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Abstract

Let G be a finite group, a be a fixed cocycle of G and Proj(G, a) denote the set of irreducible
projective characters of G lying over the cocycle a.

Suppose N is a normal subgroup of G. Then the author shows that there exists a G-
invariant element of Proj(JV, apt) of degree 1 if and only if [a] is an element of the image
of the inflation homomorphism from M(G/N) into M(G), where M(G) denotes the Schur
multiplier of G. However in many situations one can produce such G-invariant characters
where it is not intrinsically obvious that the cocycle could be inflated. Because of this the
author obtains a restatement of his original result using the Lyndon-Hochschild-Serre exact
sequence of cohomology. This restatement not only resolves the apparent anomalies, but also
yields as a corollary the well-known fact that the inflation-restriction sequence

{1} — M(G/N) -» M{G) -> M(N)

is exact when N is perfect.

1980 Mathematics subject classification (Amer. Math. Soc): 20 C 25.
Keywords and phrases: projective representations of finite groups.

All groups, G, considered in this paper are finite and all representations of G
are defined over the complex numbers. The reader unfamiliar with projective
representations is referred to [3] for basic definitions and elementary results.

The purpose of this paper is to investigate under which circumstances the fol-
lowing well-known corollary to Clifford's theorem can be generalized to projective
characters.
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[2] Projection characters of degree one and the inflation-restriction sequence 273

Let N < G, and \ € Irr(G) such that [XNAN] i1 0, where ljv denotes the
trivial character of N. Then N < Ker(x).

Our generalization will take the form of answering the following question.
Let a be a cocycle of G and N < G. Under which necessary and sufficient

conditions does there exist a G-invariant projective character of N with degree
1 and cocycle aw?

Our motivation for investigating this problem is provided by Haggarty and
Humphreys [1] who said "Given a subgroup L of G, a cocycle a of G determines
a cocycle ax of L by restriction. However elements which are a/,-regular in
L need not be a-regular in G. This fact complicates the theory of projective
characters."

The implication here can be taken to be that given that every element of L is
a-regular (see 1.1 for this definition), then the theory of projective characters is
similar to ordinary character theory. Indeed as the theory applies to induction
from L to G this is the case, however we shall show in Section 1 that this
is certainly not the case when looking at the restriction from G to L, where
KG.

1. Projective characters of degree one

To avoid repetition we fix the following notation for the rest of this paper. Let
G be a group, a be a cocycle of G, and Proj(G, a) denote the set of irreducible
projective characters of G with cocycle a. We shall also use without further
reference the fact due to Schur that o([a]) in M{G) divides £(1) for all £ e
Proj(G, a;), where M{G) denotes the Schur multiplier of G. We thus have that
there is an element of Proj (G, a) of degree 1 if and only if [a] = [1]. We now recall
some more well-known facts about projective characters in a series of lemmas.
We start however with a basic definition.

DEFINITION 1.1. An element, x, of G is said to be a-regular if a(x,g) =
a{g,x) for all gECc(x).

It is easy to check that if [a] = [/?], then x is a-regular if and only if x is
/^-regular. Also any conjugate of an a-regular element is a-regular, so that we
may speak of the a-regular conjugacy classes of G.

LEMMA 1.2. (i) There exists /? E [a] such that

-1) _

for all ̂ -regular x EG, and all g EG.
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(ii) An element, x, of G is a-regular if and only if there exists £ € Proj(G, a)
such that $(x) ^ 0.

PROOF. See (7.2.4) and (7.2.5) of [3].

We call a cocycle satisfying the condition of 1.2(i) a class-function cocycle, in
the sense that by (ii) the elements of Pro](G, /?) are then class functions.

Let N < G, for f 6 Proj (AT, ajv) we define the (/-conjugate, f9, of f by

for g € G, and all x e N; where fa{g,x) = a(g,x)a(gx,g~1)/a(g,g~1). This
defines an action of G on Proj (N, <*JV) for which Clifford's theorem holds. Having
defined our action we can now being to look at the relationship between a^-
regular elements of N and Proj (TV,

LEMMA 1.3. Let N < G and x be an a^-regular element of N. Then for
all g GG,x9 i8 ajv -regular.

PROOF. Let ? e Proj(iV,ajV) such that $(x) / 0, and j G G. Then f» e
Proj(iV, a^f) and $9(xg) — c$(x) for some c ^ 0. Thus x9 is ajv-regular.

Our next result shows that G-invariance, not surprisingly, does not depend
upon the choice of cocycle from [a].

LEMMA 1.4. Let N <G, //: G —* C* be a mapping urith /x(l) = 1, and

0(9,h) = MM!p.a(g,h) for all g,heG.

Suppose Proj (TV, aN) = { f t , . . . , ft} • Then
(i) Proj(N,f3N) = {{*N$i,---,HN$t};
(ii) for geG, f? = £ if and only if (/ijvft)ff =

PROOF, (i) See pages 72-73 of [3].
(ii) Let geG. Then for all x e N,

PROPOSITION 1.5. Let N < G, and let inf denote the inflation homo-
morphism from M(G/N) into M(G). Then there exists a G-invariant 6 €
Proj(7V, QAT) with 6(1) = 1 if and only if [a] G Im(inf).
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PROOF. Suppose there exists a G-invariant 8 € Proj(iV,ajv) with 6(1) = 1.
Let P be an irreducible projective representation of G with cocycle a which has
6 as a constitutent of P/v- Then, if P has degree n, we have that P induces a
homomorphism P : G/N -> PGL{n, C) defined by P(gN) = U(P(g)) for all g G
G, where II denotes the natural homomorphism from GL(n, C) onto PGL(n, C).
Now any section of P will be a projective representation of G/N with some
cocycle f3 of G/N, moreover [/?] does not depend on the choice of section, and it
is clear that inf([/3]) = [a].

Conversely, suppose [a] = inf ([/?]) for some [/?] G M(G/N). Then regarding
/3 as a cocycle of G we have that the trivial character, ljv, of TV is an element of
Proj(7V, /?jv)- As such ljv is G-invariant since 0 is constant on the cosets of TV in
G, and hence there exists a G-invariant 6 G Proj(iV, a ^ ) with 8(1) = 1 by 1.4.

This result would appear to have easily answered our original question. How-
ever we shall now demonstrate that in certain circumstances it is possible to
produce G-invariant projective characters of degree 1 in situations where it is
not intrinsically obvious that the cocycle could be inflated.

LEMMA 1.6. Let N < G such that [aN\ - [1]. Then there exists 6 G
Pro](N',aN') with 6(1) = 1 such that 6 is G-invariant.

PROOF. Since [aN] = [1], Sf = {6 € Proj(iV,a7v): 6(1) = 1} is non-empty
and G acts upon it. Now for 6 G $/ we have that 8N> is irreducible, and so by
Clifford's theorem there exists a bijection from lvv(N/N') onto J / defined by
A t—> \6. Now if f G Proj(G, a) such that 6 is a constitutent of £yy, we have that
£JV = e(6i + • • • + 6t), where 6 — 6i,..., <5t are the distinct G-conjugates of 6.
Thus £N> = et6N<, and so 6^> is G-invariant.

It is obvious that if there is a G-invariant element of Proj(7V, C*N) of degree 1,
then necessarily every element of N is a-regular. One could conjecture, falsely
as it happens, that this was also a sufficient condition, but our next major result
shows that to some extent this conjecture would be justified.

LEMMA 1.7. Let N < G and x be an a^-regular element of N. Suppose
that a^v is class-function cocycle of N. Then for each j e G and all y € N,

PROOF. By 1.2 and 1.3 we may let f G Proj(7V,e*jv) such that ^(gxg-1) / 0.
Now for g G G and all y € N we have that
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and

= $9(xy), since a^ is a class-function cocycle;

But gxg~l and gxyg~1 are conjugate in N, since G permutes the classes of
N. Thus since a^ is a class-function cocycle we have that both i(gxyg~1) =

) ± 0, and f»( i) = ^ ( z* ) , hence fa{g,x) = fa(g,xy).

THEOREM 1.8. Let N < G ; § i , . . . , § y fee t/ie as-regular conjugacy classes
of N fixed by g € G, and Xi € ^ . Suppose that a^ is a class-function cocycle of
N. Then £)i=i fa(g,X{) is the number of g-invariant elements o/Proj(AT,

PROOF (BRAUER, ISAACS). Let 6,8< for 1 < i < t denote respectively the
elements of Proj(A^, a^) and the a^-regular classes of N. Let Xi € ^ , if ^ 9 = ffj
we shall write x^ = Xj. For 5 € G, we define A(g) — (a^), where a^ = 1, if
gf = £j and is zero otherwise. We also define B(g) = (bij), where 6tJ = fa{g, Xj)
if %?9 = Wj and is zero otherwise. We note from 1.7 that fa(g, Xj) is independent
of the choice of Xj € ^ . Finally let P = (pij), where pij = fi(xj). Then we
have that the (I, m)th entry of A(g)P is X)!_i aij$jixm) = if {xm)', whereas the
{I, m)th entry of PB(g) is

3 = 1

Thus P~1A(g)P = B(g) and so trace(yl(g)) = trace(B(j)). But trace(A(</))
is the number of g-invariant elements of Proj(iV, ajv), whereas trace(S(^)) =
E i 6 / f*{g,Xi) where / = {*: W? = %}.

As applications of the above theorem we have the following results.

COROLLARY 1.9. Let N < G, and suppose that every element of N is a-
regular. Then each g G G fixes at least one element o/Proj(7V,

PROOF. By 1.4(ii) we may assume that a is a class-function cocycle of G.
Let g € G, then by 1.8 the number of (/-invariant elements of Proj(./V, an) equals
the number of classes of N fixed by g.

COROLLARY 1.10. Let N be a normal abelian subgroup of G such that
G/CG(N) is cyclic. Suppose that every element of N is a-regular. Then there
exists 6 € Proj(./V, art) with 6(1) = 1 which is G-invariant.

PROOF. Let C = CG{N) and 6 € Proj(JV,aAr). Then 6(1) = 1 and C is a
subgroup of the inertia subgroup, /G(<$), of 6 in G, since ./V is abelian and every
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element of TV is a-regular. Let } £ G such that (gC) = G/C, then by 1.9 g fixes
some 6' € Proj(AT,aN). Thus G = (g,C) < IG{S').

It is interesting to note that Mangold in (5.1) of [7] claimed that every element
of G is a-regular if and only if [a] = [1]. The first of the following examples
demonstrates that this is in fact false in general for a non-abelian group, and
hence also shows that the condition of every element of G being a-regular is not
even sufficient generally, to guarantee the existence of an element of Proj (G, a)
of degree 1.

EXAMPLES. Let p be a prime number, and H be the "einfachste" repre-
sentation group for (Cp)4 as in (3.5.4) of [3], so that \H\ = p10 and H =
(xi,X2,x3,x4: xf = [xi,Xj,xk] = 1, for 1 <i,j,k<4).

Let s = [xi,x2][x3,x4] and A = (s), so that A < Z(H) D H' and \A\ = p. It
is easy to show that no non-trivial element of A is a commutator, see [5] for a
generalization of this result. Now let A € lrr(A) be defined by A(sJ) = wJ for
w _ e27Tt/p̂  gjj^ ̂ t a be the cocycle of Gi = H/A constructed in the normal way
from A, see pages 180-182 of [2] for example. Then by construction o([a]) = p.
Now with the definition and results of pages 195-197 of [2], we have that every
element of Gi is 'A-special' trivially, and hence every element of G\ is a-regular.

For a different type of example let B = (s, t) where t = [11,13], M =
(11,2:3, ,4), and define /1 € Irr(B) by n(sHk) — A(sJ). One can then check
that every element of N = M/B is //-special, but that not every element of
MZ(H)/Z(H) is ^-special for any extension, u, of fj. to Z(H). So if /? is the
cocycle of Gi = H/B constructed from //, we have shown that every element
of the abelian group TV is /3-regular, but that no element of Proj(iV, /?) can be

2. The inflation-restriction sequence

Let N < G. Then we have the Lyndon-Hochschild-Serre exact sequence of
cohomology:

{1} -• Hl{G/N,C") — H^CC*) - ^ tfx(iV,C*)G

- ^ M(G/N) ^ M(G)

where the action of all groups on C* is trivial, see [6, page 354].
It is clear that we may replace M(G) in this exact sequence by M{G)# =

{[a] G M(G): [ayv] = [1]}- In this section we shall extend this new sequence one
term to the right, and in doing so we shall give a practical test to see whether
an element of M{G)* is in the image of inf2. Thus it is 1.5 which connects the
results of Section 1 to those of this section.
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LEMMA 2.1. Let N < G, a be a cocycle of G such that [a] € M(G)#, and
6 € Pro]{N,aN) with 6(1) = 1. Then

(i) the mapping a': G/N -> Hl(N, C*) defined by a'(gN) - 6/S9 is a crossed
homomorphisrn;

(ii) the mapping T: M{G)* -» ^{G/N.H^NX*)) defined by r([a]) = [a1]
is a homomorphism.

PROOF, (i) Let g eG. Then 69,S G Proj(N,aN), and so since (5(1) = 1 we
have that 6/69 € H1(N, C*). Now let gi, g? € G, and suppose that gi% = gi for
xeN. Then

since N < IG(691). Thus a' is well denned. Finally let j i . ^ e G. Then

(ii) Suppose f3 € [a], and let //: G —> C* be a mapping with /x(l) = 1 such that

(g,h) for all ff, h € G.

Let i/ € Proj(7V, /?JV) with i/(l) = 1. Then by 1.4 we have that v = UNSI for
some Si € PTOJ(N,OIN). But Si = XS for A e ^ ( JV.C*) as in the proof of 1.6.
Thus

v A /i/v# A 5

as in the proof of 1.4, and so r is well denned. Clearly r is a homomorphism.

THEOREM 2.2. LetN<G. Then the sequence

M{G/N) ^ M{G)* ^ H^G/N^^NX*))

is exact.

PROOF. By 1.5 we have that Im(inf) < Ker(r). Let [a] € Ker(r). Then
for 6 € Proj(iV,ajv) with (5(1) = 1, we have that S/S9 = X/X9 for some A e
H1(N,C*). But then <5A-1 is G-invariant, and so by 1.5 we obtain that [a] €
Im(inf).

The above theorem can be regarded as a generalization of a result of Read,
see (4.4.5) of [3], which deals with the special case when N is a central subgroup
of G. We now mention some applications of 2.2, the first being well known.
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COROLLLARY 2.3. Let N be a perfect normal subgroup of G. Then the
sequence

{1} -> M(G/N) - ^ M{G) - ^ M{N)

is exact.

PROOF. We start by noting that //^(JV^C*) = {1}, since N' - N. Thus by
2.2 we have that Ker(res) = M{G)# = Im(inf).

Our next result was used by Liebler and Yellen in (2.4) of [4] to help prove
that groups of central type are solvable.

COROLLARY 2.4. Let N <G, and suppose that {\G/N\, \N/N'\) = 1. Then
M(G)#=Im(inf).

PROOF. By the Schur-Zassenhaus theorem we have that H1 {G/N, H1 [N, C*))
is trivial, and so the desired result is immediate from 2.2.

COROLLARY 2.5. Suppose G is metacyclic, and let N <G such that both N
and G/N are cyclic. Then M(G) is isomorphic to a subgroup of HX(G/N,N).

PROOF. From 2.2 we have that the sequence

{1} -» M{G) -U tf^G/JV, Irr(AO)

is exact, since M(G)* = M(G). Thus r is a monomorphism.

For our last application we can now explain the result of 1.6.

COROLLARY 2.6. Let Ni,N2 < G with iV2 < iVi,r denote the image
of res: H^N^C) -» ff^JVj.C*), and M{G)*> = {[a] € M{G): [aNi] =
[1]}. Then the homomorphism r: M(G)*2 -> H1(G/N2,H

1{N2,C*)) defined
in 2.1, induces by restriction to M(G)^1 a homomorphism from M{G)^1 into

PROOF. Let [a] € MiG)*1, and 6 € Proj(AT1)a7Vi) with 6(1) = 1. Then by
2.1 we have that r([a]) = [a'\, where a'{gN2) = {JJ)N2 € T.

In the situation of 1.6 we have that N2 = N[ and so T = {1}, with the above
notation. Thus by 2.2 we obtain that M(G)*1 is a subgroup of inf: M(G/N[) —*
M(G).
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