J. Austral. Math. Soc. (Series A) 46 (1989), 272-280

PROJECTIVE CHARACTERS OF DEGREE ONE AND THE INFLATION-RESTRICTION SEQUENCE

R. J. HIGGS

(Received 14 May 1987)

Communicated by H. Lausch

Abstract

Let G be a finite group, α be a fixed cocycle of G and $\operatorname{Proj}(G, \alpha)$ denote the set of irreducible projective characters of G lying over the cocycle α .

Suppose N is a normal subgroup of G. Then the author shows that there exists a Ginvariant element of $\operatorname{Proj}(N, \alpha_N)$ of degree 1 if and only if $[\alpha]$ is an element of the image of the inflation homomorphism from M(G/N) into M(G), where M(G) denotes the Schur multiplier of G. However in many situations one can produce such G-invariant characters where it is not intrinsically obvious that the cocycle could be inflated. Because of this the author obtains a restatement of his original result using the Lyndon-Hochschild-Serre exact sequence of cohomology. This restatement not only resolves the apparent anomalies, but also yields as a corollary the well-known fact that the inflation-restriction sequence

$$\{1\} \to M(G/N) \to M(G) \to M(N)$$

is exact when N is perfect.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 C 25. Keywords and phrases: projective representations of finite groups.

All groups, G, considered in this paper are finite and all representations of G are defined over the complex numbers. The reader unfamiliar with projective representations is referred to [3] for basic definitions and elementary results.

The purpose of this paper is to investigate under which circumstances the following well-known corollary to Clifford's theorem can be generalized to projective characters.

^{© 1989} Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

Let $N \leq G$, and $\chi \in Irr(G)$ such that $[\chi_N, 1_N] \neq 0$, where 1_N denotes the trivial character of N. Then $N \leq Ker(\chi)$.

Our generalization will take the form of answering the following question.

Let α be a cocycle of G and $N \leq G$. Under which necessary and sufficient conditions does there exist a G-invariant projective character of N with degree 1 and cocycle α_N ?

Our motivation for investigating this problem is provided by Haggarty and Humphreys [1] who said "Given a subgroup L of G, a cocycle α of G determines a cocycle α_L of L by restriction. However elements which are α_L -regular in L need not be α -regular in G. This fact complicates the theory of projective characters."

The implication here can be taken to be that given that every element of L is α -regular (see 1.1 for this definition), then the theory of projective characters is similar to ordinary character theory. Indeed as the theory applies to induction from L to G this is the case, however we shall show in Section 1 that this is certainly not the case when looking at the restriction from G to L, where $L \trianglelefteq G$.

1. Projective characters of degree one

To avoid repetition we fix the following notation for the rest of this paper. Let G be a group, α be a cocycle of G, and $\operatorname{Proj}(G, \alpha)$ denote the set of irreducible projective characters of G with cocycle α . We shall also use without further reference the fact due to Schur that $o([\alpha])$ in M(G) divides $\xi(1)$ for all $\xi \in \operatorname{Proj}(G, \alpha)$, where M(G) denotes the Schur multiplier of G. We thus have that there is an element of $\operatorname{Proj}(G, \alpha)$ of degree 1 if and only if $[\alpha] = [1]$. We now recall some more well-known facts about projective characters in a series of lemmas. We start however with a basic definition.

DEFINITION 1.1. An element, x, of G is said to be α -regular if $\alpha(x,g) = \alpha(g,x)$ for all $g \in C_G(x)$.

It is easy to check that if $[\alpha] = [\beta]$, then x is α -regular if and only if x is β -regular. Also any conjugate of an α -regular element is α -regular, so that we may speak of the α -regular conjugacy classes of G.

LEMMA 1.2. (i) There exists $\beta \in [\alpha]$ such that

$$\frac{\beta(g,x)\beta(gx,g^{-1})}{\beta(g,g^{-1})}=1$$

for all β -regular $x \in G$, and all $g \in G$.

(ii) An element, x, of G is α -regular if and only if there exists $\xi \in \operatorname{Proj}(G, \alpha)$ such that $\xi(x) \neq 0$.

PROOF. See (7.2.4) and (7.2.5) of [3].

We call a cocycle satisfying the condition of 1.2(i) a class-function cocycle, in the sense that by (ii) the elements of $\operatorname{Proj}(G,\beta)$ are then class functions.

Let $N \leq G$, for $\varsigma \in \operatorname{Proj}(N, \alpha_N)$ we define the *g*-conjugate, ς^g , of ς by

$$\zeta^g(x) = f_{lpha}(g,x) \zeta(gxg^{-1})$$

for $g \in G$, and all $x \in N$; where $f_{\alpha}(g, x) = \alpha(g, x)\alpha(gx, g^{-1})/\alpha(g, g^{-1})$. This defines an action of G on $\operatorname{Proj}(N, \alpha_N)$ for which Clifford's theorem holds. Having defined our action we can now being to look at the relationship between α_N -regular elements of N and $\operatorname{Proj}(N, \alpha_N)$.

LEMMA 1.3. Let $N \leq G$ and x be an α_N -regular element of N. Then for all $g \in G, x^g$ is α_N -regular.

PROOF. Let $\varsigma \in \operatorname{Proj}(N, \alpha_N)$ such that $\varsigma(x) \neq 0$, and $g \in G$. Then $\varsigma^g \in \operatorname{Proj}(N, \alpha_N)$ and $\varsigma^g(x^g) = c\varsigma(x)$ for some $c \neq 0$. Thus x^g is α_N -regular.

Our next result shows that G-invariance, not surprisingly, does not depend upon the choice of cocycle from $[\alpha]$.

LEMMA 1.4. Let $N \leq G$, $\mu: G \to \mathbb{C}^*$ be a mapping with $\mu(1) = 1$, and

$$\beta(g,h) = \frac{\mu(g)\mu(h)}{\mu(gh)}\alpha(g,h) \quad \text{for all } g,h \in G.$$

Suppose $\operatorname{Proj}(N, \alpha_N) = \{\varsigma_1, \ldots, \varsigma_t\}$. Then

(i) $\operatorname{Proj}(N, \beta_N) = \{\mu_N \zeta_1, \dots, \mu_N \zeta_t\};$ (ii) for $g \in G$, $\zeta_i^g = \zeta_j$ if and only if $(\mu_N \zeta_i)^g = \mu_N \zeta_j$.

PROOF. (i) See pages 72–73 of [3]. (ii) Let $g \in G$. Then for all $x \in N$,

$$\begin{aligned} (\mu\varsigma_i)^g(x) &= f_\beta(g, x)(\mu\varsigma_i)(gxg^{-1}) \\ &= \frac{\beta(g, x)\beta(gx, g^{-1})}{\beta(g, g^{-1})} \mu(gxg^{-1})\varsigma_i(gxg^{-1}) \\ &= f_\alpha(g, x)\mu(x)\varsigma_i(gxg^{-1}) = \mu(x)\varsigma_i^g(x). \end{aligned}$$

PROPOSITION 1.5. Let $N \leq G$, and let inf denote the inflation homomorphism from M(G/N) into M(G). Then there exists a G-invariant $\delta \in$ $\operatorname{Proj}(N, \alpha_N)$ with $\delta(1) = 1$ if and only if $[\alpha] \in \operatorname{Im}(\inf)$.

[4] Projection characters of degree one and the inflation-restriction sequence 275

PROOF. Suppose there exists a *G*-invariant $\delta \in \operatorname{Proj}(N, \alpha_N)$ with $\delta(1) = 1$. Let *P* be an irreducible projective representation of *G* with cocycle α which has δ as a constitutent of P_N . Then, if *P* has degree *n*, we have that *P* induces a homomorphism $\overline{P}: G/N \to PGL(n, \mathbb{C})$ defined by $\overline{P}(gN) = \Pi(P(g))$ for all $g \in G$, where Π denotes the natural homomorphism from $GL(n, \mathbb{C})$ onto $PGL(n, \mathbb{C})$. Now any section of \overline{P} will be a projective representation of G/N with some cocycle β of G/N, moreover $[\beta]$ does not depend on the choice of section, and it is clear that $\inf([\beta]) = [\alpha]$.

Conversely, suppose $[\alpha] = \inf([\beta])$ for some $[\beta] \in M(G/N)$. Then regarding β as a cocycle of G we have that the trivial character, 1_N , of N is an element of $\operatorname{Proj}(N, \beta_N)$. As such 1_N is G-invariant since β is constant on the cosets of N in G, and hence there exists a G-invariant $\delta \in \operatorname{Proj}(N, \alpha_N)$ with $\delta(1) = 1$ by 1.4.

This result would appear to have easily answered our original question. However we shall now demonstrate that in certain circumstances it is possible to produce G-invariant projective characters of degree 1 in situations where it is not intrinsically obvious that the cocycle could be inflated.

LEMMA 1.6. Let $N \trianglelefteq G$ such that $[\alpha_N] = [1]$. Then there exists $\delta \in \operatorname{Proj}(N', \alpha_{N'})$ with $\delta(1) = 1$ such that δ is G-invariant.

PROOF. Since $[\alpha_N] = [1]$, $\mathscr{A} = \{\delta \in \operatorname{Proj}(N, \alpha_N) : \delta(1) = 1\}$ is non-empty and G acts upon it. Now for $\delta \in \mathscr{A}$ we have that $\delta_{N'}$ is irreducible, and so by Clifford's theorem there exists a bijection from $\operatorname{Irr}(N/N')$ onto \mathscr{A} defined by $\lambda \mapsto \lambda \delta$. Now if $\xi \in \operatorname{Proj}(G, \alpha)$ such that δ is a constitutent of ξ_N , we have that $\xi_N = e(\delta_1 + \cdots + \delta_t)$, where $\delta = \delta_1, \ldots, \delta_t$ are the distinct G-conjugates of δ . Thus $\xi_{N'} = et\delta_{N'}$, and so $\delta_{N'}$ is G-invariant.

It is obvious that if there is a G-invariant element of $\operatorname{Proj}(N, \alpha_N)$ of degree 1, then necessarily every element of N is α -regular. One could conjecture, falsely as it happens, that this was also a sufficient condition, but our next major result shows that to some extent this conjecture would be justified.

LEMMA 1.7. Let $N \trianglelefteq G$ and x be an α_N -regular element of N. Suppose that α_N is class-function cocycle of N. Then for each $g \in G$ and all $y \in N$,

$$f_{\alpha}(g, x) = f_{\alpha}(g, x^{y}).$$

PROOF. By 1.2 and 1.3 we may let $\varsigma \in \operatorname{Proj}(N, \alpha_N)$ such that $\varsigma(gxg^{-1}) \neq 0$. Now for $g \in G$ and all $y \in N$ we have that

$$\varsigma^g(x) = f_\alpha(g, x)\varsigma(gxg^{-1})$$

 and

$$(\zeta^g)^{y^{-1}}(x) = f_\alpha(y^{-1}, x)\zeta^g(x^y)$$

= $\zeta^g(x^y)$, since α_N is a class-function cocycle;
= $f_\alpha(g, x^y)\zeta(gx^yg^{-1})$.

But gxg^{-1} and gx^yg^{-1} are conjugate in N, since G permutes the classes of N. Thus since α_N is a class-function cocycle we have that both $\zeta(gx^yg^{-1}) = \zeta(gxg^{-1}) \neq 0$, and $\zeta^g(x) = \zeta^g(x^y)$, hence $f_\alpha(g, x) = f_\alpha(g, x^y)$.

THEOREM 1.8. Let $N \trianglelefteq G; \mathscr{C}_1, \ldots, \mathscr{C}_r$ be the α_N -regular conjugacy classes of N fixed by $g \in G$, and $x_i \in \mathscr{C}_i$. Suppose that α_N is a class-function cocycle of N. Then $\sum_{i=1}^r f_\alpha(g, x_i)$ is the number of g-invariant elements of $\operatorname{Proj}(N, \alpha_N)$.

PROOF (BRAUER, ISAACS). Let ζ_i, \mathscr{C}_i for $1 \leq i \leq t$ denote respectively the elements of $\operatorname{Proj}(N, \alpha_N)$ and the α_N -regular classes of N. Let $x_i \in \mathscr{C}_i$, if $\mathscr{C}_i^g = \mathscr{C}_j$ we shall write $x_i^g = x_j$. For $g \in G$, we define $A(g) = (a_{ij})$, where $a_{ij} = 1$, if $\zeta_i^g = \zeta_j$ and is zero otherwise. We also define $B(g) = (b_{ij})$, where $b_{ij} = f_\alpha(g, x_j)$ if $\mathscr{C}_i^g = \mathscr{C}_j$ and is zero otherwise. We note from 1.7 that $f_\alpha(g, x_j)$ is independent of the choice of $x_j \in \mathscr{C}_j$. Finally let $P = (p_{ij})$, where $p_{ij} = \zeta_i(x_j)$. Then we have that the (l, m)th entry of A(g)P is $\sum_{j=1}^t a_{lj}\zeta_j(x_m) = \zeta_l^g(x_m)$; whereas the (l, m)th entry of PB(g) is

$$\sum_{j=1}^{l} \varsigma_l(x_j) b_{jm} = f_\alpha(g, x_m) \varsigma_l(g x_m g^{-1}) = \varsigma_l^g(x_m).$$

Thus $P^{-1}A(g)P = B(g)$ and so trace(A(g)) = trace(B(g)). But trace(A(g)) is the number of g-invariant elements of $\text{Proj}(N, \alpha_N)$, whereas $\text{trace}(B(g)) = \sum_{i \in I} f_{\alpha}(g, x_i)$ where $I = \{i : \mathscr{C}_i^g = \mathscr{C}_i\}$.

As applications of the above theorem we have the following results.

COROLLARY 1.9. Let $N \leq G$, and suppose that every element of N is α -regular. Then each $g \in G$ fixes at least one element of $\operatorname{Proj}(N, \alpha_N)$.

PROOF. By 1.4(ii) we may assume that α is a class-function cocycle of G. Let $g \in G$, then by 1.8 the number of g-invariant elements of $\operatorname{Proj}(N, \alpha_N)$ equals the number of classes of N fixed by g.

COROLLARY 1.10. Let N be a normal abelian subgroup of G such that $G/C_G(N)$ is cyclic. Suppose that every element of N is α -regular. Then there exists $\delta \in \operatorname{Proj}(N, \alpha_N)$ with $\delta(1) = 1$ which is G-invariant.

PROOF. Let $C = C_G(N)$ and $\delta \in \operatorname{Proj}(N, \alpha_N)$. Then $\delta(1) = 1$ and C is a subgroup of the inertia subgroup, $I_G(\delta)$, of δ in G, since N is abelian and every

element of N is α -regular. Let $g \in G$ such that $\langle gC \rangle = G/C$, then by 1.9 g fixes some $\delta' \in \operatorname{Proj}(N, \alpha_N)$. Thus $G = \langle g, C \rangle \leq I_G(\delta')$.

It is interesting to note that Mangold in (5.1) of [7] claimed that every element of G is α -regular if and only if $[\alpha] = [1]$. The first of the following examples demonstrates that this is in fact false in general for a non-abelian group, and hence also shows that the condition of every element of G being α -regular is not even sufficient generally, to guarantee the existence of an element of $\operatorname{Proj}(G, \alpha)$ of degree 1.

EXAMPLES. Let p be a prime number, and H be the "einfachste" representation group for $(C_p)^4$ as in (3.5.4) of [3], so that $|H| = p^{10}$ and $H = \langle x_1, x_2, x_3, x_4 : x_i^p = [x_i, x_j, x_k] = 1$, for $1 \leq i, j, k \leq 4 \rangle$.

Let $s = [x_1, x_2][x_3, x_4]$ and $A = \langle s \rangle$, so that $A \leq Z(H) \cap H'$ and |A| = p. It is easy to show that no non-trivial element of A is a commutator, see [5] for a generalization of this result. Now let $\lambda \in \operatorname{Irr}(A)$ be defined by $\lambda(s^j) = \omega^j$ for $\omega = e^{2\pi i/p}$, and let α be the cocycle of $G_1 = H/A$ constructed in the normal way from λ , see pages 180–182 of [2] for example. Then by construction $o([\alpha]) = p$. Now with the definition and results of pages 195–197 of [2], we have that every element of G_1 is ' λ -special' trivially, and hence every element of G_1 is α -regular.

For a different type of example let $B = \langle s, t \rangle$ where $t = [x_1, x_3]$, $M = \langle x_1, x_3, A \rangle$, and define $\mu \in \operatorname{Irr}(B)$ by $\mu(s^j t^k) = \lambda(s^j)$. One can then check that every element of N = M/B is μ -special, but that not every element of MZ(H)/Z(H) is ν -special for any extension, ν , of μ to Z(H). So if β is the cocycle of $G_2 = H/B$ constructed from μ , we have shown that every element of the abelian group N is β -regular, but that no element of $\operatorname{Proj}(N,\beta)$ can be G_2 -invariant.

2. The inflation-restriction sequence

Let $N \trianglelefteq G$. Then we have the Lyndon-Hochschild-Serre exact sequence of cohomology:

$$\{1\} \to H^1(G/N, \mathbb{C}^*) \xrightarrow{\inf_1} H^1(G, \mathbb{C}^*) \xrightarrow{\operatorname{res}_1} H^1(N, \mathbb{C}^*)^G$$
$$\xrightarrow{\operatorname{tra}} M(G/N) \xrightarrow{\operatorname{inf}_2} M(G)$$

where the action of all groups on \mathbb{C}^* is trivial, see [6, page 354].

It is clear that we may replace M(G) in this exact sequence by $M(G)^{\#} = \{[\alpha] \in M(G): [\alpha_N] = [1]\}$. In this section we shall extend this new sequence one term to the right, and in doing so we shall give a practical test to see whether an element of $M(G)^{\#}$ is in the image of inf₂. Thus it is 1.5 which connects the results of Section 1 to those of this section.

LEMMA 2.1. Let $N \leq G$, α be a cocycle of G such that $[\alpha] \in M(G)^{\#}$, and $\delta \in \operatorname{Proj}(N, \alpha_N)$ with $\delta(1) = 1$. Then

(i) the mapping $\alpha' \colon G/N \to H^1(N, \mathbb{C}^*)$ defined by $\alpha'(gN) = \delta/\delta^g$ is a crossed homomorphism;

(ii) the mapping $\tau: M(G)^{\#} \to H^1(G/N, H^1(N, \mathbb{C}^*))$ defined by $\tau([\alpha]) = [\alpha']$ is a homomorphism.

PROOF. (i) Let $g \in G$. Then $\delta^g, \delta \in \operatorname{Proj}(N, \alpha_N)$, and so since $\delta(1) = 1$ we have that $\delta/\delta^g \in H^1(N, \mathbb{C}^*)$. Now let $g_1, g_2 \in G$, and suppose that $g_1x = g_2$ for $x \in N$. Then

$$\alpha'(g_2N) = \frac{\delta}{\delta^{g_1x}} = \frac{\delta}{(\delta^{g_1})^x} = \frac{\delta}{\delta^{g_1}} = \alpha'(g_1N),$$

since $N \leq I_G(\delta^{g_1})$. Thus α' is well defined. Finally let $g_1, g_2 \in G$. Then

$$\alpha'(g_1g_2N) = \frac{\delta}{\delta^{g_1g_2}} = \left(\frac{\delta}{\delta^{g_1}}\right)^{g_2} \frac{\delta}{\delta^{g_2}} = (\alpha'(g_1N))^{g_2N} \alpha'(g_2N).$$

(ii) Suppose $\beta \in [\alpha]$, and let $\mu: G \to \mathbb{C}^*$ be a mapping with $\mu(1) = 1$ such that

$$eta(g,h)=rac{\mu(g)\mu(h)}{\mu(gh)}lpha(g,h) \quad ext{ for all } g,h\in G.$$

Let $\nu \in \operatorname{Proj}(N, \beta_N)$ with $\nu(1) = 1$. Then by 1.4 we have that $\nu = \mu_N \delta_1$ for some $\delta_1 \in \operatorname{Proj}(N, \alpha_N)$. But $\delta_1 = \lambda \delta$ for $\lambda \in H^1(N, \mathbb{C}^*)$ as in the proof of 1.6. Thus

$$\frac{\nu}{\nu^g} = \frac{\lambda}{\lambda^g} \frac{\mu_N \delta}{(\mu_N \delta)^g} = \frac{\lambda}{\lambda^g} \frac{\delta}{\delta^g}$$

as in the proof of 1.4, and so τ is well defined. Clearly τ is a homomorphism.

THEOREM 2.2. Let $N \leq G$. Then the sequence

$$M(G/N) \xrightarrow{\inf} M(G)^{\#} \xrightarrow{\tau} H^1(G/N, H^1(N, \mathbb{C}^*))$$

is exact.

PROOF. By 1.5 we have that $\operatorname{Im}(\operatorname{inf}) \leq \operatorname{Ker}(\tau)$. Let $[\alpha] \in \operatorname{Ker}(\tau)$. Then for $\delta \in \operatorname{Proj}(N, \alpha_N)$ with $\delta(1) = 1$, we have that $\delta/\delta^g = \lambda/\lambda^g$ for some $\lambda \in H^1(N, \mathbb{C}^*)$. But then $\delta\lambda^{-1}$ is *G*-invariant, and so by 1.5 we obtain that $[\alpha] \in \operatorname{Im}(\operatorname{inf})$.

The above theorem can be regarded as a generalization of a result of Read, see (4.4.5) of [3], which deals with the special case when N is a central subgroup of G. We now mention some applications of 2.2, the first being well known.

[8] Projection characters of degree one and the inflation-restriction sequence 279

COROLLLARY 2.3. Let N be a perfect normal subgroup of G. Then the sequence

$$\{1\} \to M(G/N) \xrightarrow{\inf} M(G) \xrightarrow{\operatorname{res}} M(N)$$

is exact.

PROOF. We start by noting that $H^1(N, \mathbb{C}^*) = \{1\}$, since N' = N. Thus by 2.2 we have that Ker(res) = $M(G)^{\#} = \text{Im}(\inf)$.

Our next result was used by Liebler and Yellen in (2.4) of [4] to help prove that groups of central type are solvable.

COROLLARY 2.4. Let $N \leq G$, and suppose that (|G/N|, |N/N'|) = 1. Then $M(G)^{\#} = \text{Im}(\inf)$.

PROOF. By the Schur-Zassenhaus theorem we have that $H^1(G/N, H^1(N, \mathbb{C}^*))$ is trivial, and so the desired result is immediate from 2.2.

COROLLARY 2.5. Suppose G is metacyclic, and let $N \leq G$ such that both N and G/N are cyclic. Then M(G) is isomorphic to a subgroup of $H^1(G/N, N)$.

PROOF. From 2.2 we have that the sequence

$$\{1\} \to M(G) \xrightarrow{\tau} H^1(G/N, \operatorname{Irr}(N))$$

is exact, since $M(G)^{\#} = M(G)$. Thus τ is a monomorphism.

For our last application we can now explain the result of 1.6.

COROLLARY 2.6. Let $N_1, N_2 \leq G$ with $N_2 \leq N_1, T$ denote the image of res: $H^1(N_1, \mathbb{C}^*) \rightarrow H^1(N_2, \mathbb{C}^*)$, and $M(G)^{\#_1} = \{[\alpha] \in M(G) : [\alpha_{N_i}] = [1]\}$. Then the homomorphism $\tau : M(G)^{\#_2} \rightarrow H^1(G/N_2, H^1(N_2, \mathbb{C}^*))$ defined in 2.1, induces by restriction to $M(G)^{\#_1}$ a homomorphism from $M(G)^{\#_1}$ into $H^1(G/N_2, T)$.

PROOF. Let $[\alpha] \in M(G)^{\#_1}$, and $\delta \in \operatorname{Proj}(N_1, \alpha_{N_1})$ with $\delta(1) = 1$. Then by 2.1 we have that $\tau([\alpha]) = [\alpha']$, where $\alpha'(gN_2) = (\frac{\delta}{\delta g})_{N_2} \in T$.

In the situation of 1.6 we have that $N_2 = N'_1$ and so $T = \{1\}$, with the above notation. Thus by 2.2 we obtain that $M(G)^{\#_1}$ is a subgroup of $\inf : M(G/N'_1) \to M(G)$.

R. J. Higgs

References

- R. J. Haggarty and J. F. Humphreys, 'Projective characters of finite groups', Proc. London Math. Soc. (3) 36 (1978), 176-192.
- [2] I. M. Isaacs, Character theory of finite groups (Pure and Applied Mathematics, a Series of Monographs and Textbooks 69, Academic Press, New York, London, 1976).
- [3] G. Karpilovsky, *Projective representations of finite groups* (Monographs and Textbooks in Pure and Applied Mathematics 94, Marcel Dekker, New York, 1985).
- [4] R. A. Liebler and J. E. Yellen, 'In search of nonsolvable groups of central type', Pacific J. Math. 82 (1979) 485-492.
- [5] I. D. Macdonald, 'Commutators and their products', Amer. Math. Monthly 93 (1986), 440-443.
- [6] S. Mac Lane, Homology (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 114, Springer-Verlag, Berlin, Heidelberg, New York, 1967).
- [7] Ruth Mangold, 'Beitrage zur Theorie der Darstellungen endlicher Gruppen durch Kollineationen', Mitt. Math. Sem. Giessen 69 (1966), 1-44.

Department of Mathematics University College Dublin Belfield Dublin 4, Ireland