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SOME RECENT RESULTS ON 
INVARIANT SUBSPACES 

BY 

PETER ROSENTHAL 

1. Introduction. This expository paper surveys work on invariant subspaces 
and related topics which has been done in the past few years. We recommend, 
naturally, that the reader consult [52] for work done prior to 1973 and [54] for 
a discussion of some of the consequences of Lomonosov's Lemma; 
(Lomonosov's paper has now also appeared in English ([36])). 

For simplicity we consider operators (i.e., bounded linear transformations) 
on separable complex Hilbert space only, although many of the results 
could be stated for Banach spaces. If if is any subset of Çfoffi) (the algebra of 
operators on W) we use Lat if to denote the lattice of all subspaces which are 
invariant under all the operators in if. The invariant subspace problem is the 
question: does every operator have a non-trivial (i.e., different from {0} and VC) 
invariant subspace? Definitions of all terms used below can be found in [52]. 

2. Three unusual theorems on existence of invariant subspaces. Suppose 
that the Hilbert space 3^ is decomposed as a direct sum (not necessarily 
orthogonal) in two different ways: ffl=J£ + ££ = M + N with JC, if, M, and X closed 
subspaces. Must there exist subspaces 3fC0, &o, -^o, and N0 of 9if, i£, M, and JV* 
respectively such that 3if0+S£o = ^ o + ^o (and such that 9f0+^o is not {0} or 9C)? 
This question seems to be about the geometry of Hilbert space, and certainly 
appears tractable at first glance. If we let P denote the projection of M onto 3if 
along it and let Q denote the projection of VC onto M along Jf then we are 
asking whether the idempotents P and Q have a common non-trivial invariant 
subspace. Chandler Davis [19] constructed three self-adjoint idempotents 
which have no common non-trivial invariant subspaces. Eric Nordgren, Heydar 
Radjavi, and I were surprised to discover the following. 

2.1. THEOREM ([43]). Every operator has a non-trivial invariant subspace if 
and only if every pair of idempotents has a common non-trivial invariant 
subspace. 

The proof of Theorem 2.1 is very elementary. In one direction it rests on the 
(A A \ 

observation that ( I is an idempotent for all operators A ; a 
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common invariant subspace for I 1 and I J leads to an in-
K \0 0/ \ 1 - A 1 - A / 

variant subspace for A. Conversely, if 5̂  is an invariant subspace of 
(PQP)|P?C, it is easily shown that 5f+( l -P)QS? is a common invariant 
subspace for P and Q. 

The fact that the proof of Theorem 2.1 is so simple does not convince me 
that it won't be useful in attacking the invariant subspace problem; (remember 
Hilden's proof of Lomonosov's Theorem ([52], p. 158)?). The formulation in 
terms of direct-sum decompositions seems different enough to me that I'm 
willing to spend more time testing different decompositions (looking for a 
negative result). 

An interesting variant of Lomonosov's Theorem was obtained by Daughtry. 

2.2. THEOREM ([17]). If AK-KA has rank 1 for some compact operator K, 
then A has a non-trivial invariant subspace. 

Lomonosov's Theorem, of course, is the case where AK-KA has rank 0 for 
some compact K other than 0. Daughtry's proof requires Lomonosov's Lemma 
([52], p. 156) and is short and elegant. A question that Theorem 2.2 suggests 
is: if AK-KA has rank 2 for some compact K must A have an invariant 
subspace? As Daughtry [17] points out, this is equivalent to the invariant 
subspace problem since AK-KA has rank at most 2 if K is chosen to have 
rank 1. 

Many people have attempted to construct operators without invariant sub-
spaces. A class of potential examples was introduced by E. Bishop. For a any 
irrational number in [0,1] the Bishop operator Ba corresponding to a sends the 
function /e££2(0,1) into the function whose value at te[0,1] is f/(f + a), where 
f+ a is computed modulo 1. For more than 10 years it was not known whether 
any Ba had an invariant subspace. On the other hand, it was also not known 
whether any Bishop operator had a cyclic vector; it was not even known if the 
function identically 1 was cyclic for any Bishop operator! A. M. Davie [18] 
recently made a powerful attack on existence of invariant subspaces for Bishop 
operators. Davie's work does not completely settle the question, however. In 
fact, Davie's results heighten the mystery of Bishop's operators. Davie proves 
that Ba has an invariant subspace for almost every a ! The precise theorem is as 
follows. 

2.3. THEOREM ([18]). If ae[0,1] and there is no sequence {pjqn} of rational 
numbers with qn^2 and \a-(pjqn)\<q~n, then the Bishop operator Ba has a 
non-trivial hyperinvariant subspace. 

The set of a satisfying the hypothesis of Theorem 2.3 has measure 1 and 
contains all algebraic numbers. The proof of Theorem 2.3 involves a number-
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theoretic result of Dirichlet, the Denjoy-Carleman Theorem, varying of a 
technique of Wermer's, and a great deal of ingenuity! 

3. Strongly reductive operators. Recall that the operator A is reductive if 
MeLat A implies J ^ e L a t A. The Dyer-Porcelli Theorem states that every 
operator has an invariant subspace if and only if every reductive operator is 
normal, and there are many special cases in which it is known that reductivity 
implies normality; (see section 6 below). 

Moore [37] defined an operator T to be strongly reductive if for each e > 0 
there is a <3>0 such that ||(1-P)TP||<<5 for a Hermitian projection P implies 
| | PT-TP | |<e . Informally, each approximately invariant subspace is approxi
mately reducing. 

Strongly reductive operators are obviously reductive, so a natural question is 
whether or not strongly reductive operators must be normal. It is clear that 
Hermitian operators are strongly reductive; Harrison [29] characterizes 
strongly reductive normal operators. 

3.1. THEOREM ([29]). If T is a normal operator, then the following are 
equivalent: 

(i) T is strongly reductive, 
(ii) cr(T) neither divides the plane nor has interior, 

(iii) T* is the uniform limit of a sequence of polynomials in T. 

Theorem 3.1 is, as Harrison notes, related to a corollary of Sarason's 
Theorem ([56], [52, p. 180]), which states that a normal operator T is reductive 
if and only if T* is the weak limit of a net of polynomials in T. 

To prove that strongly reductive operators are normal it must be shown that 
strongly reductive operators have invariant subspaces. A partial result was 
obtained by Apostol and Fong [7]. 

3.2. THEOREM ([7]). If T is strongly reductive and if the uniformly closed 
inverse-closed algebra generated by {1, T} contains an operator whose essential 
norm is less than its norm, (i.e., some S with mf{\\S+K\\:K compact}<||5||), then 
T has a non-trivial invariant subspace. 

The proof of Theorem 3.2 is very interesting. First it is observed that the 
Apostol-Foias-Voiculescu [4] characterization of quasi-triangular operators 
(also discussed in [21]) implies that T is quasi-triangular. Then the Aronszajn-
Smith technique is used to produce sequences {P'r} and {P£} of finite-rank 
projections each converging weakly such that ||(l-P'„)TP'n|| and ||(l-Pn)TPn|| 
both approach 0. The strong reductivity obviously implies that T commutes 
with the weak limits of {P'r} and {P£}. Since these weak limits are Hermitian, 
we are done—if one of the weak limits is not a multiple of the identity. In the 
Aronszajn-Smith proof, and in subsequent improvements, compactness is used 
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to get sequences {P„} and {P„} such that one of their weak limits is not 0 or 1. 
In the present Apostol-Fong proof it is shown that choosing a unit vector e and 
making 

(P'ne,e)<a^(P"ne,e) 

for a suitable positive number a, where a is determined by the operator whose 
essential norm is less than its norm, implies that the resulting {P'n} and {P„} 
cannot both converge to multiples of the identity. 

Lomonosov may have killed Aronszajn-Smith; if so, Apostol and Fong have 
resurrected them, and Apostol-Foias-Voiculescu [5] have raised them to new 
heights. 

3.3. THEOREM ([5]). If T is strongly reductive, then T is normal 

The main problem in proving Theorem 3.3 is in proving that T has an 
invariant subspace; the result can then be completed by using the Dyer-
Porcelli technique or ideas from ([14], sections 6.10 and 6.11), as [5] points 
out. The proof that T has invariant subspaces begins with Theorem 3.2. If 
Theorem 3.2 does not produce an invariant subspace for T it must be the case 
that the essential norm of p(T) is equal to the norm of p(T) for all polynomials 
p; i.e., the natural projection of the algebra of polynomials in T into the Calkin 
algebra is isometric. Now it suffices to show that TT*-T*T is compact. For 
when this is known the image of T in the Calkin algebra is normal and the 
uniformly closed algebra it generates is isometrically isomorphic to the continu
ous functions on its spectrum. This leads to an isometry of a ^(âf) into S8(3if) 
with T corresponding to a generator of <£($?), so a well-known result of 
Dunford implies that T is a spectral operator of scalar type. 

The problem of showing that TT*-T*T is compact is very difficult. The 
authors of [5] cleverly reduce this to a deep result of [58] on decomposing 
"approximate equivalents" of representations of separable ^-algebras . 

Theorems 3.1 and 3.3 together immediately yield a characterization of 
strongly reductive operators. 

3.4. COROLLARY. The operator T is strongly reductive if and only if T* is a 
uniform limit of polynomials in T, (and this occurs if and only if T is a normal 
operator whose spectrum has no interior and does not separate the plane). 

Corollary 3.4 is striking in that T's behavior with respect to approximately 
invariant subspaces implies normality. I certainly expect this result and the 
ideas behind it to have further ramifications. Apostol, Foias, and Voiculescu 
have already extended their result to prove that strongly reductive separable 
uniformly-closed commutative algebras are ^-algebras [6]. This theorem also 
relies heavily on [58]. 
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4. Compact perturbations of normal operators. It has been known for some 
time that certain perturbations of normal operators have invariant subspaces. 
The next theorem incorporated work of Macaev, Schwartz, Kitano, and others. 

4.1. THEOREM ([52], Corollary 6.13). If T=A+B where A is normal, cr(A) 
is contained in a twice-differentiate Jordan arc and B e ^>vfor some p> 1, then 
T has a non-trivial hyperinvariant subspace. 

(Note that the case where cr(T) is a singleton is covered by Lomonosov's 
Theorem). 

There have been several improvements of Theorem 4.1 that should be 
mentioned. The theorem can be generalized by broadening the class of B's 
allowed or by relaxing the requirement that A be normal. A generalization of 
the first type has been found by Kitano [34], and generalizations of the second 
type by Apostol [2] and Jafarian [31]. An extension in both directions is given 
by Radjabalipour and Radjavi [50]. 

4.2. THEOREM ([50]). If T = A + B where A has spectrum contained in a 
twice-differentiable Jordan arc J such that 

| | (2-Arl| |"di^b) (/orsomeK) 

for zéJ, and where BeC^ (the Macaev ideal), then T has a non-trivial 
hyperinvariant subspace. 

Results such as Theorems 4.1 and 4.2 above have corollaries for operators 
such that T — T * G ^ P (i.e., perturbations of Hermitian operators) and for 
operators such that 1-T^Te^p (i.e., perturbations of unitary operators); (cf. 
Corollaries 6.15 and 6.16 of [52]). A natural question (cf. [52], p. 194) is: if 
<T(T) is suitably thin and T is close to normal in the sense that T*T- TT*e%, 
must T have an invariant subspace? The remarkable study by Brown, Douglas, 
and Fillmore ([11], [12]) of essentially normal operators gives some insight into 
this question. For it is an immediate consequence of ([11], 11.2 Corollary) that 
T*T—TT* compact and T not the sum of a normal operator and a compact 
operator implies T has a hyperinvariant subspace. Thus a partial result in 
answer to the above, question would follow from a sufficient condition that 

(i) or(T) thin, 
(ii) T*T-TT*e% and 

(iii) T = N + K, N normal and K compact 

imply that T = N0 + K0 with N0 normal and K0e%p. (More generally, replace p 
by cj). Some such condition must exist. 

A related question has been asked by Radjabalipour and Radjavi [49]: if T 
satisfies the hypotheses of Theorem 4.1 above, and if M is hyperinvariant for 
T, must T\ M satisfy the hypotheses of Theorem 4.1? 
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Sufficient conditions that a compact perturbation of a normal operator be 
decomposable (in the sense of [14]) are given in [49] and [48]. 

5. Transitive operator algebras. A transitive algebra is a subalgebra of $*(?£) 
which is weakly closed and has no invariant subspaces other than {0} and 3f, 
and the transitive algebra problem is the question of whether there exist any 
transitive algebras other than 20(3^). A number of partial solutions to the 
transitive algebra problem can be found in ([52], Chapter 8). Lomonosov's 
work [36] has a number of corollaries about transitive algebras, some of which 
are discussed in [54] and several of which we now consider. 

5.1. THEOREM ([38], [30]). If T is a contraction in the Sz-Nagy-Foias class 
%o (cf. [57]), and if 1 - T * T and 1 -TT* are compact, then the weakly closed 
algebra generated by T contains a non-zero compact operator. 

The proof of Theorem 5.1 relies on Muhly's characterization [39] of the 
compact operators in the commutant of a ^o operator. Theorem 5.1 was 
inspired by [13], which deals with the special case where 1 - T*T and 1 - TT* 
have finite rank. 

A transitive algebra result is an immediate consequence of Theorem 5.1 and 
a corollary of Lomonosov's lemma; ([52], Theorem 8.23). 

5.2. COROLLARY ([38], [30]). IfTe^o and l-T*Tandl- TT* are compact, 
then the only transitive algebra containing T is ^ffi). 

Another recently discovered relative of Lomonosov's Theorem is a generali
zation of Foias' theorem ([24], [52, Theorem 8.9]) on algebras with no 
invariant operator ranges. 

5.3. THEOREM ([45]). If si is a subalgebra of 20(20 all of whose proper 
invariant operator ranges are ranges of compact operators, then either si has a 
finite-dimensional invariant subspace other than {0} or si is weakly dense in 
a(3C). 

Theorem 5.3 is proven using graph transformations. If si has no finite-
dimensional invariant subspaces then si is transitive, and it is shown that the 
graph transformations for si must all be bounded. 

A fairly natural generalization of Lomonosov's Theorem does not require 
the compact operator to commute with any operator. 

5.4. THEOREM ([41]). If si is a uniformly closed subalgebra of Çfoffl) and K is 
an injective quasinilpotent compact operator such that siK <= Ksi, then si has a 
non-trivial invariant subspace. 

Hilden's proof of Lomonosov's theorem ([52], p. 165) is easily modified to 
yield Theorem 5.4. Handling of the case where K has point spectrum requires 
a little more work; this leads to the following generalization. 
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5.5. THEOREM ([41]). If d is a uniformly closed subalgebra of 20(26) such that 
dK = Kd for some non-zero compact operator K, then d has a non-trivial 
invariant subspace. 

Another variant of Hilden's proof was found by Pearcy and Shields [46]. 

5.6. THEOREM ([46]). If A is a quasinilpotent operator different from 0, and if 
there exists a bounded sequence {Jn} of operators different from 0 with J0 compact 
and AJn = Jn+1A for all n, then A has a non-trivial hyper-invariant subspace. 

6. Reductive operator algebras. Recall that a subset & of SK$f) is reductive 
if MeLaty implies M^el^dX^, and the reductive algebra problem is the 
question: is every weakly closed reductive algebra self-adjoint? See ([52], 
Chapter 9) for basic results on reductive algebras. 

Dyer and Procelli [22] and Dyer, Pedersen, and Procelli [23] proved that 
every operator has an invariant subspace if and only if every reductive operator 
is normal. This work has been extended by Azoff, Fong, and Gilfeather as 
follows. 

6.1. THEOREM ([9]). If d is a reductive algebra then d has a direct integral 
decomposition sé — iA®si(k)^(d\) such that si(\) is a transitive algebra for 
almost every À. 

6.2. COROLLARY ([22], [23], [9]). Every operator has an invariant subspace if 
and only if every reductive operator is normal 

6.3. COROLLARY ([9]). The following are equivalent: 

(i) every abelian subalgebra of 2ft(20 has a non-trivial invariant subspace, 
(ii) every weakly closed abelian reductive algebra is selfadjoint. 

6.4. COROLLARY ([9]). The following are equivalent: 

(i) $K?0 is the only weakly closed transitive algebra containing its commutant, 
(ii) every weakly closed reductive algebra containing its commutant is selfad

joint. 

6.5. COROLLARY ([9]). The following are equivalent: 

(i) every operator other than a multiple of the identity has a non-trivial 
hyperinvariant subspace, 

(ii) a reductive algebra which is the commutant of a single operator is 
selfadjoint. 

There have been some further results on commutants of reductive algebras. 
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6.6. THEOREM. If T commutes with the reductive algebra si, then T* com
mutes with si provided: 

(i) ([53]) T is compact, or 
(ii) ([53]) T is n-normal, or 
(iii) ([27]) T is polynomially compact, or 
(iv) ([40]) T is essentially unitary and is in %0, or 
(v) ([28]) T is a zero of a locally non-zero abelian analytic function, or 

(vi) ([27]) T is quasi-similar to a normal operator. 

Note that each of the cases of Theorem 6.6 includes the statement that T 
reductive and T having the additional property listed implies T is normal. 

Fong ([27]) has strengthened Corollary 6.5 as follows. 

6.7. THEOREM ([27]). If every operator has a hyperinvariant subspace, then si 
reductive implies the commutant of si is selfadjoint. 

A result in the negative direction was found by Loebl and Muhly. 

6.8. THEOREM ([35]). There exist ultraweakly closed reductive algebras which 
are not selfadjoint. 

The examples given in [35] all have selfadjoint weak closures. Nonetheless 
Theorem 6.8 might give hope that a counterexample to the reductive algebra 
problem can be found. It should be noted, as Arveson has pointed out, that it 
is not known whether there are any ultraweakly closed transitive algebras other 
than »(3C). 

Other sufficient conditions that reductive algebras be self-adjoint are given in 
([38]) and ([51]), and some sufficient conditions that a reductive operator be 
normal are given in ([32]), ([47]), ([25]), and ([42]). 

Fong ([26], [27]) considered the question: if every hyperinvariant subspace of 
T is reducing, must T be normal? For normal operators, of course, every 
hyperinvariant subspace is reducing, so an affirmative answer would produce an 
amazing characterization of normal operators. Fong ([26], [27]) shows that the 
question has an affirmative answer in most of the cases where it is known that 
reductivity implies normality. 

7. Remarks. There are many other recent results on invariant subspaces and 
related questions. I must mention Arveson's deep study [8] of reflexivity of 
algebras containing m.a.s.a.'s (also see [44]), Voiculescu's remarkable proof 
[58] that the reducible operators are dense, and the Abrahamse and Douglas 
[1] generalization of Beurling's theorem to bundle shifts. I have listed several 
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other recent papers which concern related topics in the references below, and 
there are other results that might well have been included. 

The subject is alive and well. 
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Added in proof: Per Enflo has recently constructed a non-reflexive Banach space on which there 
is an operator without non-trivial invariant subspaces. The problem remains open for Hilbert 
space, and Enflo states that his techniques will not shed any light on the Hilbert space problem. 
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