PROJECTIVE CHARACTERS OF DEGREE ONE
AND THE INFLATION-RESTRICTION SEQUENCE

R. J. HIGGS

(Received 14 May 1987)

Communicated by H. Lausch

Abstract

Let G be a finite group, α be a fixed cocycle of G and $\text{Proj}(G, \alpha)$ denote the set of irreducible projective characters of G lying over the cocycle α.

Suppose N is a normal subgroup of G. Then the author shows that there exists a G-invariant element of $\text{Proj}(N, \alpha_N)$ of degree 1 if and only if $[\alpha]$ is an element of the image of the inflation homomorphism from $M(G/N)$ into $M(G)$, where $M(G)$ denotes the Schur multiplier of G. However in many situations one can produce such G-invariant characters where it is not intrinsically obvious that the cocycle could be inflated. Because of this the author obtains a restatement of his original result using the Lyndon-Hochschild-Serre exact sequence of cohomology. This restatement not only resolves the apparent anomalies, but also yields as a corollary the well-known fact that the inflation-restriction sequence

$$\{1\} \rightarrow M(G/N) \rightarrow M(G) \rightarrow M(N)$$

is exact when N is perfect.

Keywords and phrases: projective representations of finite groups.

All groups, G, considered in this paper are finite and all representations of G are defined over the complex numbers. The reader unfamiliar with projective representations is referred to [3] for basic definitions and elementary results.

The purpose of this paper is to investigate under which circumstances the following well-known corollary to Clifford’s theorem can be generalized to projective characters.

© 1989 Australian Mathematical Society 0263-6115/89 $A2.00 + 0.00$
Let $N \trianglelefteq G$, and $\chi \in \text{Irr}(G)$ such that $[\chi_N, 1_N] \neq 0$, where 1_N denotes the trivial character of N. Then $N \leq \text{Ker}(\chi)$.

Our generalization will take the form of answering the following question.

Let α be a cocycle of G and $N \trianglelefteq G$. Under which necessary and sufficient conditions does there exist a G-invariant projective character of N with degree 1 and cocycle α_N?

Our motivation for investigating this problem is provided by Haggarty and Humphreys [1] who said “Given a subgroup L of G, a cocycle α of G determines a cocycle α_L of L by restriction. However elements which are α_L-regular in L need not be α-regular in G. This fact complicates the theory of projective characters.”

The implication here can be taken to be that given that every element of L is α-regular (see 1.1 for this definition), then the theory of projective characters is similar to ordinary character theory. Indeed as the theory applies to induction from L to G this is the case, however we shall show in Section 1 that this is certainly not the case when looking at the restriction from G to L, where $L \trianglelefteq G$.

1. Projective characters of degree one

To avoid repetition we fix the following notation for the rest of this paper. Let G be a group, α be a cocycle of G, and $\text{Proj}(G, \alpha)$ denote the set of irreducible projective characters of G with cocycle α. We shall also use without further reference the fact due to Schur that $o([\alpha])$ in $M(G)$ divides $\xi(1)$ for all $\xi \in \text{Proj}(G, \alpha)$, where $M(G)$ denotes the Schur multiplier of G. We thus have that there is an element of $\text{Proj}(G, \alpha)$ of degree 1 if and only if $[\alpha] = [1]$. We now recall some more well-known facts about projective characters in a series of lemmas. We start however with a basic definition.

DEFINITION 1.1. An element, x, of G is said to be α-regular if $\alpha(x, g) = \alpha(g, x)$ for all $g \in C_G(x)$.

It is easy to check that if $[\alpha] = [\beta]$, then x is α-regular if and only if x is β-regular. Also any conjugate of an α-regular element is α-regular, so that we may speak of the α-regular conjugacy classes of G.

LEMMA 1.2. (i) There exists $\beta \in [\alpha]$ such that

$$\frac{\beta(g, x)\beta(gx, g^{-1})}{\beta(g, g^{-1})} = 1$$

for all β-regular $x \in G$, and all $g \in G$.
(ii) An element, \(x \), of \(G \) is \(\alpha \)-regular if and only if there exists \(\xi \in \text{Proj}(G, \alpha) \) such that \(\xi(x) \neq 0 \).

PROOF. See (7.2.4) and (7.2.5) of [3].

We call a cocycle satisfying the condition of 1.2(i) a class-function cocycle, in the sense that by (ii) the elements of \(\text{Proj}(G, \beta) \) are then class functions.

Let \(N \leq G \), for \(\zeta \in \text{Proj}(N, \alpha_N) \) we define the \(g \)-conjugate, \(\zeta^g \), of \(\zeta \) by

\[
\zeta^g(x) = f_\alpha(g, x)\zeta(g x g^{-1})
\]

for \(g \in G \), and all \(x \in N \); where \(f_\alpha(g, x) = \alpha(g, x)\alpha(g x, g^{-1})/\alpha(g, g^{-1}) \). This defines an action of \(G \) on \(\text{Proj}(N, \alpha_N) \) for which Clifford's theorem holds. Having defined our action we can now begin to look at the relationship between \(\alpha_N \)-regular elements of \(N \) and \(\text{Proj}(N, \alpha_N) \).

LEMMA 1.3. Let \(N \leq G \) and \(x \) be an \(\alpha_N \)-regular element of \(N \). Then for all \(g \in G \), \(x^g \) is \(\alpha_N \)-regular.

PROOF. Let \(\zeta \in \text{Proj}(N, \alpha_N) \) such that \(\zeta(x) \neq 0 \), and \(g \in G \). Then \(\zeta^g \in \text{Proj}(N, \alpha_N) \) and \(\zeta^g(x^g) = c\zeta(x) \) for some \(c \neq 0 \). Thus \(x^g \) is \(\alpha_N \)-regular.

Our next result shows that \(G \)-invariance, not surprisingly, does not depend upon the choice of cocycle from \([\alpha] \).

LEMMA 1.4. Let \(N \leq G \), \(\mu : G \to \mathbb{C}^* \) be a mapping with \(\mu(1) = 1 \), and

\[
\beta(g, h) = \frac{\mu(g)\mu(h)}{\mu(gh)} \alpha(g, h) \quad \text{for all} \; g, h \in G.
\]

Suppose \(\text{Proj}(N, \alpha_N) = \{\zeta_1, \ldots, \zeta_t\} \). Then

(i) \(\text{Proj}(N, \beta_N) = \{\mu_N \zeta_1, \ldots, \mu_N \zeta_t\} \);

(ii) for \(g \in G \), \(\zeta_i^g = \zeta_j \) if and only if \((\mu_N \zeta_i)^g = \mu_N \zeta_j \).

PROOF. (i) See pages 72–73 of [3].

(ii) Let \(g \in G \). Then for all \(x \in N \),

\[
(\mu_\zeta)^g(x) = f_\beta(g, x)(\mu_\zeta)(gxg^{-1})
= \frac{\beta(g, x)\beta(g x, g^{-1})}{\beta(g, g^{-1})} \mu(gxg^{-1})\zeta_i(gxg^{-1})
= f_\alpha(g, x)\mu(x)\zeta_i(gxg^{-1}) = \mu(x)\zeta_i^g(x).
\]

PROPOSITION 1.5. Let \(N \leq G \), and let \(\inf \) denote the inflation homomorphism from \(M(G/N) \) into \(M(G) \). Then there exists a \(G \)-invariant \(\delta \in \text{Proj}(N, \alpha_N) \) with \(\delta(1) = 1 \) if and only if \([\alpha] \in \text{Im}(\inf) \).
PROOF. Suppose there exists a G-invariant $\delta \in \text{Proj}(N, \alpha_N)$ with $\delta(1) = 1$. Let P be an irreducible projective representation of G with cocycle α which has δ as a constituent of P_N. Then, if P has degree n, we have that P induces a homomorphism $\overline{P} : G/N \to \text{PGL}(n, \mathbb{C})$ defined by $\overline{P}(gN) = \Pi(P(g))$ for all $g \in G$, where Π denotes the natural homomorphism from $GL(n, \mathbb{C})$ onto $\text{PGL}(n, \mathbb{C})$. Now any section of \overline{P} will be a projective representation of G/N with some cocycle β of G/N, moreover $[\beta]$ does not depend on the choice of section, and it is clear that $\text{inf}([\beta]) = [\alpha]$.

Conversely, suppose $[\alpha] = \text{inf}([\beta])$ for some $[\beta] \in M(G/N)$. Then regarding β as a cocycle of G we have that the trivial character, 1_N, of N is an element of $\text{Proj}(N, \beta_N)$. As such 1_N is G-invariant since β is constant on the cosets of N in G, and hence there exists a G-invariant $\delta \in \text{Proj}(N, \alpha_N)$ with $\delta(1) = 1$ by 1.4.

This result would appear to have easily answered our original question. However we shall now demonstrate that in certain circumstances it is possible to produce G-invariant projective characters of degree 1 in situations where it is not intrinsically obvious that the cocycle could be inflated.

Lemma 1.6. Let $N \trianglelefteq G$ such that $[\alpha_N] = [1]$. Then there exists $\delta \in \text{Proj}(N', \alpha_{N'})$ with $\delta(1) = 1$ such that δ is G-invariant.

Proof. Since $[\alpha_N] = [1]$, $\mathcal{A} = \{\delta \in \text{Proj}(N, \alpha_N) : \delta(1) = 1\}$ is non-empty and G acts upon it. Now for $\delta \in \mathcal{A}$ we have that $\delta_{N'}$ is irreducible, and so by Clifford's theorem there exists a bijection from $\text{Irr}(N/N')$ onto \mathcal{A} defined by $\lambda \mapsto \lambda \delta$. Now if $\xi \in \text{Proj}(G, \alpha)$ such that δ is a constituent of ξ_N, we have that $\xi_N = e(\delta_1 + \cdots + \delta_t)$, where $\delta = \delta_1, \ldots, \delta_t$ are the distinct G-conjugates of δ. Thus $\xi_{N'} = et\delta_{N'}$, and so $\delta_{N'}$ is G-invariant.

It is obvious that if there is a G-invariant element of $\text{Proj}(N, \alpha_N)$ of degree 1, then necessarily every element of N is α-regular. One could conjecture, falsely as it happens, that this was also a sufficient condition, but our next major result shows that to some extent this conjecture would be justified.

Lemma 1.7. Let $N \trianglelefteq G$ and x be an α_N-regular element of N. Suppose that α_N is class-function cocycle of N. Then for each $g \in G$ and all $y \in N$,

$$f_\alpha(g, x) = f_\alpha(g, x^y).$$

Proof. By 1.2 and 1.3 we may let $\zeta \in \text{Proj}(N, \alpha_N)$ such that $\zeta(gxg^{-1}) \neq 0$. Now for $g \in G$ and all $y \in N$ we have that

$$\zeta^g(x) = f_\alpha(g, x)\zeta(gxg^{-1})$$
and

\[(\zeta^g)^{y^{-1}}(x) = f_\alpha(y^{-1}, x)\zeta^g(xy)\]

\[= \zeta^g(xy), \quad \text{since } \alpha_N \text{ is a class-function cocycle;}
\]

\[= f_\alpha(g, xy)\zeta(gxyg^{-1}).\]

But \(gxg^{-1}\) and \(gxyg^{-1}\) are conjugate in \(N\), since \(G\) permutes the classes of \(N\). Thus since \(\alpha_N\) is a class-function cocycle we have that both \(\zeta(gxyg^{-1}) = \zeta(gxg^{-1}) \neq 0\), and \(\zeta^g(x) = \zeta^g(xy)\), hence \(f_\alpha(g, x) = f_\alpha(g, xy)\).

Theorem 1.8. Let \(N \triangleleft G; \mathcal{C}_1, \ldots, \mathcal{C}_t\) be the \(\alpha_N\)-regular conjugacy classes of \(N\) fixed by \(g \in G\), and \(x_i \in \mathcal{C}_i\). Suppose that \(\alpha_N\) is a class-function cocycle of \(N\). Then \(\sum_{i=1}^t f_\alpha(g, x_i)\) is the number of \(g\)-invariant elements of \(\text{Proj}(N, \alpha_N)\).

Proof. (Brauer, Isaacs). Let \(\mathcal{G}_i\) for \(1 \leq i \leq t\) denote respectively the elements of \(\text{Proj}(N, \alpha_N)\) and the \(\alpha_N\)-regular classes of \(N\). Let \(x_i \in \mathcal{G}_i\), if \(\mathcal{G}_i^g = \mathcal{G}_j\) we shall write \(x_i^g = x_j\). For \(g \in G\), we define \(A(g) = (a_{ij})\), where \(a_{ij} = 1\), if \(x_i^g = x_j\) and is zero otherwise. We also define \(B(g) = (b_{ij})\), where \(b_{ij} = f_\alpha(g, x_j)\) if \(\mathcal{G}^g_i = \mathcal{G}_j\) and is zero otherwise. We note from 1.7 that \(f_\alpha(g, x_j)\) is independent of the choice of \(x_j \in \mathcal{G}_j\). Finally let \(P = (p_{ij})\), where \(p_{ij} = \mathcal{G}_i^g\). Then we have that the \((l, m)\)th entry of \(A(g)P\) is \(\sum_{j=1}^t a_{ij} \zeta^g_j(x_m) = \zeta^g_l(x_m)\); whereas the \((l, m)\)th entry of \(PB(g)\) is

\[\sum_{j=1}^t \zeta_l(x_j)b_{jm} = f_\alpha(g, x_m)\zeta_l(gxmg^{-1}) = \zeta^g_l(x_m).\]

Thus \(P^{-1}A(g)P = B(g)\) and so \(\text{trace}(A(g)) = \text{trace}(B(g))\). But \(\text{trace}(A(g))\) is the number of \(g\)-invariant elements of \(\text{Proj}(N, \alpha_N)\), whereas \(\text{trace}(B(g)) = \sum_{i \in I} f_\alpha(g, x_i)\) where \(I = \{i: \mathcal{G}_i^g = \mathcal{G}_i\}\).

As applications of the above theorem we have the following results.

Corollary 1.9. Let \(N \triangleleft G\), and suppose that every element of \(N\) is \(\alpha\)-regular. Then each \(g \in G\) fixes at least one element of \(\text{Proj}(N, \alpha_N)\).

Proof. By 1.4(ii) we may assume that \(\alpha\) is a class-function cocycle of \(G\). Let \(g \in G\), then by 1.8 the number of \(g\)-invariant elements of \(\text{Proj}(N, \alpha_N)\) equals the number of classes of \(N\) fixed by \(g\).

Corollary 1.10. Let \(N\) be a normal abelian subgroup of \(G\) such that \(G/C_G(N)\) is cyclic. Suppose that every element of \(N\) is \(\alpha\)-regular. Then there exists \(\delta \in \text{Proj}(N, \alpha_N)\) with \(\delta(1) = 1\) which is \(G\)-invariant.

Proof. Let \(C = C_G(N)\) and \(\delta \in \text{Proj}(N, \alpha_N)\). Then \(\delta(1) = 1\) and \(C\) is a subgroup of the inertia subgroup, \(I_G(\delta)\), of \(\delta\) in \(G\), since \(N\) is abelian and every
element of N is α-regular. Let $g \in G$ such that $(gC) = G/C$, then by 1.9 g fixes some $\delta' \in \text{Proj}(N, \alpha_N)$. Thus $G = \langle g, C \rangle \leq I_G(\delta')$.

It is interesting to note that Mangold in (5.1) of [7] claimed that every element of G is α-regular if and only if $[\alpha] = [1]$. The first of the following examples demonstrates that this is in fact false in general for a non-abelian group, and hence also shows that the condition of every element of G being α-regular is not even sufficient generally, to guarantee the existence of an element of $\text{Proj}(G, \alpha)$ of degree 1.

EXAMPLES. Let p be a prime number, and H be the “einfachste” representation group for $(C_p)^4$ as in (3.5.4) of [3], so that $|H| = p^{10}$ and $H = \langle x_1, x_2, x_3, x_4 : x_i^p = [x_i, x_j, x_k] = 1, \text{ for } 1 \leq i, j, k \leq 4 \rangle$.

Let $s = [x_1, x_2] [x_3, x_4]$ and $A = \langle s \rangle$, so that $A \leq Z(H) \cap H'$ and $|A| = p$. It is easy to show that no non-trivial element of A is a commutator, see [5] for a generalization of this result. Now let $\lambda \in \text{Irr}(A)$ be defined by $\lambda(s^j) = \omega^j$ for $\omega = e^{2\pi i/p}$, and let α be the cocycle of $G_1 = H/A$ constructed in the normal way from λ, see pages 180–182 of [2] for example. Then by construction $o([\alpha]) = p$. Now with the definition and results of pages 195–197 of [2], we have that every element of G_1 is ‘λ-special’ trivially, and hence every element of G_1 is α-regular.

For a different type of example let $B = \langle s, t \rangle$ where $t = [x_1, x_3]$, $M = \langle x_1, x_3, A \rangle$, and define $\mu \in \text{Irr}(B)$ by $\mu(s^j t^k) = \lambda(s^j)$. One can then check that every element of $N = M/B$ is μ-special, but that not every element of $MZ(H)/Z(H)$ is ν-special for any extension, ν, of μ to $Z(H)$. So if β is the cocycle of $G_2 = H/B$ constructed from μ, we have shown that every element of the abelian group N is β-regular, but that no element of $\text{Proj}(N, \beta)$ can be G_2-invariant.

2. The inflation-restriction sequence

Let $N \trianglelefteq G$. Then we have the Lyndon-Hochschild-Serre exact sequence of cohomology:

$$
\{1\} \to H^1(G/N, \mathbb{C}^*) \xrightarrow{\inf_1} H^1(G, \mathbb{C}^*) \xrightarrow{\text{res}_1} H^1(N, \mathbb{C}^*) \xrightarrow{\text{tra}} M(G/N) \xrightarrow{\inf_2} M(G)
$$

where the action of all groups on \mathbb{C}^* is trivial, see [6, page 354].

It is clear that we may replace $M(G)$ in this exact sequence by $M(G)^\# = \{ [\alpha] \in M(G) : [\alpha_N] = [1] \}$. In this section we shall extend this new sequence one term to the right, and in doing so we shall give a practical test to see whether an element of $M(G)^\#$ is in the image of \inf_2. Thus it is 1.5 which connects the results of Section 1 to those of this section.
LEMMA 2.1. Let $N \leq G$, α be a cocycle of G such that $[\alpha] \in M(G)^\#$, and $\delta \in \text{Proj}(N, \alpha_N)$ with $\delta(1) = 1$. Then

(i) the mapping $\alpha': G/N \to H^1(N, \mathbb{C}^*)$ defined by $\alpha'(gN) = \delta/\delta^g$ is a crossed homomorphism;

(ii) the mapping $\tau: M(G)^\# \to H^1(G/N, H^1(N, \mathbb{C}^*))$ defined by $\tau([\alpha]) = [\alpha']$ is a homomorphism.

PROOF. (i) Let $g \in G$. Then $\delta^g, \delta \in \text{Proj}(N, \alpha_N)$, and so since $\delta(1) = 1$ we have that $\delta/\delta^g \in H^1(N, \mathbb{C}^*)$. Now let $g_1, g_2 \in G$, and suppose that $g_1 x = g_2$ for $x \in N$. Then

$$\alpha'(g_2 N) = \frac{\delta}{\delta^g_1 x} = \frac{\delta}{(\delta^g_1)_x} = \frac{\delta}{\delta^g_1} = \alpha'(g_1 N),$$

since $N \leq I_G(\delta^g_1)$. Thus α' is well defined. Finally let $g_1, g_2 \in G$. Then

$$\alpha'(g_1 g_2 N) = \frac{\delta}{\delta^g_{1,2}} = \left(\frac{\delta}{\delta^g_1}\right)^{g_2} \frac{\delta}{\delta^g_2} = (\alpha'(g_1 N))^{g_2 N} \alpha'(g_2 N).$$

(ii) Suppose $\beta \in [\alpha]$, and let $\mu: G \to \mathbb{C}^*$ be a mapping with $\mu(1) = 1$ such that

$$\beta(g,h) = \frac{\mu(g)\mu(h)}{\mu(gh)} \alpha(g,h) \quad \text{for all } g, h \in G.$$

Let $\nu \in \text{Proj}(N, \beta_N)$ with $\nu(1) = 1$. Then by 1.4 we have that $\nu = \mu_N \delta_1$ for some $\delta_1 \in \text{Proj}(N, \alpha_N)$. But $\delta_1 = \lambda \delta$ for $\lambda \in H^1(N, \mathbb{C}^*)$ as in the proof of 1.6. Thus

$$\frac{\nu}{\nu^g} = \frac{\lambda}{\lambda^g} \frac{\mu_N \delta}{(\mu_N \delta)^g} = \frac{\lambda}{\lambda^g} \frac{\delta}{\delta^g},$$

as in the proof of 1.4, and so τ is well defined. Clearly τ is a homomorphism.

THEOREM 2.2. Let $N \leq G$. Then the sequence

$$M(G/N) \xrightarrow{\inf} M(G)^\# \xrightarrow{\tau} H^1(G/N, H^1(N, \mathbb{C}^*))$$

is exact.

PROOF. By 1.5 we have that $\text{Im}(\inf) \leq \text{Ker}(\tau)$. Let $[\alpha] \in \text{Ker}(\tau)$. Then for $\delta \in \text{Proj}(N, \alpha_N)$ with $\delta(1) = 1$, we have that $\delta/\delta^g = \lambda/\lambda^g$ for some $\lambda \in H^1(N, \mathbb{C}^*)$. But then $\delta \lambda^{-1}$ is G-invariant, and so by 1.5 we obtain that $[\alpha] \in \text{Im}(\inf)$.

The above theorem can be regarded as a generalization of a result of Read, see (4.4.5) of [3], which deals with the special case when N is a central subgroup of G. We now mention some applications of 2.2, the first being well known.
COROLLARY 2.3. Let N be a perfect normal subgroup of G. Then the sequence
\[
\{1\} \to M(G/N) \xrightarrow{\text{inf}} M(G) \xrightarrow{\text{res}} M(N)
\]
is exact.

PROOF. We start by noting that $H^1(N, C^*) = \{1\}$, since $N' = N$. Thus by 2.2 we have that $\text{Ker}(\text{res}) = M(G)^\# = \text{Im}(\text{inf})$.

Our next result was used by Liebler and Yellen in (2.4) of [4] to help prove that groups of central type are solvable.

COROLLARY 2.4. Let $N \trianglelefteq G$, and suppose that $(|G/N|, |N/N'|) = 1$. Then $M(G)^\# = \text{Im}(\text{inf})$.

PROOF. By the Schur-Zassenhaus theorem we have that $H^1(G/N, H^1(N, C^*))$ is trivial, and so the desired result is immediate from 2.2.

COROLLARY 2.5. Suppose G is metacyclic, and let $N \trianglelefteq G$ such that both N and G/N are cyclic. Then $M(G)$ is isomorphic to a subgroup of $H^1(G/N, N)$.

PROOF. From 2.2 we have that the sequence
\[
\{1\} \to M(G) \xrightarrow{\tau} H^1(G/N, \text{Irr}(N))
\]
is exact, since $M(G)^\# = M(G)$. Thus τ is a monomorphism.

For our last application we can now explain the result of 1.6.

COROLLARY 2.6. Let $N_1, N_2 \trianglelefteq G$ with $N_2 \leq N_1, T$ denote the image of $\text{res}: H^1(N_1, C^*) \to H^1(N_2, C^*)$, and $M(G)^{\#_1} = \{ [\alpha] \in M(G): [\alpha_{N_1}] = [1] \}$. Then the homomorphism $\tau : M(G)^{\#_2} \to H^1(G/N_2, H^1(N_2, C^*))$ defined in 2.1, induces by restriction to $M(G)^{\#_1}$ a homomorphism from $M(G)^{\#_1}$ into $H^1(G/N_2, T)$.

PROOF. Let $[\alpha] \in M(G)^{\#_1}$, and $\delta \in \text{Proj}(N_1, \alpha_{N_1})$ with $\delta(1) = 1$. Then by 2.1 we have that $\tau([\alpha]) = [\alpha']$, where $\alpha'(gN_2) = (g\delta)^{-1}N_2 \in T$.

In the situation of 1.6 we have that $N_2 = N_1'$ and so $T = \{1\}$, with the above notation. Thus by 2.2 we obtain that $M(G)^{\#_1}$ is a subgroup of $\text{inf}: M(G/N_1') \to M(G)$.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 27 May 2019 at 02:32:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788700030731
References

Department of Mathematics
University College Dublin
Belfield
Dublin 4, Ireland