order, which is defined as a partial order between bivariate distribu-
tions with equal marginals, is shown to be a helpfull tool for deriving results concer-
ning the riskiness of portfolios with pairwise dependencies. Given the distribution
functions of the individual risks, it is investigated how changing the dependency as-
sumption influences the stop-loss premiums of such portfolios.
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1. INTRODUCTION

Consider the individual risk theory model with the total claims of the portfolio during
some reference period (e.g. one year) given by

where X, is the claim amount caused by policy i(i = 1,2, ..., n). In the sequel we will
always assume that the individual claim amounts Xi are nonnegative random variables
and that the distribution functions Ft of X, are given.

Usually, it is assumed that the risks Xt are mutually independent because models
without this restriction turn out to be less manageable. In this paper we will derive
results concerning the aggregate claims S if the assumption of mutually independence
is relaxed. More precisely, we will assume that the portfolio contains a number of
couples (e.g. wife and husband) with non-independent risks. Therefore, we will rear-
range and rewrite (1) as

m n

J + %X, (2)
/=2m+l
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with m the number of coupled risks. For any i andy (1,7 = 1,2, ... n\ i^j) we assume
that Xj and X; are independent risks, except if they are members of the same couple
(X2kA, X2k), (k = 1, 2, ..., m). The class of all multivariate random variables (X,, ..., Xn)
with given marginals ^ of X, and with the pairwise dependency structure as explained
above, will be denoted by R(FX,..., Fn).

It is clear that for any (X,, ..., Xn) belonging to R(Flt ..., Fn), the riskiness of the
aggregate claims S = X, + ... + Xn wil be strongly dependent on the way of dependen-
cy between the members of couples.

In order compare the riskiness of the aggregate claims of different elements of
R(Ft, ..., Fn), we will use the stop-loss order.

Definition 1 A risk S1, is said to precede a risk S2 in stop-loss order, written
Sl <sl S2, if their stop-loss premiums are ordered uniformly:

E(S,-d)+<E(S2-d)+

for all retentions d >0.
Let (X,, ..., Xn) and (T,, ..., Yn) be two elements of/?(F,, ...,/7,,). and denote their

respective sums by

(=1 i-2m+\

and

i=l i=2m+\

We want to find ordering relations between the corresponding couples of S, and S2

which imply a stop-loss order for St and S2. More precisely, we are looking for a parti-
al order <ord between bivariate distributed random variables which has the following
property:

(X2k_i, X2k)<ord(Y2k_,,Y2k) (k = l, 2, ..., m) (3)

implies
Si ^ S2 (4)

A well-known property of stop-loss ordering is that it is preserved under convolu-
tion of independent risks, see e.g. Goovaerts et al. (1990). Hence, a sufficient condi-
tion for (4) to be true is

^2k^+X2k<slY2k_l + Y2k (* = 1, 2, ..., m) (5)

So it follows immediately that we can restrict ourselves to the following problem: Find
a partial order <ard between bivariate distributed random variables (X,, X2) and (Yu Y2)
with the same marginal distributions, for which the following property holds:

(XuX2)<ord(Y,,Y2) (6)

implies
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X,+X2<slYx+Y2 (7)

It is clear that an ordering <ori for which (6) implies (7) will immediately lead to a
solution of the problem described by (3) and (4).

Part of the results in this paper are generalisations of results in Dhaene et al. (1995)
where the individual life model is considered, i.e. the case where each individual risk
has a two-point distribution in zero and some positive value.

2 . A PARTIAL ORDER FOR BIVARIATE DISTRIBUTIONS

2.1. Correlation order

Let R(F,, F2) be the class of all bivariate distributed random variables with given mar-
ginals F, and F2. For any (X,, X2) e R(FU F2) we have

Fl(x)=Prob(Xl <x) F2(x)=Prob(X2 <x)

We also introduce the following notation for the bivariate distribution function:

FX[, x2 (*i. * 2 ) = Prob(Xx < xx, X2 < x2)

In the sequel we will always restrict ourselves to the case of non-negative risks.
Futher, if we use stop-loss premiums or covariances, we will always silently assume
that they are well-defined.

Now let (X,, X2) and (K,, Y2) be two elements of R(FX,F2). In order to investigate
an order between these bivariate distributed random variables which implies stop-
loss order for X, + X2 and Y{ + Y2, we could start by comparing Cov(XuX2) and
Cov(Y]t Y2). At first sight, one could consider the following inequality

Cov(Xx, X2)<Cov(Yx, Y2) (8)

and investigate wether this implies

X1+X2<slYl+Y2 (9)

Although it is customary to compute covariances in relation with dependency conside-
rations, one number alone cannot reveal the nature of dependency adequately, and
hence (8) will not imply (9) in general, a counterexample is given in Dhaene et al.
(1995). However, in the special case that F, andF2 are two-point distributions with
zero and some positive value as mass points, (8) and (9) are equivalent, see also
Dhaene et al. (1995).

Instead of comparing Cov(Xu X2) and Cov(Y,,Y2) one could compare
Cov(/(X,), g(X2)) with Cov(fYx), g(Y2)) for all non-decreasing functions/ and g, see
e.g. Barlow et al. (1975).

Definition 2 Let (Xu X2) and (Yu Y2) be elements of R(FX, F2). Then we say that
(Xt, X2) is less correlated than (T,, Y2), written (X,, X2) <c (Yu Y2), if

Cov(f(X\), g(X2)) < Cov(f(Y{), g(Y2)) (10)
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for all non-decreasing functions f and gfor which the covariances exist.
The correlation-order is a partial order over joint distributions in R(FU F2) and expres-
ses the idea that two random variables with given marginals are more 'positively de-
pendent' or 'positively correlated' when they have some joint distribution than som
other one.

2.2. An alternative definition

In this subsection we will derive an alternative definition for the correlation order
introduced above. First, we will recall and prove a lemma contained in Hoeffding
(1940), which we will need for the derivation of the alternative definition, see also
Jodgeo (1982), p. 326. The proof will be repeated here because it is instructive for
what follows.

Lemma 1 For any (Xv X2) e R(FV F2) we have

Cov(Xlt A-2) = Jo"Jo"(F*]iJf2(«, v)-Fx{u)F2(v))dudv (11)

Proof: Let / denote the indicator function, then the following well-known identity
holds

x-z = f{I(z<u)-I(x<u)}du (x, z>0) (12)

Hence, for x,, x2, z,, z2 > 0 we find
(x, - z,) (x2 - z2) =

0" J0"{/(Zl ̂  «)/(Z2 £ V) + /(X, < U)I(X2 < V)

-I(zx < u)I(x2 < v) - /(x, < u)I(z2 < v)}dudv

Now let (X,, X2) and (Z,, Z2) be independent identically distributed pairs, then we have

2 Cov{X,, X2) = E((X1-Zl)(X2-Z2))

so that we find (11) from (13). Q.E.D

Now we are able to state an equivalent definition for the correlation order conside-
red in definition 2.

Theorem 1 Let (X,, X2) and(Yu Y2) be elements ofR(Fu F2). Then the following
statements are equivalent:

(a) (X,, X2)<C(Y1,Y2)

(fe) FXS, X2(*l, x2)^FYltY2(
xl> Xl) f°r al1 X\, ^ 2 ^ 0

P r o o f : A s s u m e t h a t ( a ) h o l d s a n d c h o o s e / ( « ) = I(u > x , ) a n d g(u) =
I(u > x2). T h e n w e f ind f rom (10) tha t

,, X2 > x2))< E(I(Y, >xx,Y2>x2
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or equivalently

Prob{X: >xx, X2>x2)<Prob(Yx >xx, Y2>x2)

from which (b) can easily be derived.
Now, suppose that (b) holds. It follows immediately that, for non-decreasing func-

tions/and g,

Prob(f(Xx)<x,, g(X2) < x2) <Prob(f(Yx)<xx, g(Y2)<x2)

for all x, , x2 > 0, so that (a) follows as an immediate consequence of Lemma 1 and
Definition 2. Q.E.D

Statement (b) in Theorem 1 asserts roughly that the probability that Xt and X2 both
realize 'small' values is not greater than the probability that F, and Y2 both realize
'equally small' values, suggesting that F, and Y2 are more positively interdependent
than X, and X2. The statement (b) is equivalent with each of the following statements,
each understood to be valid for all x, and x2:

(c) Prob(Xx <xx, X2>x2)> Prob(Yx <xx, Y2 >x2)

(d) Prob(Xx >xx, X2<x2)>Prob(Yx >xx, Y2 <x2)

(e) Prob(Xx > x,, X2 > x2) < Prob(Yx >xx, Y2 > x2)

Each of these statements can be interpreted similarly in terms of 'more positively
interdependence' of F, and F2. Hence, the equivalence of (a) and (b) in Theorem 1 has
some intuitive interpretation.

References related to the correlation order defined above are Barlow et al. (1975),
Cambanis et al. (1976) and Tchen (1980). For economic applications, see also Epstein
et al. (1980) and Aboudi et al. (1993, 1995).

2.3. Correlation order and stop-loss order

In this subsection we will prove that the correlation order between bivariate distribu-
tions implies stop-loss order between the distributions of their sums.

Lemma 2 For any (Xt, X2) e R(Ft, F2) we have

'H *x x (x, d-x)dx

Proof: We have that

E{XX +X2- d)+ = E(XX) + E(X2) - d + E(d-Xx- X2)+

For non-negative real numbers x, and x2 the following equality holds

rd

(d-xx-x2)+=\ I(xx <x,x2 <d-x)dx

so that
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E(d -Xx-X2)+ = \d £ ( / ( * ! < x, X2 < d - x)dx

which proves the lemma. Q.E.D

Now we are able to stat the following result.

Theorem 2 Let (Xl5 X2) and {Yx, Y2) be two elements ofR(Ft, F2). Then

(x,, X2)<C(Y,, Y2)

implies

Xl+X2<slYl+Y2

Proof: The proof follows immediatly from Theorem 1 and Lemma 2. Q.E.D

From Theorem 2 we conclude that the correlation order is a useful tool for comparing
the stop-loss premiums of sums of two non-independent risks with equal marginals.

3 . RISKIEST AND SAFEST DEPENDENCY BETWEEN TWO RISKS

Consider again the class R(Ft, F2) of all bivariate distributed random variables with
given marginals F, and F2 respectively. For every (X,, X2) and (Yu Y2) e R(Ft, F2) we
will compare their respective riskiness by comparing the stop-loss premiums of X, +
X2 and F, + Y2- More precisely, we will say that (X,, X2) is less risky than (Yt, Y2) if

Xl+X2<slYl+Y2

In this section we will look for the riskiest and the safest elements of /?(Fi,F2). Use
will be made of the following well-known result which is usually attributed to both
Hoeffding and Frechet, see e.g. Frechet (1951).

Lemma 3 For any (X,, X2) e /?(F,, F2) we have that

^-l; 0]< FXiX2(xx,x2)<rnin[F](x]), F2(x2)] (14)

The upper and lower bounds are themselves bivariate distributions with marginals F,
and F2 respectively.

Now we can state the following result concerning the riskiest and the safest elements
offl(F,,F2).

Theorem 3 Let (Yu Y2) and (Z,, Z2) be elements of R(FU F2) with distribution func-
tions given by

FY,,Y2(
XI> x2) = max[Fl(x^) + F2(x2)-\; 0]

and
Fz,, z, (^i> X2) = miriF\ (x\). F2(x2)]
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respectively. Then for any (Xh X2) e R(F{, F2) we have that

Yl+Y2<slXl+X2<slZ1+Z2

Proof: The inequalities follow immediately from Theorems 1 and 2 from
Lemma 3. Q.E.D

From Theorem 3 we can conclude that the random variables (F,, Y2) and (Z,, Z2) are
safest and the riskiest elements of R(FU F2) respectively.

Let us now look at the special case that the two marginal distributions are equal.
From Theorem 3, we find that a most risky element in R(F, F) is (Z,, Z2) with

FZl, z2 ( * i , x 2 ) = min[F(Xl), F(x2)] (15)

which leads to

\F(x) if x<dl2
F7 , (x, d-x) = ;

'• 2 [F(d-x) if x>d/2
From Lemma 2 we find

rdll rd

E(Z]+Z2-d)+ = E(ZX) + E(Z2) - d + I F(x)dx+\ F(d-x)dx

= E(Zx)+E{Z2)-2\dl\l-F{x))dx
• d l l

'0

= 2£(Z, -dl2)+

so that we find the following corollary to Theorem 3.
Corrolary 1 For any (X,, X2) e R(F, F) we have that

E{XX +X2 -d)+<2E(Xx -

Furthermore, the upperbound is the stop-loss premium with retention d of Z, + Z2

where (Z,, Z2) € R(F, F) with distribution function (15).

Now assume that F is an exponential distribution with parameter a > 0.

i.e. F(x) = l-e~cu x>0

Then we obtain from Corollary 1 that for any (X,, X2) e R(F, F), we have

(16)

This upperbound for the exponential case can be found in Heilmann (1986). He deri-
ved this result by using some techniques described in Meilijson et al. (1979). Heil-
mann also considers riskiest elements in R(Ft, F2) where F{ and F2 are exponential
distributions with different parameters. This result can also be found from our Lemma
2 and Theorem 3.
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4. POSITIVE DEPENDENCY BETWEEN RISKS

In a great many situation, certain insured risks tend to act similarly. For instance, in
group life insurance the remaining life-times of a husband and his wife can be shown
to possess some 'positive dependency'. Several concepts of bivariate positive depen-
dency have appeared in the mathematical literature, see Tong (1980) for a review, for
actuarial applications see Norberg (1989) and Kling (1993). We will restrict ourselves
to positive quadrant dependency.

Definition 3 The random variables X, and X2 are said to be positively quadrant de-
pendent, written PQD{XU X2), if

Prob(X1 <xi, X2<x2)>Prob{Xx <xx)Prob(X2 < x2)

foralxt >0,x2>0.

It is clear that PQD(XX, X2) is equivalent with saying that X, and X2 are more correlated
(in the sense of Definition 2) than if they were independent.

Positive quadrant dependency can be defined in terms of covariances, as is shown
in the following lemma, see also Epstein et al. (1980).

Lemma 4 Let X, andX2 be two random variables. Then the following statements are
equivalent:

(a) PQD(X,,X2)

(b) Cov(fiXx), g(X2)) > Ofor all non-decreasing real functions f and Qfor
which the covariance exixts

Proof: The result follows immediately from Definitions 1 and 3, and
Theorem 1. Q.E.D

Remark that PQD(XU X2) implies that Cov(X,, X2) > 0. Equality only holds ifX, and
X2 are independent.

As is shown in the following theorem, the notion of positive quadrant dependency
can be used for considering the effect of the independence assumption, when the risks
are positively dependent actually.

Theorem 4 Let (X,, X2) and (y,ind, y2
ind)) be two elements ofR{Fx, F2) with

PQD(X1( X2) and where F,ind and F2
ind are mutualy independent.

Then

y,ind + y2
ind <s/x, + x2

Proof: The result follows immediately from Theorems 1 and 2. Q.E.D

Theorem 4 states that when the marginal distributions are given, and when
PQD(XU X2), then the independence assumption will always underestimate the actual
stop-loss premiums.
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Let us now consider the special case that Ft is a two-point distribution in 0 and a, >
0 (i = 1, 2). For any (X,, X2) e R(FU F2) with Cov(Xu X2) > 0, we have that

PHX, = a,, X2 = otj) > P^X, = a,)

This inequality can be transformed into

PHX[ = 0, X2 = 0) > PK^i = 0) /M*2 = 0)

from which we find

PriXt <x],X2<x2) >PiiX, <*,)PHX2<x2) x^>0,x2>0

We can conclude that in this special case PQD(Xt, X2) is equivalent with Cov(X]y X2) >
0.

From Theorem 4 we find that when the marginal distributions F, are given two-
point distributions in 0 and oc, > 0 (i = 1,2) and when Cov(Xt, X2) > 0, making the
independence assumption will underestimate the actual stop-loss premiums. This
result can also be found in Dhaene et al. (1995).

5 . NUMERICAL EXAMPLE AND CONCLUDING REMARKS

As stipulated in Section 1 the results that we have derived for two risks can also be
used for considering the riskiness of portfolios where the only non-independent risks
can be classified into a given number of couples. Several theorems, together with the
stop-loss preservation property for convolutions of independent risks, immediately
lead to statements about the stop-loss premiums of such portfolios.
Take Theorem 4 as an example. Consider a portfolio with given distribution functions
of the individual risks where the only non-independent risks appear in couples and
where the risks of each couple are positive quadrant dependent. Then we find from
Theorem 4 that taking the independence assumption will always lead to underestima-
ted values for the stop-loss premiums of the portfolio under consideration.

Let us now illustrate the effect of introducing dependencies between risks in an in-
surance portfolio by a numerical example. We will use Gerber's (1979) life insurance
portfolio wich is represented in the following table.

TABLE 1

GERBER'S PORTFOLIO

claim
probability

0.03
0.04
0.05
0.06

1

2
-
-

2

3
1
2
2

amount at risk
3

1
2
4
2

4

2
2
2
2

5

1
2
1

The portfolio consists of 31 risks. Each risk can either produce no claim or a fixed
positive claim amount (the amount at risk) during a certain reference period. The
claim probability is the probability that the risk produces a claim during the reference
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period. The expectation of the aggregate claims equals 4.49. We label the risks from 1
to 31, row by row. Hence, risks 1 and 2 have claim probability 0.03 and a conditional
claim amount (given that a claim occurs) equal to 1: risks 3, 4 and 5 have claim pro-
bability 0.03 and conditional claim amount 2, . . . .
In Table 2 several independency assumptions for this portfolio are considered.

TABLE 2

DESCRIPTION OF SEVERAL INDEPENDENCY ASSUMPTIONS.

1

all
risks

mutually
indepen-

dent

2

(1,2)
(3,4)
(5,6)
(7.8)

situation
3

(24,31)
14,23)
(29,30)
(21,22)

4

(1,2)
(3,4)
(5,6)
(7,8)
(9,10)
(11,12)
(13,14)

5

no
indepen-

dency
assump-

tions

In situation 1 it is assumed that all risks are mutually independent. Situation 2 cor-
responds to the case that the only couples that occur in the portfolio are (1, 2), (3, 4),
(5, 6) and (7, 8). In situation 3 there are also 4 couples. Comparing situations 2 and 3,
we see that in the latter case the couples have higher claim probabilities and higher
conditional claim amounts. Situation 4 is an extension of situation 2 in the sense that it
not only contains the couples of situation 2, but also some others. Finally, situation 5
corresponds to the case that no independency assumptions are made so that all risks
can be dependent. The results that will be stated for this situation can be found in
Dhaene et al. (1995).

In the following table the ratio (multiplied by 100) of the maximal stop-loss premi-
um (according to Theorem 3) divided by the stop-loss premium in the independent
case (assumption 1) is given for the situations considered in Table 2.

TABLE 3

RELATIVE HIGHT OF THE MAXIMAL STOP-LOSS PREMIUMS UNDER SEVERAL

INDEPENDENCY ASSUMPTIONS.

retention

0
2
4
6
8
10
12
14

1

100
100
100
100
100
100
100
100

2

100.0
101.6
103.8
108.0
112.8
120.7
130.1
143.8

situation
3

100.0
103.8
116.5
137.6
169.1
206.4
226.4
354.2

4

100.0
103.9
110.9
122.1
137.7
159.8
191.2
233.3

5

100.0
146.6
239.3
412.6
778.6

1549.8
3336.3
7604.2
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From this table we can conclude that in any situation the relative increase of the
stop-loss premium is an increasing function of the retention. For the higher rententions
the effect will be most dramatically. Comparing the assumptions 2 and 3, we see that
increasing the claim probabilities and the claim amounts of the couples leads to an
increased effect. Of cours, increasing the number of coupled risks will increase the
relative effect on the maximal stop loss premiums, as can be seen from comparing the
assumptions 2 and 4. Finally, from the last column we can conclude that assuming no
independency at all, and hence allowing all possible kinds of dependencies, the extre-
mal stop-loss premiums increase astronomically. The specific dependency relations
that give rise to this extremal stop-loss premiums for a life insurance portfolio are
derived in Dhaene et al. (1995).

Finally, we remark that in this paper we have only derived results for bivariate de-
pendencies. The special, but important bivariate case will often be sufficient to descri-
be dependencies in portfolios but is also provides a theoretical stepping stone towards
the concept of dependence in the multivariate case. Some notions of dependence in the
multivariate case can be found in Barlow et al. (1975). One of the notions of multiva-
riate dependency which is often used in actuarial science is the exchangeability of
risks, see e.g. Jewell (1984). It is a (remarkable) pity that the usefulness of other no-
tions of multivariate dependency has hardly been considered in the actuarial literature.
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