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1. Introductory.

In the Appendix III . of his "Mechanics of Machinery," Le
Oonte attacks the problem of rolling curves by an elegant
analytical method in which the cartesian forms of the involute and
the trochoids are derived from elementary differential equations.
Weisbach(" Mechanics of Engineering and of Machinery," Vol. III.,
chap. II.), while using mainly the geometrical method, discusses one
application analytically (see §3 of this paper) in which polar forms
are introduced. Many other writers, for example Barr ("Kine-
matics of Machinery," chaps. III., IV.), deal wholly with the
geometry of the subject.

In the present paper rolling curves are discussed analytically
from the standpoint of polar and pedal forms. While it is not
proposed to consider the relative merits of the two methods, it may
be noted that some more general results follow from analysis; for
example, that the log spiral and ellipse are derivable from a single
formula, and are only two members of a family of self rolling-curves,
and that the epicycloid will gear with other curves besides an epi-
or hypo-cycloid.

2. Pure Boiling.

POLAR FORMS.

Two curves have pure rolling on each other only when their
point of contact lies in the line of centres. For, P's velocity must
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be the same round O and O', and therefore must be perpendicular
both to PO and PO'.

Pier. l .
The analytical expression of this condition is

r + / = d, and 4> = <f>,

Instead of 6 = <f>' v& shall use r-=- = r' -=-; •
dr dr

To find a curve which will roll with a given curve r=J\0),
that is, to find a relation between r\ ff we have only to eliminate
r, 6. We may write 0=f~l(r) as the formula inverse to r=f{6),
so that

dr „,,„,

1 dr ±

d-r'
•dr'.

and — -z

whence

If the first curve is defined in the form 0 = <j>(r)

then

The following examples illustrate these formulae:—
1. The log. spiral. r^tP8

-I.r'a(d-r'fr'Ior1
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2. The ellipse turning about a focus. —= 1 +gcos0,
T

I dr

A T M - y </{**-(*-••)»},

J r\d-r')
l(d-r')dr'

This integral is easily evaluated in the form

L le \ r'
where Ls = (d -1)* - e*d*,
and ~D = d(l-e*)-l.

The curve having rolling contact with the ellipse is thus
given by

—r = D + lecoa-r6
>,

r I
but if L = Z,

Hence the second curve is an (equal) ellipse in one case.
3. The circle. r = osintf.

Here 9 = sin"1 77^ 5 r s m ; •

a J(dr - a?) ar

4. The straight line. r = csecfl

g i v e 8 ^_ 7

which takes the simpler form—7 = VS+coshtf' when d = c>j2.

[For a drawing see Barr, " Kinematics," p. 89.]

5. The involute of a circle. 6 = — - cos"1—rolls with
a r

- r'f - a8} -
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No relation between d and a can reduce this to the involute form.
Hence there cannot be pure rolling in the gearing of involute
teeth.

PEDAL FORMS.

The conditions are expressed by r + r' = d; — = ^j-. Hence if
r r

P =Ar) is the equation of one curve, we have only to eliminate p, r
for that of the other.

P J(r)J{d-r')_p'
r r d-r' r''

This simple formula gives an immediate solution for several cases.

If p = ar, then p' — -z r°{^~r)= ar\ the case of log spirals.

Again, if i - _ ^ -

b d-r' If la
t h e n

when d = 2a, which again establishes the rolling property of equal
ellipses. The straight line and the involute can be dealt with
in the same simple way. The pedal form therefore is of great
advantage when the second curve can be recognised in pedal
coordinates. I t is of course possible to trace the curve by calcu-
lating from p = rx sin<j> and plotting points in close succession, as
in graphical integration. When feasible, however, it is preferable
to convert into polars. For p =/(r),

JrJ(r*-{J{r)}3) J r '

/(d-r-)dr'-I \r'J({d-rJ-{f{d-r')Y)

These form also define a pair of rolling curves.
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3. Self-Rolling Curves.

The fact that the log spiral and the ellipse in pure rolling and
the involute and epicycloid in slip-rolling are self-rolling curves
used by engineers for gearing suggests searching for other curves
possessing the same property. The formulae of § 2 give this
result at once since

if W)aHd-r).
.. , .. , fF(r) + P(d-r) . . rP(r) .F(d-r) .

In particular, the forms —— - -dr and —— - -drJ r J r
define an infinite number of self-rolling curves. A simple example
is provided by F(r) = r in the second type,

. Md-r), r*
6 = — '-dr = rd - —.

} r 2
This curve would give a symmetrical reciprocal motion of rotation
to two parallel shafts, and is easily traced by its relation to a
parabola. The log spiral is given by <f>(r) = c, and the ellipse by

It should be noted that other factors enter into the problem of
applying pure rolling curves to gearing. For example, it is possible
to design log spiral teeth on two wheels to gear with each other.
I t will be seen, however, that the frictional advantage of making
contact on the line of centres is more than compensated by the
difficulty of clearing non-gearing pairs of teeth and at the same
time ensuring a strong form of tooth.

The practical problem, however, is to find the forms of both
curves for a prescribed variable velocity ratio.

Since i—- = r —r-r and dr = — dr' we have
dr dr

velocity ratio = —7 = - —r^.
r df)

Hence the datum may be taken as 9' = F(0) and then—- = -

from which, using r + r =d, we get
r

F'($)'
d,
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as the equations defining the required curves. As these results
in a modified form are illustrated in Weisbach (" Mechanics of
Engineering," Vol. III., pp. 190-195) further consideration need
not be given them here.

4. Slip Rolling.

Pig. 2.

Polar coordinates give the following relations
0? = ,* + ̂  + 2rr'cos(<£ - <£')

~ ; tan<£' = r'— ; r =

To find r' in terms of ff we must eliminate <f>, <f>, r, 6 and this
requires another equation expressing some further condition (in
this case arbitrary). But even this simplest of these conditions
does not appear to render the elimination tractable. We therefore
proceed to consider pedal coordinates, which free us at first from a
differential equation.

Here p = rsm<f>; J{''s~pi) =rcos<f).
Hence the fundamental equation becomes

cP = r2 + r " + 2pp' + 2 J(r> - p') (r'3 - p'%

from which, in conjunction with p =J\r) and the special equation of
condition, p and r are to be eliminated. The following are
examples of this condition :—

1. If the direction of the common normal be fixed
p+p' = e.

2. If the common normal pass through a fixed point on 0 0 '
(the condition for a fixed velocity ratio)
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3. If P describe an ellipse
r + r' = c.

4. If P lie on a line distant k from 00 '

5. If P lie on a line perpendicular to 00', distant c from 0
r*-r"=2dc-d\

To prove that the involute gears with any other involute.

Take condition I. and the pedal equation of the involute

Then cP = (p2 + a") + r* + 2a J(r'* - p") + 2pp'

= (c - p'f + a2 + r'3 + 2a J(r"- - p*) + 2p'(c - p').

It is easily seen from a figure that b - a, b + a are the radii of
the "root" circles for external and internal contact. As these
radii depend upon the arbitrary constant c the number of rolling
involutes is infinite.

To prove that the epicycloid gears toith a hypocycloid or an
epicycloid.

The condition required is that the common normal meets the
line of centres in a certain fixed point. If the epicycloid is
defined by

then the value of c is a 4- (d - a), so that
(d-a)J{r*-p*) = aJ(r'*-p'*) (2)

Eliminating r from these equations

Put p(d-a)= ±(a + 2b)x (3)
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Next eliminate r between (1) and the fundamental equation,

cP = r2 + r'2 + 2 v ' (r3 - p"-)(r'- - p'-) + 2pp'

Inserting the value of p given by (3), we have

(r'1 - d8 + a2) (rf - af + ib(a + b)x* + 2a(d - a) (r'2 -p"-)

±2p'(d-a)(a+2b)x = 0.

But r" = (d-af + p'i-a?.

.: x3[46(a + 6) - d? + a2] ± 2xp'(d - a) (a + 26) + p^d - af = 0.

Solve as a quadratic in x

x(a + 26) ± p'(d -a)=±xd (4)

x(a+2b±d)= ±p'(d-a)

r'2 = (d - af - ^ ~ " ^ P " (lower sign)

The first equation shows that the gearing curve is a hypocycloid
if d>a (external contact) and an epicycloid if d<a (internal
contact), the radius of the base circle being d - a and that of the
rolling circle 6.

In the second equation 6 = 0 gives an epicycloid which does not
gear with the original curve r = a; and the upper sign must be
rejected in the right hand member of 4, where we can only say
that at least one sign must give a correct result.

The General Problem.—To prove analytically that when any
curve rolls on two pure rolling curves it traces out curves which
gear with each other.

I*fc Pi< ri a n d P& rs (or ^ - ri) refer to the given pure rolling
(or " pitch ") curves ; IP, p to the curve in contact at A rolling
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outside the first and inside the second pitch curve; and p, r and 
p', r' to the curves generated by B. 

p = OF + FE. 

= r,sin(<k + # - 90*) + p 

= /)-r1cos(<^1 + * ) . (1) 

V(r s -^ S ) = EB = F A 

= r,cos(^, + * - 9 0 ° ) 

= nsin(<^ + * ) . ( 2 ) 

Eliminating & + $ from (1), ( 2 ) , 

»-II = » J + P , - 2 « B . ( 3 ) 

Again p = O G + G E 

= OG + A B - E B c o t * 

=Picosec* + p - c o t * ^(r* - p 2 ) 

-Piy + P-yJC-P2) ( P S - P 2 ) - (4) 
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Relations connecting p', r', P, p, p», r2 are got by changing the
signs of T,P,

The common normal passes through A. Hence we must prove
that the relations between the pr and p\ r' curves are such that
the fundamental equation

d* = r» + r'2 + 2pp' + 2 x/(r» - / ) ( r " - p") (5)

is identically satisfied, when we have the condition

^?).(rf-'.)=Vryj.r, (6)
From the pitch curves we have

Pi Pi
r, d - r,

Applying (6) and (7) to 4a

(7)

p

d-r,

- p) - pr,
= pd-pr1-pd (8)

Now express (5) in terms of r, p, p
rtf - p3 - 2pp'

r") = ^ ( 2 ^ - 2dr, + cP - 2p")

+ 2p(pr1-pd+pr1 + pd)by(8) (9)

Also r1(2py + 2 V ( r s - / ) ( r " - p " )
= 2p(pd - pr, -pd) + 2(d - r,)(»* - f)
= 2dr* - 2ppd - 2rfp2 + idpp - 2r,s + 2 ^ - 4r,pp (10)

Adding (9) and (10) the terms on the right cancel and leave (5)
identically satisfied. Hence the proposition is proved.
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